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Abstract. On the total space of a G−complex vector bundle E is de-
fined the gauge transformations. A gauge complex invariant Lagrangian
determines a special complex nonlinear connection for which the associ-
ated Chern-Lagrange and Bott complex connections are gauge invariant.
The complex field equations are determined with respect to these asso-
ciated gauge complex connections. By complex Legendre transformation
(the L−dual process) we investigate the similar problems on the dual
vector bundle E∗. The L−dual Chern-Hamilton and Bott complex con-
nections are also gauge invariant. The complex Hamilton equations are
write for the general L−dual Hamiltonian obtained as a sum of particle
Hamiltonian, Yang-Mills and Hilbert-Einstein Hamiltonians.
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1 Introduction

Gauge theory is called to use the differential geometric methods in order to describe
the interactions of fields over a certain symmetry group G. From geometrical point
of view a gauge theory is the study of principal bundles, their connections space and
the curvatures of these connections.

For all of us it is well-known that a principal G−bundle P over a (world) manifold
M is in its turn a manifold with a smooth G−action and its orbit space is P/G = M .
Classical fields can be identified with sections of this principal G−bundle.

It is generally believed that four kinds of fundamental interactions, namely: strong,
electromagnetic, gravitational and weak interactions, are all gauge invariant which
determines the form of interpretation. The conventional gauge principle refers to La-
grangian densities which assure the invariance for the action integral at local changes.

For initial Yang-Mills gauge theory the Lagrangians had strict local gauge sym-
metry. After introducing the spontaneously symmetry breaking and Higgs mechanism
usually the gauge group is of complex matrices and the gauge Lagrangians are de-
fined over a complexified G−bundle, for instance the Klein-Gordon Lagrangian, Higgs
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particle Lagrangian or complex fermion-gravitation, etc.. These Lagrangians act on
the first order jet manifold, which plays the role of a finite dimensional configuration
space of fields. By Legendre morphism, intrinsically related to a Lagrange manifold is
the multimomentum Hamiltonian ([4, 23]...) which works on the corresponding phase
manifold (the dual G−bundle). Although in Quantum Mechanics the Lagrangian and
Hamiltonian formalism is a usual technique, in the gauge field theory it remains almost
unknown, especially for the complex situation.

On the other hand, in most cases the complex Hamiltonian and its system are
obtained from a real one, expressed in terms of complex variables ([24, 25, 9, 14]...). In
our opinion, this process of complexification, required for particular physical purposes,
offers a suitable but special approach for the evolution equations, in lots of cases being
unacceptable for the gauge fields theory. This assertion is based on the fact that
in gauge theory the used linear connections are Hermitian with respect to metrics
directly derived from complex Lagrangian (Hamilonian). But if somehow this is not
a real valued function, the associated metric will not be a Hermitian one.

In the present paper, our goal is to introduce a gauge complex field theory in terms
of complex Lagrange and Hamilton geometries, [21], extended to an associated fiber
of one complex bundle (P, M,G) and respectively to its dual bundle.

In the first section, we briefly introduce the geometric machinery which character-
ize these geometries and then we study the gauge invariance of the main geometric
presented objects.

In the next section we obtain the complex Euler-Lagrange field equations and
the complex gauge invariant Lagrangian for field particle, complex Yang-Mills and
Hilbert-Einstein Lagrangians are also written.

In the final section we translate by complex Legendre transformation the studied
results on the dual bundle, and thus we obtain the complex Hamilton field equations
and the L−dual Hamiltonians.

2 The geometric background

In [21], we make an exhaustive study of complex Lagrange (particularly Finsler) and
Hamilton (Cartan) spaces, which have as a base manifold the holomorphic tangent
respectively cotangent bundles of a complex manifold M .

Part of the notions studied in this book can extend to a G−complex vector bundle,
and here we do this. By this way, since the extension is natural, we will omit the proofs.
For more details in this part see the introductory paper [20].

Let M be a complex manifold, (zk)k=1,n complex coordinates in a local chart
(Uα, ϕα), π : E → M a complex vector bundle of Cm fiber, and η = ηasa a local
section on E, a = 1,m. Consider G a closed m−dimensional Lie group of complex
matrices, whose elements are holomorphic functions over M .

Definition 2.1. A structure of G−complex vector bundle of E is a fibration with
transition functions taking values in G.

This means that if z′i = z′i(z) is a local change of charts on M , then the section
η changes by the rule

z′i = z′i(z) ; η′a = Ma
b (z)ηb ,(2.1)
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where Ma
b (z) ∈ G and ∂Ma

b (z)/∂z̄k = 0 for any a, b = 1,m and k = 1, n.
E has a natural structure of (n + m)−complex manifold, a point of E is designed

by u = (zk, ηa).
The geometry of E manifold (the total space), endowed with a Hermitian met-

ric gab̄ = ∂2L/∂ηa∂η̄b derived from a homogeneous Lagrangian L : E → R+, was
intensively studied by T. Aikou ([1, 2, 3, 21]). Particularly if E is T ′M , the holomor-
phic tangent bundle of M , then a structure of GL(n,C)−complex vector bundle is
obtained. Let us consider the vertical bundle V E = ker πT ⊂ T ′E ; a local base for
its sections is {∂̇a := ∂

∂ηa }a=1,m. The vertical distribution VuE is isomorphic to the
sections module of E in u.

A supplementary subbundle of V E in T ′E, i.e. T ′E = V E⊕HE, is called a complex
nonlinear connection, in brief (c.n.c.). A local base for the horizontal distribution
HuE, called adapted for the (c.n.c.), is {δk := δ

δzk = ∂
∂zk − Na

k
∂

∂ηa }k=1,n, where
Na

k (z, η) are the coefficients of the (c.n.c.). Locally {δk} defines an isomorphism of
πT (T ′M) with HE if and only if they are changed under the rules

δk =
∂z′j

∂zk
δ′j ; ∂̇b = Ma

b ∂̇′a(2.2)

and consequently for its coefficients (see (7.1.9) in [20]) we have that

∂z′k

∂zj
N ′a

k = Ma
b N b

j −
∂Ma

b

∂zj
ηb.(2.3)

The existence of a (c.n.c.) is an important ingredient in the ”linearization” of this
geometry. The adapted basis, denoted {δk̄ := δ

δz̄k } and {∂̇ā := ∂
∂η̄a }, for HE and V E

distributions are obtained respectively by conjugation everywhere.

Definition 2.2. A gauge complex transformation on G−complex vector bundle E, is
a pair Υ = (F0, F1), where locally F1 : E → E is an F0−holomorphic isomorphism
which satisfies

πT ◦ F1 = F0 ◦ πT .(2.4)

This notion generalizes that considered in [19] for the holomorphic bundle T ′M .
When Υ is globally defined, the complex structure of E is preserved by Υ.

Proposition 2.1. A gauge complex transformation Υ : u → ũ is locally given by a
system of analytic functions :

z̃i = Xi(z) ; η̃a = Y a(z, η)(2.5)

with the regularity condition: det
(

∂Xi

∂zj

)
· det

(
∂Y a

∂ηb

)
6= 0.

Let be Xi
j := ∂Xi

∂zj and Y a
b := ∂Y a

∂ηb ; and denote by X ī
j̄
, Y ā

b̄
their conjugates.

Obviously, from the holomorphy requirements we have Xi
j̄

= ∂Xi

∂z̄j = 0 and Y a
j̄

=
∂Y a

∂z̄j = 0, Y a
b̄

= ∂Y a

∂η̄b = 0.

Some ideas from [19] can be easily generalized here. For instance a d−complex

gauge tensor is a set of functions on E, wi1...
¯i1...a1...ā1...

j1....j̄1...b1...b̄1...
(z, η) which transform under
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(2.4) changes with the matrices Xi
k, X

¯ī
k
, Y a

c , Y ā
c̄ for the upper indices and with their

inverses
∗

Xi
k,

∗
X

¯ī
k
,
∗

Y a
c ,

∗
Y ā

c̄ for the lower indices. In addition we require for these functions
to be d−tensors (see [21]).

A (c.n.c.) is said to be gauge, (g.c.n.c), if the adapted frames transforms into
d−complex gauge fields, i.e. in addition to (2.2) we have

δj = Xi
j δ̃i ; ∂̇b = Y a

b ∂̇ã ,(2.6)

where δ̃i = δ
δz̃k and ∂̇ã = ∂

∂η̃a .

Indeed, this implies that in addition to (2.3) we have

Xk
j Ña

k = Y a
b N b

j −
∂Y a

∂zj
.(2.7)

Let us consider now the dual G−bundle π∗ : E∗ → M of the G−bundle E.
Likewise as above, E∗ has a natural structure of complex manifold, a point is denoted
by u∗ = (zk, ζa), k = 1, n and a = 1,m, with the following change of charts,

z′i = z′i(z) ; ζ ′a =
∗

M b
a (z)ζb(2.8)

where
∗

M b
a is the inverse of M b

a from (2.1).
By a similar way as for E manifold, we consider T ′E∗ the holomorphic tangent

bundle of E∗ and { ∂
∂zk , ∂

∂ζa
} a base for T ′u∗E

∗. Then {∂̇a := ∂
∂ζa
}a=1,m will be a base

for the sections in the vertical bundle V E∗ = ker π∗T . A (c.n.c) on E∗ is defined by
a decomposition T ′E∗ = V E∗ ⊕HE∗. The local base for the horizontal distribution
Hu∗E

∗ will be denoted by {δ∗k := δ∗
δzk = ∂

∂zk +Nak
∂

∂ζa
}k=1,n and will be called adapted

for the (c.n.c.). By the fact that {δ∗k} is adapted for the (c.n.c.), we have

δ∗k =
∂z′j

∂zk
δ∗′j ; ∂̇a =

∗
Ma

b ∂̇′b(2.9)

and consequently, the coefficients Nak(z, ζ) of the (c.n.c.) are changed by the rule

N ′
ak =

∗
M b

a

∂zj

∂z′k
Nbj +

∂
∗

M b
a

∂z′k
ζb.(2.10)

The Lie brackets of the adapted frames on T ′uE and on T ′u∗E
∗ are obtained by

direct computation, like for the particular case E = T ′M, ([21]).

A complex gauge transformation on E∗ is defined by a pair
∗
Υ= (

∗
F 0,

∗
F 1), where

locally
∗
F 1: E∗ → E∗ is an

∗
F 0 −holomorphic isomorphism which satisfies

π∗T ◦ ∗
F 1=

∗
F 0 ◦π∗T .

The local expression of a complex gauge transformation on E∗ is:

z̃i = Xi(z) ; ζ̃a = Ya(z, ζ)(2.11)



Gauge Field Theory 111

with the regularity isomorphism condition assumed.
Let be Xi

j := ∂Xi

∂zj and Y b
a := ∂Ya

∂ζb
; then obviously, from the holomorphy require-

ments, we have Xi
j̄

= ∂Xi

∂z̄j = 0 and Yaj̄ = ∂Ya

∂z̄j = 0; Y b̄
a = ∂Ya

∂ζ̄b
= 0.

The various d−geometric objects on E∗ are defined in complete analogy with those
defined by us on E.

A (c.n.c.) on E∗ is gauge, in brief it is (g.c.n.c.), if its adapted frames transform
by the rules

δ∗j = Xi
jδ
∗
ĩ

; ∂̇a = Y a
b ∂̇ b̃ ,(2.12)

where δ∗
ĩ

= δ∗
δz̃i and ∂̇ã = ∂

∂ζ̃a
.

Indeed, this implies that in addition to (2.10) the coefficients of the (g.c.n.c.) obey,

Xk
j Ñak = Y b

a Nbj +
∂Ya

∂zj
.(2.13)

Now, let us consider L : E → R a complex regular Lagrangian, that is the function
L(z, η) defines a metric tensor gab̄ = ∂2L/∂ηa∂η̄b which is Hermitian, gab̄ = gbā and
det(gab̄) 6= 0 in any point u = (z, η) of E. By gb̄a is denoted its inverse metric tensor.

Proposition 2.2. If L(z, η) is a gauge invariant Lagrangian on E, i.e. L(z, η) =
L(z̃, η̃), then

Na
k = gb̄a ∂2L

∂zk∂η̄b
(2.14)

is a (g.c.n.c.).

Proof. From holomorphy conditions it results that gab̄ is a d−complex gauge
tensor, which is gab̄ = M c

aM d̄
b̄
g′

cd̄
and gab̄ = Y c

a Y d̄
b̄

g̃cd̄. Now we can easily check by
direct calculus the (2.3) and (2.7) rules for the gauge changes of Na

k . Therefore (2.14)
defines the coefficients of a (g.c.n.c.). ¥

A fundamental notion in our study is that of d−complex vertical connection on
E. The metric tensor gab̄ determines a metric Hermitian structure G = gab̄dηa ⊗ dη̄b

on the vertical bundle V E. The connection form of a d−complex vertical connection
D is written according to (7.2.4) from [21] as follows

ωa
b = La

bkdzk + La
bk̄dz̄k + Ca

bcδη
c + Ca

bc̄δη̄
c ,(2.15)

where (dzk, δηc = dηc + N c
kdzk) is the dual adapted base of the (c.n.c.) and

(La
bk, La

bk̄
, Ca

bc, Ca
bc̄) are the coefficients of the vertical connection D.

From the general theory of Hermitian connection it result a unique metrical Her-
mitian connection with respect to G and of (1, 0)−type, called the Chern-Lagrange
complex connection, which can be obtained by the same technique as we did for the
T ′M bundle (Corollary 5.1.1, [21]):

CL

La
bk= gd̄aδkgbd̄ ;

CL

La
bk̄= 0 ;

CL

Ca
bc= gd̄a∂̇cgbd̄ ;

CL

Ca
bc̄= 0.(2.16)
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A simplification presents a special partial complex connection (cf. [2, 3]), called
the complex Bott connection, which is not metrical but has a very simple expression

DXY = v [X, Y ] , ∀X ∈ HE , Y ∈ V E.

From the calculus of the Lie brackets, see (7.1.10) in [21], it results that the
connection form of the complex Bott connection is

ωa
b =

B

La
bk dzk , where

B

La
bk=

∂Na
k

∂ηb
.(2.17)

The unique nonzero component of the complex Bott connection on E is

Ωa
b = Ra

bij̄ dzi ∧ dz̄j with Ra
bij̄ = −δj̄

B

La
bi ,(2.18)

while the nonzero components of complex Chern-Lagrange connection are more nu-
merous. For this reason the complex Bott connection is an appropriate connection for
our approach.

A complex vertical connection determines the following derivative laws on V E :

h

Dδk
∂̇b = La

bk∂̇a ;
h̄

Dδk̄
∂̇b = La

bk̄∂̇a ;
v

D∂̇c
∂̇b = Ca

bc∂̇a ;
v̄

D∂̇c̄
∂̇b = Ca

bc̄∂̇a .

The covariant derivatives of a vertical field Φ = Φa ∂
∂ηa will be denoted with Φa

p k,
Φa
p k̄ and Φa

| b, Φa
| b̄

, where

Φa
p k = δkΦa + La

bkΦb ; Φa
p k̄ = δk̄Φa + La

bk̄Φb ;(2.19)

Φa
| c = ∂̇cΦa + Ca

bcΦ
b ; Φa

| c̄ = ∂̇c̄Φa + Ca
bc̄Φ

b.

If D is a gauge invariant connection, because δk, ∂̇c and δk̄, ∂̇c̄ are gauge invariant,
we may conclude that these covariant derivatives are gauge invariant as long as Φ is
gauge invariant.

On E∗ manifold we may introduce the similar d−complex connections with respect
to a metric tensor derived from a regular Hamiltonian.

A regular complex Hamiltonian is a real valued function H : E∗ → R such that
hb̄a = ∂2H/∂ζa∂ζ̄b defines a Hermitian metric tensor on E∗, i.e. hb̄a = hāb and
det(hb̄a) 6= 0 on E∗. Let hab̄ be its inverse. A regular complex Hamiltonian determines
a metric Hermitian structure on the vertical bundle V E∗, defined by H = hb̄a dζa ⊗
dζ̄b.

Proposition 2.3. Let H(z, ζ) be a complex gauge invariant Hamiltonian on E∗, i.e.
H(z, ζ) = H(z̃, ζ̃). Then,

Nak = −hab̄

∂2H

∂zk∂ζ̄b
(2.20)

is a (g.c.n.c.) on E∗.
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Proof. We can check that hb̄a is a gauge d− tensor, that is hb̄a =
∗

Ma
c

∗
M b̄

d̄
h′d̄c and

hb̄a = Y a
c Y b̄

d̄
h̃d̄c. Therefore its inverse is a gauge d−tensor, too. Based on the fact

that ∂Ma
b /∂z̄k = 0, Y a

b̄
= 0 and Xi

j̄
= 0, we verify directly that (2.20) performs both

(2.10) and (2.13) rules of change. ¥
With respect to adapted frames of (2.20) (c.n.c.) a d−vertical connection on V E∗

is denoted by
∗
D and has the following components,

h∗
Dδ∗k ∂̇a = Ha

bk∂̇b ;
h̄∗
Dδ∗

k̄
∂̇a = Ha

bk̄∂̇b ;
v∗
D∂̇c ∂̇a = Cac

b ∂̇b ;
v̄∗
D∂̇c̄ ∂̇a = Cac̄

b ∂̇b

and their conjugates by DXY = DX̄ Ȳ .
It results that its connection form is

ωa
b = Ha

bkdzk + Ha
bk̄dz̄k + Cac

b δζc + Cac̄
b δζ̄c ,(2.21)

with respect again to the dual adapted frame of the (2.20) (c.n.c.).
There exists a unique metric connection with respect to the Hermitian structure

H on V E∗ which is of (1, 0)−type,

CH

Ha
bk= hd̄aδ∗khbd̄ ;

CH

Ha
bk̄= 0 ;

CH

Cac
b = −hbd̄∂̇

chd̄a ;
CH

Cac̄
b = 0,(2.22)

called the complex Chern-Hamilton vertical connection.
A partial vertical connection of Bott type on V E∗ is given by the vertical part

of the bracket,
∗B
DX Y = v [X, Y ] , ∀X ∈ HE∗ , Y ∈ V E∗, and has the following

connection form

ωa
b =

B

Ha
bk dzk , where

B

Ha
bk=

∂Nbk

∂ζa
.(2.23)

The unique nonzero component of the complex Bott connection on E∗ is

Ωa
b =

∗
Ra

bij̄ dzi ∧ dz̄j with
∗

Ra
bij̄= −δj̄

B

Ha
bi .(2.24)

Proposition 2.4. If H is a gauge invariant Hamiltonian, then both complex Chern-
Hamilton and Bott connection on V E∗ are gauge invariant.

The proof derives from the fact that hb̄a and Nbk given by (2.20) are gauge invari-
ant and δ∗k, ∂̇a are gauge adapted frames.

The sections of V E∗ are 1−forms, Φ = Φa(z, ζ) ∂
∂ζa

= Φa∂̇a. Then a vertical

connection
∗
D on V E∗ induces covariant derivatives which act under the section Φ as

follows

Φa p k = δ∗kΦa + Hb
akΦb ; Φa p k̄ = δ∗̄kΦa + Hb

ak̄Φb ;(2.25)

Φa | c = ∂̇cΦa − Cbc
a Φb ; Φa | c = ∂̇ c̄Φa − Cbc̄

a Φb.
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Now, we recall that in [21] a Lagrangian-Hamiltonian formalism was introduced
for the holomorphic tangent bundle T ′M by using a complex Legendre morphism. We
proved that by complex Legendre transformation (the L-dual process) the image of a
complex Lagrange space is (at least locally) a complex Hamilton space. The complex
Legendre transformation pushes-forward and its inverse pulls-back the various de-
scribed geometric objects of a complex Lagrange space and complex Hamilton space,
respectively.

Without more other details we can reproduce here, generalizing the T ′M case,
the process of L-duality for the pairs (E, L ) and (E∗, H). Let us consider L a local
Lagrangian on U ⊂ E. Then the map Λ : U ⊂ E → Ū∗ ⊂ E∗

Λ : (zk, ηa) → (zk, ζ̄a =
∂L

∂ηa
)(2.26)

is a local diffeomorphism. Since the sections of V E are identified with those of E, we
can extend Λ to the open set of V E. By conjugation, the local diffeomorphism Λ×Λ
sends the sections of the complexified bundle V E × V E into sections of V E∗ × V E∗.
This (local) morphism will be called the complex Legendre transformation, briefly
(c.L.t).

Then, locally the function

H = ζaηa + ζ̄aη̄a − L(2.27)

defines a regular (local) Hamiltonian on E∗.
By the inverse Λ−1 : Ū∗ → U, Λ−1 : (zk, ζ̄a) → (zk, ηa = ∂H

∂ζa
), from a Hamiltonian

structure on E∗ a Lagrangian structure on E is obtained.
The properties obtained by (c.L.t) are called L-dual one to other. Like in [21], in

the following with ”∗” will be designed the image of an object by Λ and with ”o”
their image by Λ−1. Some of the assertions of § 6.7 from [21] can be easily translated
in our framework. For instance, in virtue of (2.27) we have

Proposition 2.5. The unique pair of (c.n.c.) on V E and respective on V E∗ which
correspond by L-duality is given by (2.14) and (2.20). Moreover, if L is gauge invari-
ant Lagrangian then both of these (c.n.c.) are gauge invariant.

Further, simple calculus proves that

Proposition 2.6. The following equalities hold by L-duality:

i)
(

δ
δzk

)∗
= δ∗

δzk ;
(

∂
∂ηa

)∗
= hab̄

∂
∂ζ̄b

;
(

δ∗
δzk

)o

= δ
δzk ;

(
∂

∂ζa

)o

= gab̄
∂

∂η̄b

ii)
(
dzk

)∗ = d∗zk ; (δηa)∗ = hb̄aδζ̄b ;
(
d∗zk

)o = dzk ; (δζa)o = gab̄δη̄
b

iii) (G)∗ = H and (H)o = G.

Proposition 2.7. If D is a vertical connection on E, then
∗
D= (D)∗ is a vertical

connection on E∗ and their connection coefficients are related by

Ha
bk = hc̄a{δ∗khbc̄ − hbd̄

(
Ld̄

c̄k

)∗
} ; Cac

b = hd̄a{∂̇chbd̄ − hēchbf̄

(
C f̄

d̄ē

)∗
}

H ā
b̄k = hāc{δ∗khcb̄ − hdb̄

(
Ld

ck

)∗} ; Cac̄
b = hd̄a{∂̇ c̄hbd̄ − hc̄ehbf̄

(
C f̄

d̄e

)∗
}.
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These formulas are a generalization of (6.8.3) from [21].
If D is a metrical connection, then (D)∗ is metrical too, moreover their curvatures

correspond by L-duality, (R(X, Y )Z)∗ =
∗
R (X∗, Y ∗)Z∗. We note that the image by

L-duality of the complex Bott connection is not the complex Bott connection on E∗.
However, we shall use both of these connections for theirs simple expressions and
convenience in calculus.

We end this section with a remark. With respect to adapted frames of the L-dual
(2.14) and (2.20) (c.n.c.) we can consider the almost simplectic forms ω and θ, L-dual
one to other, θ = (ω)∗ ,

ω = gab̄ δηa ∧ δη̄b ; θ = hb̄a δζa ∧ δζ̄b.(2.28)

Let us consider c : t → (zk(t), ηa(t)) a curve in the manifold E and its tangent
vector on TCE, ċ = dzk

dt
δ

δzk + δηa

dt
∂

∂ηa + conjugates . By L-duality, in virtue of (2.26),
(2.27) and Proposition 2.6 we obtain a tangent vector field ċ∗ = (ċ)∗ on TCE∗. Let
us consider the differential form

δH = ∂H
∂zk d∗zk + ∂H

∂ζa
δζa + ∂H

∂z̄k d∗z̄k + ∂H
∂ζ̄a

δζ̄a.

Then ċ∗ is an integral curve for the Hamiltonian H, L-dual to the Lagrangian L on
E, iff iċ∗θ = δH; that yields to the following complex Hamilton evolution equations
on V E :

hb̄a δζb̄

dt
= −∂H

∂ζa
(2.29)

to which we add the (2.26) and (2.27) conditions of L-duality.

3 The Euler-Lagrange complex field equations

Let E be a G−complex vector bundle over M. From physical point of view a section
of E is treated as a field particle. The field particle dynamics assumes to consider
the variation of a Lagrangian particle Lp : E → R, which is a first order differential
operator over the sections of E. This is Lp = Lp(j1Φ), where Φ = Φasa is a section
and j1Φ its first jet. Enlarge this is,

L̂p(Φ) = Lp(Φa, ∂iΦa, ∂¯iΦ
a, ∂̇bΦa, ∂̇b̄Φ

a)(3.1)

where ∂i = ∂
∂zi , ∂̇b = ∂

∂ηb .
The field equations imply to find the particle Φ from the variational principle

δA = d
dt |t=0 A(Φ + tδΦ), where A(Φ) =

∫
L̂p(Φ) is the action integral. Actually, the

action integral is defined on a compact subset θ ⊂ E and, for the independence of the
integral at the changes of local charts, instead of L̂p(Φ) we consider the Lagrangian
density Lp(Φ) = L̂p(Φ) | g |2, where | g |=| det gab̄ | and gab̄ = ∂2Lp/∂ηa∂η̄b ( since
Lp depends on (z, η) by means of Φ). In the following the regularity condition for Lp

will be assumed.
The problem of solutions for the field equations is one difficult, first because the

chosen Lagrangian needs to be one gauge invariant (by means of Φ and its derivatives).
Then the derivations in field equations are with respect to the natural frames ∂i, ∂̇b
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which, for a gauge invariant expression of the field equations, need to be replaced with
the adapted frames of one (g.c.n.c.), i.e. ∂i = δi + Na

i ∂̇a. Such a way was followed in
[19] in order to obtain the gauge invariant field equations on T ′M . The modern gauge
field theories is based on the ”minimal replacement” principle ([8, 13, 22]...), which
is nothing but a generalization of Einstein’s covariance principle.

The minimal replacement principle consists in replacement in
Lp(Φa, ∂iΦa, ∂¯iΦ

a, ∂̇iΦa, ∂̇¯iΦ
a) partial derivatives with covariant derivatives of a gauge

invariant vertical connection, possible the complex Bott connection. At the first glance
this seems to be a notational process, but it is a more subtle idea. The connection
becomes a dynamical variable which joints mechanics with the geometry of the space.
Thus we will study the variation of the action for the Lagrangian Lp(Φ, DΦ). But for
the beginning let us introduce, as in standard theory, the (complex) currents on E :

J(Φ, DΦ) ∧ δω :=
d

dt
|t=0 L(Φ, DΦ + tδω)(3.2)

where δω is a variation for the connection form of D connection.
Direct calculus in (3.2) yields the following complex currents:

h

J i
a=

∂L
∂Φa

p i
;

h̄

J i
a=

∂L
∂Φa

p ī
;

v

Jb
a=

∂L
∂Φa

| b

;
v̄

Jb
a=

∂L
∂Φa

| b̄

(3.3)

which implicitly contain the following components

h

J ib
a =

∂L
∂La

bi

;
h̄

J īb
a =

∂L
∂La

b̄i

;
v

Jcb
a =

∂L
∂Ca

bc

;
v̄

J c̄b
a =

∂L
∂Ca

bc̄

.

Now, let us focus attention to the variation of the action integral, δA(Φ) = d
dt |t=0∫

θ
L(Φ, DΦ + tδω) = 0. This implies
∫

θ
{ ∂L

∂Φa δΦa + ∂L
∂Φa

p i
δ(Φa

p i) + ∂L
∂Φa

p ī

δ(Φa
p ī) + ∂L

∂Φa
| b

δ(Φa
| b) + ∂L

∂Φa
| b̄

δ(Φa
| b̄

)} = 0.

Further, for instance the calculus of the second term involves
∂L

∂Φa
p i

δ(Φa
p i) = ∂L

∂Φa
p i

∂
∂zi (δΦa) + ∂L

∂Φa
p i

δ(La
biΦ

b) =

= ∂
∂zi

(
∂L

∂Φa
p i

δ(Φa)
)
− ∂

∂zi

(
∂L

∂Φa
p i

)
(δΦa) + ∂L

∂Φa
p i

δ(La
biΦ

b)

and analogously for the other terms. If we assume a nul variation on the boundary of
θ, then finally for the variation of the integral action we obtain

∂L
∂Φa

=
∂

∂zi
(

∂L
∂Φa

p i
) +

∂

∂z̄i
(

∂L
∂Φa

p ¯i
) +

∂

∂ηb
(

∂L
∂Φa

| b

) +
∂

∂η̄b
(

∂L
∂Φa

| b̄

)− < J, δω >

where,

< J, δω >=
∫

θ

{
h

J i
a δ(La

biΦ
b)+

h̄

J i
a δ(La

b
¯iΦ

b)+
v

Jc
a δ(Ca

bcΦ
b)+

v̄

J c̄
a δ(La

bc̄Φ
b)}.

Taking into account the (3.3) expressions of the complex currents, in adapted
frames of the (2.14) (c.n.c.) the previous field equations are written
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∂L
∂Φa

= δi

h

J i
a +δ¯i

h̄

J
¯i
a +∂̇b

v

Jb
a +∂̇b̄

v̄

J b̄
a+ N b

i ∂̇b

h

J i
a +N b̄

¯i ∂̇b̄

h̄

J
¯i
a − < J, δω > .(3.4)

The (3.4) equations, for a = 1,m, will be called the complex field equations of the
particle Φ.

The gauge invariance of the Lagrangian Lp, with respect to particle Φ and their
covariant derivatives, implies the gauge invariance of the complex currents and conse-
quently the gauge invariance of (3.4) complex field equations. Certainly, everywhere
we take in discussion a gauge invariant vertical connection D, particularly the complex
Chern-Lagrange or Bott connections.

The existence of a such gauge invariant particle Lagrangian is a somewhat fas-
tidious problem since, as a rule, in general relativity Lp must be Lorentz invariant.
Subsequently we propose a particle Lagrangian of Klein-Gordon type, quite general-
ized and adequate for various field applications. For this purpose we consider a pair of
Hermitian metrics, one being the Lorentz metric γij̄(z) on the complex world manifold
M . The second is a mass Hermitian metric γab̄(z, η) on E, derived from the matter
field Lagrangian Lm = mab̄ΦaΦ̄b (mab̄ the Hermitian mass matrix).

If we wish to connect our field theory with other, a good choose instead of mass
metric is one derived from an external Lagrangian with physical meaning, for instance
an Antonelly-Shimada complex Lagrangian LAS = e2σ(z){∑a(ηaη̄a)m} 1

m (see [21]),
with applications in biology and relativistic optics. The Hermitian metric γab̄ deter-
mines the (2.14) (c.n.c.) and its adapted frames. Then, a gauge invariant Lagrangian
with respect to a complex vertical connection D and a real valued potential function
V (Φ) can be

Lp(Φ, DΦ) =
1
2

∑
a

{γ j̄iDδiΦ
aDδj̄

Φ̄a + γ b̄cD∂̇c
ΦaD∂̇b̄

Φ̄a}+ V (Φ).(3.5)

Note that Lp contains informations about matter field by means of γab̄ and by
covariant derivatives of the field.

As we already know from the classical field theory, this particle Lagrangian
Lp(Φ, DΦ) is not able, quite so in a generalized form, to offer a solid physical theory
because it does not contain enough the geometrical aspects of the space (curvature,
etc.). For this purpose, in the generalized Maxwell equations the total Lagrangian of
electrodynamics is taken in the form:

Le(Φ, DΦ) = Lp(Φ, DΦ) + LY M (D),(3.6)

where

LY M (D) = −1
2
Ω ∧ ∗Ω(3.7)

is a connection Lagrangian, Ω being the curvature form of D and ∗Ω is its Hodge
dual.

For the complex Bott connection on E we obtain

LY M (
B

D) = −1
2

∑

a,b

γ j̄iγk̄lRa
bij̄R

a
blk̄ .
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The curvature form of Chern-Lagrange connection is a bit complicate hence we
renounce to apply here.

Since, δDAe(Φ, DΦ) = δDAp(Φ, DΦ)+δDAY M (D), and δDAp(Φ, DΦ) = −〈J, δω〉
= −〈δω,∗ J〉 (∗J is the dual form current), a computation like in [22], yields for the
complex Bott connection that δDAY M (D) =< δω,∗D∗Ω > . Hence, for the complex
Bott connection we have that D∗Ω =∗ J, or else

δkΩa
b + La

ckΩc
b − Lc

bkΩa
c =

h∗Ja
kb,(3.8)

this generally being called the complex Yang-Mills equation on E.
Also we can check that D∗J = 0 (the same calculus like for formulae (6.7) from

[13]) and therefore the complex currents are conservative. We note that in this complex
Y-M equation the curvature form of Bott connection contains implicitly the Hermitian
metric tensor gab̄ = ∂2Lp/∂ηa∂η̄b of the particle Lagrangian.

Finally, for coupling with gravity we again consider the Lorentz Hermitian metric
γij̄(z) on M , which now we assume it derives from a gravitational potential, and
G = γij̄dzi ∧ dz̄j + gab̄δη

a ∧ δη̄b a metric structure on TCE.

By Sij̄ =
∑

Sk
kij̄

and by ρ(γ) = γ j̄iSij̄ we denote the Ricci curvature and scalar,
respectively, with respect to L-C connection of γij̄ metric lifted on TCE. Also by
Rij̄ =

∑
Ra

aij̄
and ρ(g) = γ j̄iRij̄ we have the Ricci curvature and scalar, respectively,

with respect to Bott connection of the g metric. The sum ρ = ρ(γ) + ρ(g) generates
an Hilbert-Einstein type Lagrangian LG = − 1

χρ, where χ is the universal constant.
The complex Einstein equations on E will be

Sij̄ −
1
2
ρ(γ)γij̄ = χTij̄ ; Rij̄ −

1
2
ρ(g)γij̄ = χTij̄(3.9)

where Tij̄ is the stress-energy tensor of the potential gravity γij̄(z) on M.
The total Lagrangian for coupling gravity with electodynamics (complex inhomo-

geneus Maxwell equations) is

Lt(Φ, DΦ) = Lp(Φ, DΦ) + LY M (D) + LG.(3.10)

In [19] we considered for exact symmetry the (3.5) particle Lagrangian, with a = 1
(the term γ b̄cD∂̇c

ΦD∂̇b̄
Φ̄ coincides on E = T ′M with the first part of the Lagrangian)

and V (Φ) = −m2ΦΦ̄ − 1
4f(ΦΦ̄)2. Similarly, for the broken symmetry Lagrangian

V (Φ) is V (Φ) = m2ΦΦ̄ − 1
4f(ΦΦ̄)2. The gauge invariance of these Lagrangians is

considered with respect to the transformation Φ → Φ̃(z̃, η̃) = e−igεΦ(z, η), where ε is
the parameter of U(1) group. Actually we consider (like in the classical theory) two
particle field, Φ1 = Φ and Φ2 = Φ̄, its conjugate. The Lp Lagrangian from (3.5) is
then gauge invariant at U(1) group transformations and, for a chosen gauge invariant
metric γij̄(z) on M, the complex Bott connection is gauge invariant too.

4 Hamiltonian gauge complex theory

In the preview section, in fact a field particle was treated as section Φ = Φa(z, η)sa on
E which induced naturally the section Φ = Φa(z, η)∂̇a on V E. The associated particle
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Lagrangian is a function of Φ and the covariant derivative DΦ is with respect to a
complex vertical connection, particularly for simplicity the Bott connection. Indeed,
Lp depends implicitly by the base point u = (z, η) ∈ E. Then by complex Legendre
transformation (2.26), (2.27), the sections of V E (plus their conjugates) will be send
into sections of V E∗. We obtain hereby the field particles on E∗ :

Φa(z, ζ) = hab̄Φ
b̄(z, η :=

∂Hp

∂ζ
) =

(
∂Lp

∂Φa

)∗
.(4.1)

Consequently, by (2.27) we obtain a Hamiltonian for the L−dual particle Φ∗ =
Φa∂̇a,

Hp(Φ∗) = ΦaΦa + Φ̄aΦ̄a − Lp(Φ).(4.2)

We note that Hp is gauge invariant with respect to the L−dual gauge transfor-

mation
∗
Υ of Υ, forasmuch Lp is gauge with respect to Υ. As well, we proved that the

L−dual of a vertical connection on V E is a vertical connection V E∗, i.e. (D)∗ =
∗
D,

and moreover if one is gauge the other is gauge too. Hence, Lp(Φa, DΦa) by (4.2)

determines the L−dual Hamiltonian Hp(Φa,
∗
D Φa).

Now, by taking
∗
D Φa as an independent variable for the Hamiltonian, we can

write down the following variation

δH =
∂H

∂Φa
(δΦa) +

∂H

∂Φa p i
(δΦa p i) +

∂H

∂Φa | b

(δΦa | b) + conjugates

By the same symbols ω and θ from (2.28) we denoting the L−dual simplectic
forms associated to the variations of field particle. Thus, we may write θ as being

θ = hb̄a{δΦa ∧ δΦ̄b +
∑

i

δΦa p i ∧ δΦ̄b p i +
∑

c

δΦa | c ∧ δΦ̄b | c}(4.3)

Let as associate to Φa, on the curve t → Φa(z(t), η(t)), the vector field XΦa

XΦa =
δΦa

dt

δ

δΦa
+

∑

i

δΦa
p i

dt

δ

δΦa
p i

+
∑

b

δΦa
| b

dt

δ

δΦa
| b

+ conjugates.

By L−duality on the curve t → Φa(z(t), ζ(t)) we obtain the vector field
∗

XΦa=
hb̄a (XΦ̄b)∗,

∗
XΦa=

δΦa

dt

δ

δΦa
+

∑

i

δΦa p i
dt

δ

δΦa p i
+

∑

b

δΦa | b

dt

δ

δΦa | b

+ conjugates.

The requirement i ∗
XΦa

θ = δH of integral curve for
∗
XΦa yields

hb̄a δΦ̄b

dt
= − ∂H

∂Φa
; hb̄a δΦ̄b p i

dt
= − ∂H

∂Φa p i
; hb̄a δΦ̄b | c

dt
= − ∂H

∂Φa | c

.
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Tacking variations δΦa in (2.25), we easily can check that (δΦa) p i = δ(Φa p i) and
(δΦa) | c = δ(Φa | c) and hence, from the above formulas is obtain

hb̄a δΦ̄b

dt
= − ∂H

∂Φa
;

(
∂H

∂Φa

)

p i
=

∂H

∂(Φa p i)
;

(
∂H

∂Φa

)

| c

=
∂H

∂(Φa | c)
(4.4)

called the complex Hamilton field equations.
By L−duality let us obtain now from (3.5) the Klein-Gordon type Hamiltonian.

Since γij̄(z) is a Hermitian metric on the base manifold M, we identify it with
(
γij̄(z)

)∗
on E∗. For the Hermitian mass metric γab̄(z, η), (or eventually for one which comes
from an external Lagrangian of Antonelli-Shimada type, for instance), we recall from
[21] that the L−dual of a complex Lagrange (Finsler) space is a complex Hamilton
(Cartan) space and their metrics correspond by L−duality. So, let us setting τab̄ :=
(γab̄)

∗ and then τ b̄a its inverse. Then the associated Klein-Gordon Hamiltonian to Φa

particle is

Hp(Φ∗,
∗
D Φ∗) = −1

2

∑
a

{γ j̄i
∗
Dδ∗i Φa

∗
Dδ∗

j̄
Φ̄a + τ b̄c

∗
D∂̇c ΦaD∂̇bΦ̄a} − (V (Φ))∗ .(4.5)

Because its metric tensor is the L−dual of the Lagrangian particle metric tensor,
hab̄ = (gab̄)

∗
, the corresponding Hamiltonian density to the Lagrangian density Lp =

Lp | g |2 will be Hp = Hp | g |−2 .
For the Yang-Mills Hamiltonian we take into account the Proposition 2.6 and

Proposition 2.7 and therefore we obtain a complex Hamilonian which contains only the
curvature of a vertical connection on E∗. Although the Bott complex connections don’t
correspond by L−duality, for applications is useful the following Y-M Hamiltonian,

HY M (
∗B
D ) =

1
2

∑

a,b

γ j̄iγk̄l
∗

Ra
bij̄

∗
Ra

blk̄ .(4.6)

Finally, if we consider for (4.5) its metric tensor hab̄ = (gab̄)
∗, we may constuct the

Ricci curvatures for γ and h on V E∗ and thereafter the Ricci scalars,
∗
ρ (γ) and

∗
ρ (h).

We observe that
∗
ρ (γ) is identified with ρ(γ). Thus, the Hilbert-Einstein gravitational

Hamiltonian is HHE = 1
χ

∗
ρ, where

∗
ρ= ρ(γ)+

∗
ρ (h).
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