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Abstract. In the present work we approach the study of surfaces using
Nonstandard Analysis, by providing first a nonstandard characterization
of a surface. Further, the tangent space to a surface is defined as well.
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1 Introduction

In order to understand the present work the reader must have some knowledge of
Nonstandard Analysis. Specifically, we need to fix some terminology and some facts
about continuity and differentiability of functions.

We will begin by presenting a contained exposition of the theory. For further
details the reader is referred to [6] or [8].

We will work on a proper extension ∗Rn of the Euclidean space Rn. Given two
vectors x, y ∈ ∗Rn, we say that x is infinitesimal if |x| < ε for all standard ε ∈ σR+

and we write x ≈ 0; x is finite if |x| < ε for some ε ∈ σR+; x is infinite if it is not
finite and x is infinitely close to y, x ≈ y, if x− y is infinitesimal.

If y is standard and x ≈ y, we say that y is the standard part of x, that x is
near-standard and we write y = st(x).

The set of finite (resp. near-standard) points of ∗Rn is denoted by fin(∗Rn) (resp.
ns(∗Rn)).

Given a subset U ⊆ Rn, we say that a ∈ ns(∗U) is there exists st(a) and st(a) ∈
σU .

The monad of x, µ(x) is the set of points in ∗Rn infinitely close to x.
In the following, U will be an open subset of Rn.

Definition 1. Let f : ∗U → ∗Rm be an internal function. We say that f is S-
continuous if for all a ∈ σU and x ∈ ∗U with x ≈ a, holds f(x) ≈ f(a). If the
sentence it is true for all a ∈ ∗U , f is called SU-continuous.

For standard functions, S-continuity is equivalent to continuity and SU-continuity
to uniform continuity.
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Definition 2. Let f : ∗U → ∗Rm be an internal function. We say that f is S-
differentiable if f(ns(∗U)) ⊆ ns(∗Rm) and, for each a ∈ σU , there exists a finite
linear operator Dfa ∈ ∗L(Rn,Rm) such that, for all x ∈ ∗U , there exists some η ≈ 0
with

x ≈ a ⇒ f(x)− f(a) = Dfa(x− a) + |x− a|η.(1.1)

The function f is called SU-differentiable if the previous condition is still true for
all a ∈ ns(∗U).

Theorem 1. [8] A standard function f : U → Rm is differentiable (resp. of class
C1) if and only if ∗f is S-differentiable (resp. SU-differentiable).

One final result needed: a standard subset U ⊆ Rn is open iff for all x ∈ σU and
y ∈ ∗Rn, if x ≈ y then y ∈ ∗U .

2 Regular Surfaces

In this section we shall present the main result of our work. To start, let us recall the
following definition.

Definition 3. Let S ⊆ R3 be a nonempty set. We say that S is a regular surface
if for each P ∈ S, there exist an open neighbourhood V of P , an open set U in R2

and a function x : U → V ∩ S satisfying the following conditions:

1. x is a homeomorphism;

2. x is of class C1;

3. for each q ∈ U , the differential Dxq : R2 → R3 is 1− 1.

The function x is called a parametrization of S in P .

As usual, we denote xu(q) :=
∂x

∂u
(q) and xv(q) :=

∂x

∂v
(q).

Definition 4. If x : U → V ∩S is a parametrization in P = x(p), we define the unit
normal vector at each point Q = x(q) ∈ x(U) by the rule

N(Q) :=
xu × xv

|xu × xv| (q).

In [5] is presented a nonstandard characterization of submanifolds in Euclidean
spaces. Using that result we will give a characterization of regular surfaces using a
field of unit normal vectors on the set.

Theorem 2. [5] A standard subset Mm ⊆ Rn with n ∈ σN is a C1-submanifold iff
there exists a standard tangent plane map T : M → G(m,n) into the set of affine
m-planes such that, for every near-standard point P ∈ ns(∗M),

1. P ∈ T (P );

2. the ortogonal projection πP : ∗M → T (P ) is an infinitesimal bijection;
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3. if ∗M 3 Q ≈ P then |Q−πP (Q)|
|Q−P | ≈ 0, i.e., the angle between the secant line

through P and Q and the plane T (P ) is infinitesimal.

We present now our result:

Theorem 3. Let S ⊆ R3 be a nonempty set. Then S is a regular surface iff for each
P ∈ ns(∗S), there exist a standard neighbourhood ∗V of P and a standard continuous
function N : V ∩ S → R3 such that:

1. for all Q ∈ V ∩ S, |N(Q)| = 1;

2. for all Q,R ∈ ∗V ∩ ∗S with Q 6= R,

R ≈ Q ⇒ N(Q) · Q−R

|Q−R| ≈ 0;

3. If T (P ) is the plane containing P and orthogonal to N(P ), then

µ(P ) ∩ T (P ) ⊆ πP (µ(P ) ∩ ∗S)

where πP : ∗R3 → T (P ) is the orthogonal projection.

Proof. We begin by assuming that S is a regular surface and let us fix P ∈ ns(∗S).
Choose a standard neighbourhood V of st(P ) and a parametrization x : U → V ∩ S
in P . Define N : V ∩S → R3 as the unit normal vector function at x(U). It is easy to
see that conditions 1 and 2 are satisfied. About condition 3, observe that T (P ) is the
tangent plane to the surface at P , and by Theorem 2, condition 2, the proof follows.

To prove the reverse, we will prove that there exists a standard function T : S →
G(2, 3), (where G(2, 3) denotes the set of planes in R3) such that, for each P ∈ ns(∗S),
we have:

1. P ∈ T (P );

2. the orthogonal projection πP : ∗S → T (P ) is an infinitesimal bijection in the
sense that:

(a) if R, R′ ∈ ∗S with R ≈ R′ ≈ P and πP (R) = πP (R′), then R = R′;

(b) if Q ∈ T (P ) and Q ≈ P , then there exists R ∈ ∗S with R ≈ P and
πp(R) = Q;

3. If ∗S 3 Q ≈ P then |Q−πP (Q)|
|Q−P | ≈ 0.

Since it is a local problem, we will define a standard function T : V ∩S → G(2, 3),
where ∗V is a neighbourhood of P . First, choose a continuous function u1 : V ∩S → R3

such that u1(Q) ·N(Q) = 0 and |u1(Q)| = 1, for all Q ∈ V ∩S. Define u2 : V ∩S → R3

by u2(Q) = u1(Q)×N(Q) and let

T : V ∩ S → G(2, 3)
Q 7→ {Q + λ1u1(Q) + λ2u2(Q) | λ1, λ2 ∈ R}

Clearly, P ∈ T (P ).
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Suppose now that there exist R, R′ ∈ ∗S with R ≈ R′ ≈ P , πP (R) = πP (R′) but
R 6= R′. Thus

P + ((R− P ) · u1(P )) · u1(P ) + ((R− P ) · u2(P )) · u2(P ) =

= P + ((R′ − P ) · u1(P )).u1(P ) + ((R′ − P ) · u2(P )) · u2(P ) ⇔

⇔
{

(R−R′) · u1(P ) = 0
(R−R′) · u2(P ) = 0 .

So we may conclude that

R−R′

|R−R′| = ±N(P ).(2.1)

Multiplying both members by N(R), we get

N(R) · R−R′

|R−R′| = ±N(R) ·N(P ).(2.2)

Moreover, the first member of this equation is infinitesimal and the second member is
infinitely close to ±1 (a contradiction). So the function is 1− 1. For the second part,
it follows from condition 3.

Finally, the angle between the plane T (P ) and the straight line PQ is infinitesimal
because

N(P ) · Q− P

|Q− P | ≈ 0(2.3)

and N(P ) is orthogonal to T (P ).

Let us note that it is also true that

πP (µ(P ) ∩ ∗S) ⊆ µ(P ) ∩ T (P )(2.4)

because if Q ∈ ∗S with Q ≈ P , the continuity of πP implies that

πP (Q) ≈ πP (P ) = P ∈ T (P ).(2.5)

We will now present a new definition of tangent space to a surface. We think that
this definition is more intuitive than the classical one and, in a certain way, it is the
geometric idea of the tangent space that we keep.

Definition 5. Let P ∈ S be a point and V ∈ R3 a vector. We say that V is tangent
to the surface at P if there exist Q ∈ ∗S with Q ≈ P and k ∈ ∗R such that k

−→
PQ ∈

ns(∗R3) and V = st(k
−→
PQ).

Let x : U → V ∩ S be a parametrization in P and fix Q ∈ ∗S with P ≈ Q. Since
V is open, Q ∈ ∗x(U) and so P = x(p) and Q = x(q), for some p, q ∈ ∗U . By the
continuity of x−1, p ≈ q. Consequently,
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−→
PQ = x(q)− x(p) = Dxp (q − p) + |q − p|η,(2.6)

for some η ≈ 0. Thus

k
−→
PQ = k|q − p|

(
Dxp

(
q − p

|q − p|
)

+ η

)
.(2.7)

Observe that, if u ∈ ∗R2 is an unit vector, then Dxp (u) 6≈ 0 (if not, we would have

st(Dxp(u)) = 0 ⇔ Dxp (st(u)) = 0(2.8)

and st(u) 6= 0, a contradiction). So, if k
−→
PQ ∈ ns(∗R3), then k|q − p| ∈ fin(∗R) and

so

k
−→
PQ ≈ Dxp (k(q − p)) .(2.9)

Definition 6. The set of tangent vectors to a surface S at P is called the tangent
plane to S at P and denoted by TP S.

Theorem 4. It is true that TP S = Dxp (R2).

Proof. Let V ∈ TP S be a vector. Then

V = st(k
−→
PQ) = Dxp (st(k(q − p))) ,(2.10)

and therefore V ∈ Dxp (R2).
To prove the reverse, if V = Dxp (u), for some u ∈ R2, let q := p + εu, with

0 < ε ≈ 0.
Then

x(q)− x(p) = Dxp (εu) + ε|u|η,(2.11)

for some η ≈ 0, which implies that

x(q)− x(p)
ε

≈ Dxp (u).(2.12)

Define Q = x(q) and k = 1/ε, and therefore V = st
(
k
−→
PQ

)
.

Theorem 5. Let U be an open subset of Rn, p ∈ U , m > n and x : U → Rm an
injective C1 function. Let {p0, . . . , pn} ⊆ ∗U be a set such that:

1. pi 6= pj for i 6= j and 0 ≤ i, j ≤ n;

2. p0 ≈ . . . ≈ pn ≈ p;

3. the vectors
{

st
(

p1−p0
|p1−p0|

)
, . . . , st

(
pn−p0
|pn−p0|

)}
are linearly independents;

4. the vectors
{

∂x
∂u1

(p), . . . , ∂x
∂un

(p)
}

are also linearly independents.
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Define, for 1 ≤ i ≤ n,
vi := x(pi)− x(p0),

Π0 := {x(p0) + λ1v1 + . . . + λnvn | λ1, . . . , λn ∈ ∗R}
and

Π := {x(p) + λ1
∂x

∂u1
(p) + . . . + λn

∂x

∂un
(p) | λ1, . . . , λn ∈ R}.

If a ∈ fin(Π0) then st(a) ∈ Π.

Proof. Let W := 〈v1, . . . , vn〉 ⊆ ∗Rm and k := dim(W ) ≤ n. Assume, without any
loss of generality, that {v1, . . . , vk} is a basis of W , k ≤ n. Let {b1, . . . , bm−k} be an
orthonormal basis of W⊥. For j ∈ {1, . . . ,m− k}, define the functions fj : ∗U → ∗R
by

fj(u) = (x(u)− x(p0)) · bj , u ∈ ∗U.

It is obvious that for each 1 ≤ j ≤ m− k, fj is SU-differentiable. Moreover, since

fj(p0) = fj(p1) = . . . = fj(pn) = 0,(2.13)

then for each i ∈ {1, . . . , n} and j ∈ {1, . . . , m− k}, there is ηij ≈ 0 such that

D(fj)p0(pi − p0) + |pi − p0|ηij = 0 ⇔ Dxp0

(
pi − p0

|pi − p0|
)
· bj ≈ 0.(2.14)

Taking the standard parts of both members we get

Dxp

(
st

pi − p0

|pi − p0|
)
· st(bj) = 0.(2.15)

Let st(W ) := {st(v) | v ∈ fin(W )}, then st(W ) is a linear subspace of Rm and
dim(st(W )) = k (cf. [3]). Similarly, st(W⊥) is a linear space and st(W⊥) =
〈st(b1), . . . , st(bm−k)〉. Note that, for i = 1, . . . , n, the vectors st

(
pi−p0
|pi−p0|

)
are

linearly independents and since Dxp is an injective linear operator, the vectors

Dxp

(
st

(
pi−p0
|pi−p0|

))
, for i = 1, . . . n are also linearly independents. Moreover, from

Dxp

(
st

(
pi − p0

|pi − p0|
))

∈ 〈 ∂x

∂u1
(p), . . . ,

∂x

∂un
(p)〉,(2.16)

it follows that

〈Dxp

(
st

(
p1 − p0

|p1 − p0|
))

, . . . , Dxp

(
st

(
pn − p0

|pn − p0|
))

〉 = 〈 ∂x

∂u1
(p), . . . ,

∂x

∂un
(p)〉.

(2.17)

But

vi

|pi − p0| ≈ Dxp0

(
pi − p0

|pi − p0|
)

(2.18)

which implies
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st

(
vi

|pi − p0|
)

= Dxp

(
st

(
pi − p0

|pi − p0|
))

,(2.19)

and so
{

∂x

∂ui
(p) | i ∈ {1, . . . , n}

}
⊆ st(W ).(2.20)

So we conclude that k = n and {v1, . . . , vn} are linearly independents.
Consequently, if a ∈ fin(Π0), then for all j ∈ {1, . . . , m− n} we have

(a− x(p0)) · bj = 0 ⇒ (st(a)− x(p)) · st(bj) = 0 ⇒ st(a) ∈ Π.(2.21)
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