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Abstract. Let A3,6,−1 be the real Lie algebra of type (VI), the real param-
eter being equal to −1, in the Bianchi classification of the 3-dimensional
real Lie algebras, and A∗3,6,−1 the dual of the real vector space A3,6,−1. The
dynamics associated to a quadratic and homogeneous Hamilton-Poisson
system on A∗3,6,−1 is considered. The spectral and nonlinear stability of
its equilibrium states and the existence of its periodic orbits are analyzed.
The numerical integration of this dynamical system via Kahan’s integrator
is also discussed. Similar problems have been studied in [2] and [3]. An
open problem is the extension of such problems to Poisson-Lie algebroids
(see [9]).
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1 The geometrical picture of the problem

Let (e1, e2, e3) be the canonical basis for R3, i.e.

e1 =




1
0
0


 , e2 =




0
1
0


 , e3 =




0
0
1


 .

Definition 1.1. Let A3,6,−1 be the Lie algebra R3 with the bracket operation given
by:

[.,.] e1 e2 e3

e1 0 0 e1

e2 0 0 −e2

e3 −e1 e2 0
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This is a real Lie algebra of type (VI), the real parameter being equal to −1, in
the Bianchi classification of the 3-dimensional real Lie algebras (see for details [5]).

Then the minus Lie-Poisson structure on A∗3,6,−1
∼= R3 is generated by the matrix:

Π−(x1, x2, x3) :=




0 0 −x1

0 0 x2

x1 −x2 0


 .

Definition 1.2. A quadratic and homogeneous Hamilton-Poisson system on A∗3,6,−1
∼=

R3 is the triple (
R3, Π−,H

)
,

where
H(x1, x2, x3) :=

1
2
(b1x

2
1 + b2x

2
2 + b3x

2
3)

+d1x2x3 + d2x1x3 + d3x1x2,

b1, b2, b3, d1, d2, d3 ∈ R, b2
1 + b2

2 + b2
3 + d2

1 + d2
2 + d2

3 6= 0.

Its dynamics is described by the following set of differential equations:



ẋ1

ẋ2

ẋ3


 = Π− · ∇H,

or equivalently:

(1.1)





.
x1 = −x1 (b3x3 + d1x2 + d2x1) ,
.

x2 = x2 (b3x3 + d1x2 + d2x1) ,
.

x3 = x1 (b1x1 + d2x3)− x2 (b2x2 + d1x3) .

Using Bermejo-Fairén technique (see [4]) we are immediately lead to:

Proposition 1.1. There exists only one functionally independent Casimir of our
Poisson configuration

(
R3, Π−

)
given by

C (x1, x2, x3) := x1x2.

The phase curves of the dynamics (1.1) are intersections of

H (x1, x2, x3) = constant

and
C (x1, x2, x3) = constant.

2 Spectral stability

It is easy to see that the dynamics (1.1) has the following equilibrium states:

eM
1 := (0, 0, M),M ∈ R.
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If 



b1b3 − d2
2 > 0,

b2b3 − d2
1 ≥ 0,

b3 ∈ R∗,
then we have other two families of equilibrium states, namely

eM
2 :=




√
b2b3 − d2

1√
b1b3 − d2

2

M, M,−
d1 +

√
b2b3−d2

1√
b1b3−d2

2

d2

b3
M


 ,M ∈ R,

and

eM
3 :=


−

√
b2b3 − d2

1√
b1b3 − d2

2

M,M,
−d1 +

√
b2b3−d2

1√
b1b3−d2

2

d2

b3
M


 , M ∈ R.

Proposition 2.1. The equilibrium states eM
1 ,M ∈ R∗, are unstable.

Proof. It is easy to see that the characteristic polynomial of the matrix corre-
sponding to the linear part of our system (1.1) at the equilibrium state eM

1 , where
M ∈ R∗, has the following roots: λ1 = 0, λ2,3 = ±b3M, and then our assertion
immediately follows. ¤

Proposition 2.2. The equilibrium states eM
2 ,M ∈ R, are spectrally stable.

Proof. Using MATHEMATICA 7 we obtain that the characteristic polynomial of
the matrix corresponding to the linear part of our system (1.1) at the equilibrium
state eM

2 , where M ∈ R, has the following roots: λ1 = 0, λ2,3 = ±Mi
√

b2b3 − d2
1,

and then our assertion follows. ¤

Proposition 2.3. The equilibrium states eM
3 ,M ∈ R, are spectrally stable.

Proof. Using MATHEMATICA 7 we obtain that the characteristic polynomial of
the matrix corresponding to the linear part of our system (1.1) at the equilibrium
state eM

3 , where M ∈ R, has the following roots: λ1 = 0, λ2,3 = ±Mi
√

b2b3 − d2
1,

and then our assertion follows. ¤

3 Nonlinear stability

We shall discuss now the nonlinear stability of the equilibrium states eM
2 and eM

3 ,M ∈
R∗.

Proposition 3.1. If b1 > 0, b2 > 0, b3 > 0, d1d2 > 0, b1b3 − d2
2 > 0, then the equili-

brium states eM
2 ,M ∈ R∗, are nonlinearly stable.

Proof. We shall prove the claim using Arnold’s method [1] (see also [6]). Let
Fλ ∈ C∞(R3,R) be the smooth real function given by

Fλ(x1, x2, x3) :=
1
2
(b1x

2
1 + b2x

2
2 + b3x

2
3) + d1x2x3
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+d2x1x3 + d3x1x2 + λx1x2,

where λ is a real parameter. Then we successively have:

(i) ∇Fλ(eM
2 ) = 0 if and only if

λ = −−d1d2

√
b2b3−d2

1+b2b3
√

b1b3−d2
2−d2

1

√
b1b3−d2

2+b3d3

√
b2b3−d2

1

b3
√

b2b3−d2
1

=: λ0;

(ii) W := ker dC(eM
2 ) = span






−
√

b2b3−d2
1√

b1b3−d2
2

1
0


 ,




0
0
1





 ;

(iii) ∇2Fλ0(e
M
2 )|W×W induces a positive definite quadratic form on W .

Therefore, via Arnold’s method, the equilibrium states eM
2 , M ∈ R, are nonlinearly

stable. ¤

Proposition 3.2. If b1 > 0, b2 > 0, b3 > 0, b1b3 − d2
2 > 0, b2b3 − d2

1 > 0, then the
equilibrium states eM

3 ,M ∈ R∗, are nonlinearly stable.

Proof. Let Fλ ∈ C∞(R3,R) be the smooth real function given by

Fλ(x1, x2, x3) :=
1
2
(b1x

2
1 + b2x

2
2 + b3x

2
3) + d1x2x3

+d2x1x3 + d3x1x2 + λx1x2.

Then we successively have:

(i) ∇Fλ(eM
3 ) = 0 if and only if

λ = − b1
√

b2b3−d2
1√

b1b3−d2
2

+ d3 +
d2

(
−d1+d2

√
b2b3−d2

1√
b1b3−d2

2

)

b3
=: λ∗0;

(ii) W := ker dC(eM
3 ) = span






−
√

b2b3−d2
1√

b1b3−d2
2

1
0


 ,




0
0
1





 ;

(iii) ∇2Fλ∗0 (e
M
3 )|W×W induces a positive definite quadratic form on W .

Therefore, via Arnold’s method, the equilibrium states eM
3 ,M ∈ R∗, are non-

linearly stable. ¤

4 Periodic orbits

Let us assume that

b1, b2, b3 > 0, d1d2 > 0, b1b3 − d2
2 > 0, b2b3 − d2

1 > 0.

Then we can prove the following two results:
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Proposition 4.1. Near to

eM
2 :=




√
b2b3 − d2

1√
b1b3 − d2

2

M, M,−
d1 +

√
b2b3−d2

1√
b1b3−d2

2

d2

b3
M


 ,M ∈ R∗,

the reduced dynamics has, for each sufficiently small value of the reduced energy, at

least 1-periodic solution whose period is close to
2π

M
√

b2b3 − d2
1

.

Proof. Indeed, we have:

(i) The matrix of the linear part of the reduced dynamics has purely imaginary roots.
More precisely, λ2,3 = ±Mi

√
b2b3 − d2

1.

(ii) span(∇C(eM
2 )) = V0, where V0 := ker(A(eM

2 )), and A(eM
2 ) is the linear operator

corresponding to the matrix of the linear part of the dynamics (1.1) at the equilibrium
eM
2 .

(iii) The reduced Hamiltonian has a local minimum at the equilibrium state eM
2 (see

the proof of Proposition 3.1).

Then our assertion follows via the Moser-Weinstein theorem with zero eigenvalue
(see for details [7]). ¤

Proposition 4.2. Near to

eM
3 :=


−

√
b2b3 − d2

1√
b1b3 − d2

2

M,M,
−d1 +

√
b2b3−d2

1√
b1b3−d2

2

d2

b3
M


 , M ∈ R∗,

the reduced dynamics has, for each sufficiently small value of the reduced energy, at

least 1-periodic solution whose period is close to
2π

M
√

b2b3 − d2
1

.

Proof. Indeed, we have:

(i) The matrix of the linear part of the reduced dynamics has purely imaginary roots.
More precisely, λ2,3 = ±Mi

√
b2b3 − d2

1.

(ii) span(∇C(eM
3 )) = V0, where V0 := ker(A(eM

3 )).

(iii) The reduced Hamiltonian has a local minimum at the equilibrium state eM
3 (see

the proof of Proposition 3.2).

Then our assertion follows via the Moser-Weinstein theorem with zero eigenvalue
(see for details [7]). ¤
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5 Numerical integration of the dynamics (1.1)
via Kahan’s integrator

It is well-known that Kahan’s integrator (see [8]) for the dynamics (1.1) can be written
in the following form:

(5.1)





xn+1
1 − xn

1 = −h
2

[
xn

1

(
b3x

n+1
3 + d1x

n+1
2 + d2x

n+1
1

)
+

+xn+1
1 (b3x

n
3 + d1x

n
2 + d2x

n
1 )

]
,

xn+1
2 − xn

2 = h
2

[
xn

2

(
b3x

n+1
3 + d1x

n+1
2 + d2x

n+1
1

)
+

+xn+1
2 (b3x

n
3 + d1x

n
2 + d2x

n
1 )

]
,

xn+1
3 − xn

3 = h
2

[
xn

1

(
b1x

n+1
1 + d2x

n+1
3

)−
−xn

2

(
b2x

n+1
2 + d1x

n+1
3

)
+ xn+1

1 (b1x
n
1 + d2x

n
3 )

−xn+1
2 (b2x

n
2 + d1x

n
3 )

]
.

Using MATHEMATICA 7, it follows that:

Proposition 5.1. Kahan’s integrator (5.1) is Poisson (resp. energy, resp. Casimir)
preserving if and only if one of the following conditions hold:

(i) b1 = d2
2

b3
, b2 = d2

1
b3

, d1, d2, d3 ∈ R, b3 ∈ R∗;
(ii) d1 = 0, d2 = 0, b3 = 0, d3, b1, b2 ∈ R.

If we make a comparison with the 4th Runge-Kutta integrator, we obtain almost
the same results, see Figures 5.1, 5.2 and 5.3, respectively, Figure 5.4. However
Kahan’s integrator has the advantage to be easier implemented.

Fig. 5.1 The phase curves of the dynamics (1.1) for case (i)

Integrators for case (i). Fig. 5.2: Kahan; Fig. 5.3: 4th order Runge-Kutta.
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Fig. 5.4 The phase curves of the dynamics (1.1) for case (ii)

In this case Kahan’s integrator does not provide any relevant results.
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