Hyper-Kähler structures on the tangent bundle of a Kähler manifold

Vasile Oproiu
Dedicated to the 70-th anniversary of Professor Constantin Udriste

Abstract

We construct a family of almost hyper-complex structures on the tangent bundle of a Kählerian manifold by using two anti-commuting almost complex structures obtained from the natural lifts of the Riemannian metric (see [11], [12], [13], [18]) and the integrable almost complex structure on the base manifold. Next we obtain an almost hyperHermitian metric obtained from the same natural lifts, related to the considered almost complex structures. We study the integrability conditions for the almost complex structures, obtaining that the base manifold must have constant holomorphic sectional curvature, and the conditions under which the considered almost hyper-Hermitian metric leads to a hyperKählerian structure on the tangent bundle.

M.S.C. 2000: 53C55, 53C15, 53C05.

Key words: tangent bundle; natural lifts; almost hyper-Hermitian structures; hyperKählerian structures.

1 Introduction

Consider an $m(=2 n)$-dimensional Riemannian manifold (M, g) and denote by τ : $T M \longrightarrow M$ its tangent bundle. Several Riemannian and semi-Riemannian metrics can be used in order to obtain geometric properties of the tangent bundle $T M$ of (M, g). They are induced from the Riemannian metric g on M by using some lifts of g. Among these metrics, we may quote the Sasaki metric and the complete lift of the metric g. On the other hand, the natural lifts of g to $T M$, induce some other Riemannian and pseudo-Riemannian geometric structures with many nice geometric properties (see [8], [7]). By similar methods one can get from g some natural almost complex structures on $T M$. If (M, g) has a structure of Kählerian manifold we can find some other Riemannian metrics and almost complex structures on its tangent bundle and from them we can get some almost hyper-Hermitian structures (see also [19], [20]). Similar results are obtained in the case of the cotangent bundle (see e.g. [3]).

[^0]In the present paper we study a class of natural almost hyper-Hermitian structures (G, J_{1}, J_{2}), on the tangent bundle $T M$ of a Kählerian manifold (M, g, J), induced from the Riemannian metric g and the integrable almost complex structure J. The metric G and the anti-commuting almost complex structures J_{1}, J_{2} are obtained as natural lifts of diagonal type from g and J.

The manifolds, tensor fields and other geometric objects we consider in this paper are assumed to be differentiable of class C^{∞} (i.e. smooth). We use the computations in local coordinates in a fixed local chart but many results may be expressed in an invariant form by using the vertical and horizontal lifts. Some quite complicate computations have been made by using the Ricci package under Mathematica for doing tensor computations. The well known summation convention is used throughout this paper, the range of the indices h, i, j, k, l being always $\{1, \ldots, m=2 n\}$.

1. Hyper-complex structures on $T M$.

Let (M, g) be a smooth $m=(2 n)$-dimensional Riemannian manifold and denote its tangent bundle by $\tau: T M \longrightarrow M$. Recall that there is a structure of a smooth $2 m$ dimensional manifold on $T M$, induced from the structure of smooth m-dimensional manifold of M. From every local chart $(U, \varphi)=\left(U, x^{1}, \ldots, x^{m}\right)$ on M, it is induced a local chart $\left(\tau^{-1}(U), \Phi\right)=\left(\tau^{-1}(U), x^{1}, \ldots, x^{m}, y^{1}, \ldots, y^{m}\right)$, on $T M$, as follows. For a tangent vector $y \in \tau^{-1}(U) \subset T M$, the first m local coordinates x^{1}, \ldots, x^{m} are the local coordinates x^{1}, \ldots, x^{m} of its base point $x=\tau(y)$ in the local chart (U, φ) (in fact we made an abuse of notation, identifying x^{i} with $\left.\tau^{*} x^{i}=x^{i} \circ \tau, i=1, \ldots, m\right)$. The last m local coordinates y^{1}, \ldots, y^{m} of $y \in \tau^{-1}(U)$ are the vector space coordinates of y with respect to the natural basis $\left(\left(\frac{\partial}{\partial x^{1}}\right)_{\tau(y)}, \ldots,\left(\frac{\partial}{\partial x^{m}}\right)_{\tau(y)}\right)$, defined by the local chart (U, φ). Due to this special structure of differentiable manifold for $T M$, it is possible to introduce the concept of M-tensor field on it. An M-tensor field of type (p, q) on $T M$ is defined by sets of n^{p+q} components (functions depending on x^{i} and y^{i}), with p upper indices and q lower indices, assigned to induced local charts $\left(\tau^{-1}(U), \Phi\right)$ on $T M$, such that the local coordinate change rule is that of the local coordinate components of a tensor field of type (p, q) on the base manifold M, when a change of local charts on M (and hence on $T M$) is performed (see [10] for further details); e.g., the components $y^{i}, i=1, \ldots, m$, corresponding to the last m local coordinates of a tangent vector y, assigned to the induced local chart $\left(\tau^{-1}(U), \Phi\right)$ define an M tensor field of type $(1,0)$ on $T M$. A usual tensor field of type (p, q) on M may be thought of as an M-tensor field of type (p, q) on $T M$. If the considered tensor field on M is covariant only, the corresponding M-tensor field on $T M$ may be identified with the induced (pullback by τ) tensor field on $T M$. Some useful M-tensor fields on $T M$ may be obtained as follows. Let $u:[0, \infty) \longrightarrow \mathbf{R}$ be a smooth function and let $\|y\|^{2}=g_{\tau(y)}(y, y)$ be the square of the norm of the tangent vector $y \in \tau^{-1}(U)$. If δ_{j}^{i} are the Kronecker symbols (in fact, they are the local coordinate components of the identity tensor field I on $M)$, then the components $u\left(\|y\|^{2}\right) \delta_{j}^{i}$ define an M-tensor field of type $(1,1)$ on $T M$. Similarly, if $g_{i j}(x)$ are the local coordinate components of the metric tensor field g on M in the local chart (U, φ), then the components $u\left(\|y\|^{2}\right) g_{i j}$ define a symmetric M-tensor field of type $(0,2)$ on $T M$. The components $g_{0 i}=y^{k} g_{k i}$, as well as $u\left(\|y\|^{2}\right) g_{0 i}$ define M-tensor fields of type $(0,1)$ on $T M$. Of course, all the components considered above are in the induced local chart $\left(\tau^{-1}(U), \Phi\right)$.

We shall use the horizontal distribution $H T M$, defined by the Levi Civita connection $\dot{\nabla}$ of g, in order to define some first order natural lifts to $T M$ of the Riemannian metric g on M. Denote by $V T M=\operatorname{Ker} \tau_{*} \subset T T M$ the vertical distribution on $T M$. Then we have the direct sum decomposition

$$
\begin{equation*}
T T M=V T M \oplus H T M \tag{1.1}
\end{equation*}
$$

If $\left(\tau^{-1}(U), \Phi\right)=\left(\tau^{-1}(U), x^{1}, \ldots, x^{m}, y^{1}, \ldots y^{m}\right)$ is a local chart on $T M$, induced from the local chart $(U, \varphi)=\left(U, x^{1}, \ldots, x^{m}\right)$, the local vector fields $\frac{\partial}{\partial y^{1}}, \ldots, \frac{\partial}{\partial y^{m}}$ define a local frame for $V T M$ over $\tau^{-1}(U)$ and the local vector fields $\frac{\delta}{\delta x^{1}}, \ldots, \frac{\delta}{\delta x^{m}}$ define a local frame for $H T M$ over $\tau^{-1}(U)$, where

$$
\frac{\delta}{\delta x^{i}}=\frac{\partial}{\partial x^{i}}-\Gamma_{0 i}^{h} \frac{\partial}{\partial y^{h}}, \quad \Gamma_{0 i}^{h}=y^{k} \Gamma_{k i}^{h}
$$

and $\Gamma_{k i}^{h}(x)$ are the Christoffel symbols of g.
The set of vector fields $\left(\frac{\partial}{\partial y^{1}}, \ldots, \frac{\partial}{\partial y^{m}}, \frac{\delta}{\delta x^{1}}, \ldots, \frac{\delta}{\delta x^{m}}\right)$ defines a local frame on $T M$, adapted to the direct sum decomposition (1.1). Remark that

$$
\frac{\partial}{\partial y^{i}}=\left(\frac{\partial}{\partial x^{i}}\right)^{V}, \quad \frac{\delta}{\delta x^{i}}=\left(\frac{\partial}{\partial x^{i}}\right)^{H},
$$

where X^{V} and X^{H} denote the vertical and horizontal lifts of the vector field X on M.

Now assume that (M, g, J) is a Kählerian manifold. The Riemannian metric g and the integrable almost complex structure J are related by

$$
g(J X, J Y)=g(X, Y), \quad \dot{\nabla} J=0
$$

where $\dot{\nabla}$ is the Levi Civita connection of g. Recall that we have too the following relations

$$
N=0, \quad d \phi=0
$$

where N is the Nijehuis tensor field of J and ϕ is the associated 2-form, defined by

$$
\phi(X, Y)=g(X, J Y)
$$

Denote by $g_{i j}, J_{j}^{i}$ the components of g, J in the local chart $(U, \varphi)=\left(U, x^{1}, \ldots, x^{m}\right)$. Introduce the components $J_{i j}=g_{i h} J_{j}^{h}$, obtained from the components of J by lowering the contravariance index on the first place (in fact, $J_{i j}$ are the components of the fundamental 2-form ϕ defined by the Kählerian structure (g, J). Consider the following M-tensor fields on $\tau^{-1}(U)$, defined by the components

$$
g_{i 0}=g_{i h} y^{h}, \quad J_{i 0}=J_{i h} y^{h}=-J_{0 i}
$$

Lemma 1. If $m>1$ and $u_{1}, u_{2}, u_{3}, u_{4}, u_{5}, u_{6}$ are smooth functions on $T M$ such that

$$
u_{1} g_{i j}+u_{2} g_{i 0} g_{j 0}+u_{3} J_{i 0} J_{j 0}+u_{4} g_{i 0} J_{j 0}+u_{5} J_{i 0} g_{j 0}+u_{6} J_{i j}=0, y \in \tau^{-1}(U)
$$

on the domain of any induced local chart on TM, then $u_{1}=u_{2}=u_{3}=u_{4}=u_{5}=$ $u_{6}=0$.

The proof is obtained easily by transvecting the given relation with $g^{i j}, J^{i j}=$ $J_{h}^{i} g^{h j}, J_{0}^{j}=J_{h}^{j} y^{h}$ and y^{j} (Recall that the functions $g^{i j}(x)$ are the components of the inverse of the matrix $\left(g_{i j}(x)\right)$, associated to g in the local chart (U, φ) on M; moreover, the components $g^{i j}(x)$ define a tensor field of type $(2,0)$ on $\left.M\right)$.

Remark. From a relation of the type

$$
u_{1} \delta_{j}^{i}+u_{2} y^{i} g_{j 0}+u_{3} J_{0}^{i} J_{j 0}+u_{4} y^{i} J_{j 0}+u_{5} J_{0}^{i} g_{j 0}+u_{6} J_{j}^{i}=0, y \in \tau^{-1}(U)
$$

it is obtained, in a similar way, $u_{1}=u_{2}=u_{3}=u_{4}=u_{5}=u_{6}=0$.
Since we work in a fixed local chart (U, φ) on M and in the corresponding induced local chart $\left(\tau^{-1}(U), \Phi\right)$ on $T M$, we shall use the following simpler notations

$$
\frac{\partial}{\partial y^{i}}=\partial_{i}, \quad \frac{\delta}{\delta x^{i}}=\delta_{i}
$$

Denote by

$$
\begin{equation*}
t=\frac{1}{2}\|y\|^{2}=\frac{1}{2} g_{\tau(y)}(y, y)=\frac{1}{2} g_{i k}(x) y^{i} y^{k}, \quad y \in \tau^{-1}(U) \tag{1.2}
\end{equation*}
$$

the energy density defined by g in the tangent vector y. We have $t \in[0, \infty)$ for all $y \in T M$. Let $C=y^{i} \frac{\partial}{\partial y^{i}}=y^{V}$ be the Liouville vector field on $T M$ and consider the corresponding horizontal vector field $\widetilde{C}=y^{i} \frac{\delta}{\delta x^{i}}=y^{H}$ on $T M$, obtained in a similar way. Consider the real valued smooth functions $a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, b_{1}$, $b_{2}, b_{3}, b_{4}, b_{5}, b_{6}, c_{1}, c_{2}, c_{3}, c_{4}, c_{5}, c_{6}, d_{1}, d_{2}, d_{3}, d_{4}, d_{5}, d_{6}$ defined on $[0, \infty) \subset \mathbf{R}$ and define two diagonal natural almost complex structures J_{1}, J_{2} on $T M$, by using these coefficients, the Riemannian metric g and the integrable almost complex structure J

$$
\begin{align*}
& \left\{\begin{array}{l}
J_{1} X_{y}^{H}=a_{1}(t) X_{y}^{V}+a_{2}(t) g_{\tau(y)}(y, X) C_{y}+a_{3}(t) g_{\tau(y)}(J y, X)(J y)_{y}^{V}+ \\
+a_{4}(t)(J X)_{y}^{V}+a_{5}(t) g_{\tau(y)}(X, y)(J y)_{y}^{V}+a_{6}(t) g_{\tau(y)}(J y, X) C_{y}, \\
J_{1} X_{y}^{V}=-\left(b_{1}(t) X_{y}^{H}+b_{2}(t) g_{\tau(y)}(y, X) \widetilde{C}_{y}+b_{3}(t) g_{\tau(y)}(J y, X)(J y)_{y}^{H}+\right. \\
\left.+b_{4}(t)(J X)_{y}^{H}+b_{5}(t) g_{\tau(y)}(X, y)(J y)_{y}^{H}+b_{6}(t) g_{\tau(y)}(J y, X) \widetilde{C}_{y}\right),
\end{array}\right. \tag{1.3}\\
& \left\{\begin{array}{l}
J_{2} X_{y}^{H}=c_{1}(t) X_{y}^{V}+c_{2}(t) g_{\tau(y)}(y, X) C_{y}+c_{3}(t) g_{\tau(y)}(J y, X)(J y)_{y}^{V}+ \\
+c_{4}(t)(J X)_{y}^{V}+c_{5}(t) g_{\tau(y)}(X, y)(J y)_{y}^{V}+c_{6}(t) g_{\tau(y)}(J y, X) C_{y}, \\
J_{2} X_{y}^{V}=-\left(d_{1}(t) X_{y}^{H}+d_{2}(t) g_{\tau(y)}(y, X) \widetilde{C}_{y}+d_{3}(t) g_{\tau(y)}(J y, X)(J y)_{y}^{H}+\right. \\
\left.+d_{4}(t)(J X)_{y}^{H}+d_{5}(t) g_{\tau(y)}(X, y)(J y)_{y}^{H}+d_{6}(t) g_{\tau(y)}(J y, X) \widetilde{C}_{y}\right) .
\end{array}\right.
\end{align*}
$$

The expressions of J_{1}, J_{2} in adapted local frames are

$$
\begin{array}{ll}
J_{1} \delta_{i}=J_{1} H_{i}^{h} \partial_{h}, & J_{1} \partial_{i}=J_{1} V_{i}^{h} \delta_{h}, \\
J_{2} \delta_{i}=J_{2} H_{i}^{h} \partial_{h}, & J_{2} \partial_{i}=J_{2} V_{i}^{h} \delta_{h},
\end{array}
$$

where the M-tensor fields $J_{1} H_{i}^{h}, J_{1} V_{i}^{h}, J_{2} H_{i}^{h}, J_{2} V_{i}^{h}$ are given by

$$
\begin{aligned}
& J_{1} H_{i}^{h}=a_{1} \delta_{i}^{h}+a_{2} g_{i 0} y^{h}+a_{3} J_{i 0} J_{0}^{h}+a_{4} J_{i}^{h}+a_{5} g_{i 0} J_{0}^{h}+a_{6} J_{i 0} y^{h} \\
& J_{1} V_{i}^{h}=-\left(b_{1} \delta_{i}^{h}+b_{2} g_{i 0} y^{h}+b_{3} J_{i 0} J_{0}^{h}+b_{4} J_{i}^{h}+b_{5} g_{i 0} J_{0}^{h}+b_{6} J_{i 0} y^{h}\right) \\
& J_{2} H_{i}^{h}=c_{1} \delta_{i}^{h}+c_{2} g_{i 0} y^{h}+c_{3} J_{i 0} J_{0}^{h}+c_{4} J_{i}^{h}+c_{5} g_{i 0} J_{0}^{h}+c_{6} J_{i 0} y^{h} \\
& J_{2} V_{i}^{h}=-\left(d_{1} \delta_{i}^{h}+d_{2} g_{i 0} y^{h}+d_{3} J_{i 0} J_{0}^{h}+d_{4} J_{i}^{h}+d_{5} g_{i 0} J_{0}^{h}+d_{6} J_{i 0} y^{h}\right) .
\end{aligned}
$$

The matrices associated to J_{1}, J_{2} have a diagonal form

$$
J_{1}=\left(\begin{array}{cc}
0 & J_{1} H_{i}^{h} \\
J_{1} V_{i}^{h} & 0
\end{array}\right), \quad J_{2}=\left(\begin{array}{cc}
0 & J_{2} H_{i}^{h} \\
J_{2} V_{i}^{h} & 0
\end{array}\right) .
$$

Remark that, one can consider the case of the general natural tensor fields J_{1}, J_{2} on $T M$, when $J_{1} \delta_{i}, J_{1} \partial_{i}, J_{2} \delta_{i}, J_{2} \partial_{i}$ are expressed as combinations of ∂_{h}, δ_{h}. In this case we should have 48 coefficients and the computations would become really complicate. However, the results obtained in the general case do not differ too much from that obtained in the diagonal case.

We use the following notation:

$$
\alpha=\left(a_{1}+2 a_{2} t\right)\left(a_{1}+2 a_{3} t\right)+\left(a_{4}+2 a_{5} t\right)\left(a_{4}-2 a_{6} t\right) .
$$

Proposition 2. The operator J_{1} defines an almost complex structure on $T M$ if and only if the coefficients $b_{1}, b_{2}, b_{3}, b_{4}, b_{5}, b_{6}$ are expressed as

$$
\left\{\begin{array}{l}
b_{1}=\frac{a_{1}}{a_{1}^{2}+a_{4}^{2}}, \quad b_{4}=\frac{-a_{4}}{a_{1}^{2}+a_{4}^{2}}, \tag{1.5}\\
b_{2}=\frac{1}{\alpha}\left[b_{1}\left(-a_{1} a_{2}-2 a_{2} a_{3} t+2 a_{5} a_{6} t\right)+b_{4}\left(a_{1} a_{5}-a_{1} a_{6}-a_{3} a_{4}\right)\right], \\
b_{3}=\frac{1}{\alpha}\left[b_{1}\left(-a_{1} a_{3}-2 a_{2} a_{3} t+2 a_{5} a_{6} t\right)+b_{4}\left(a_{1} a_{5}-a_{1} a_{6}-a_{2} a_{4}\right)\right], \\
b_{5}=\frac{1}{\alpha}\left[b_{1}\left(-a_{1} a_{5}+a_{2} a_{4}+a_{3} a_{4}\right)+b_{4}\left(a_{4} a_{6}-2 a_{2} a_{3} t+2 a_{5} a_{6} t\right)\right], \\
b_{6}=\frac{1}{\alpha}\left[b_{1}\left(-a_{1} a_{6}-a_{2} a_{4}-a_{3} a_{4}\right)+b_{4}\left(a_{4} a_{5}+2 a_{2} a_{3} t-2 a_{5} a_{6} t\right)\right] .
\end{array}\right.
$$

Proof. The relations are obtained by some quite straightforward but long computations, from the property $J_{1}^{2}=-I$ of J_{1} and Lemma 1.

Remark. Using the first two relations (1.5) we may find the expressions of $b_{2}, b_{3}, b_{5}, b_{6}$ as functions of $a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}$ only. Remark that the parameters a_{1}, a_{4} cannot vanish simultaneously and that $\alpha \neq 0$. A similar result is obtained from the condition for J_{2} to be an almost complex structure on $T M$. In this case we can express the coefficients $d_{1}, d_{2}, d_{3}, d_{4}, d_{5}, d_{6}$ as functions of $c_{1}, c_{2}, c_{3}, c_{4}, c_{5}, c_{6}$. We shall use the following notation:

$$
\beta=\left(c_{1}+2 c_{2} t\right)\left(c_{1}+2 c_{3} t\right)+\left(c_{4}+2 c_{5} t\right)\left(c_{4}-2 c_{6} t\right)
$$

Then we get

$$
\left\{\begin{array}{l}
d_{1}=\frac{c_{1}}{c_{1}^{2}+c_{4}^{2}}, \quad d_{4}=\frac{-c_{4}}{c_{1}^{2}+c_{4}^{2}}, \tag{1.6}\\
d_{2}=\frac{1}{\beta}\left[d_{1}\left(-c_{1} c_{2}-2 c_{2} c_{3} t+2 c_{5} c_{6} t\right)+d_{4}\left(c_{1} c_{5}-c_{1} c_{6}-c_{3} c_{4}\right)\right], \\
d_{3}=\frac{1}{\beta}\left[d_{1}\left(-c_{1} c_{3}-2 c_{2} c_{3} t+2 c_{5} c_{6} t\right)+d_{4}\left(c_{1} c_{5}-c_{1} c_{6}-c_{2} c_{4}\right)\right], \\
d_{5}=\frac{1}{\beta}\left[d_{1}\left(-c_{1} c_{5}+c_{2} c_{4}+c_{3} c_{4}\right)+d_{4}\left(c_{4} c_{6}-2 c_{2} c_{3} t+2 c_{5} c_{6} t\right)\right], \\
d_{6}=\frac{1}{\beta}\left[d_{1}\left(-c_{1} c_{6}-c_{2} c_{4}-c_{3} c_{4}\right)+d_{4}\left(c_{4} c_{5}+2 c_{2} c_{3} t-2 c_{5} c_{6} t\right)\right] .
\end{array}\right.
$$

Now we shall study the conditions under which the almost complex structures J_{1}, J_{2} satisfy the relation $J_{1} J_{2}+J_{2} J_{1}=0$, leading to the almost hyper-complex structure on $T M$.

Theorem 3. The almost complex structures J_{1}, J_{2} define an almost hyper-complex structure on TM if

$$
\begin{equation*}
c_{1}=a_{4}, \quad c_{4}=-a_{1}, \tag{1.7}
\end{equation*}
$$

$c_{3}=\quad\left(a_{1}^{2} a_{5}+a_{4}^{2} a_{5}-a_{1}^{2} a_{6}-a_{4}^{2} a_{6}-a_{1}^{2} c_{2}-a_{4}^{2} c_{2}+2 a_{2} a_{3} a_{4} t-2 a_{1} a_{2} a_{6} t-\right.$ $-2 a_{1} a_{3} a_{6} t-4 a_{4} a_{5} a_{6} t+2 a_{4} a_{6}^{2} t-2 a_{1} a_{3} c_{2} t+2 a_{4} a_{6} c_{2} t-2 a_{2} a_{4} c_{6} t-2 a_{3} a_{4} c_{6} t+$ $\left.+4 a_{1} a_{5} c_{6} t-2 a_{1} c_{2} c_{6} t+2 a_{4} c_{6}^{2} t-4 a_{2} a_{3} a_{6} t^{2}+4 a_{5} a_{6}^{2} t^{2}-4 a_{3} c_{2} c_{6} t^{2}+4 a_{5} c_{6}^{2} t^{2}\right) /$ $\left(\left(a_{1}+2 a_{2} t\right)\left(a_{1}+2 c_{6} t\right)+\left(a_{4}+2 c_{2} t\right)\left(a_{4}-2 a_{6} t\right)\right)$,
$c_{5}=\frac{-1}{a_{1}+2 c_{6} t}\left(a_{1} a_{2}+a_{1} a_{3}+a_{4} a_{5}-a_{4} a_{6}-a_{4} c_{2}-a_{4} c_{3}-a_{1} c_{6}+\right.$ $\left.+2 a_{2} a_{3} t-2 a_{5} a_{6} t-2 c_{2} c_{3} t\right)$.
Proof. From the relation $J_{1} V_{h}^{k} J_{2} H_{i}^{h}+J_{2} V_{h}^{k} J_{1} H_{i}^{h}=0$ we get

$$
\begin{aligned}
& \left(-b_{1} c_{1}+b_{4} c_{4}-a_{1} d_{1}+a_{4} d_{4}\right) \delta_{i}^{k}-\left(b_{4} c_{1}+b_{1} c_{4}+a_{4} d_{1}+a_{1} d_{4}\right) J_{i}^{k}- \\
& -\left(b_{5} c_{1}+b_{4} c_{2}+b_{3} c_{4}+b_{1} c_{5}+a_{5} d_{1}+a_{4} d_{3}+a_{2} d_{4}+a_{1} d_{5}+\right. \\
& \left.+2 b_{5} c_{2} t+2 b_{3} c_{5} t+2 a_{5} d_{3} t+2 a_{2} d_{5} t\right) g_{i 0} J_{0}^{k}+ \\
& \left(-b_{3} c_{1}-b_{1} c_{3}+b_{5} c_{4}-b_{4} c_{6}-a_{3} d_{1}-a_{1} d_{3}+a_{6} d_{4}+a_{4} d_{5}-\right. \\
& \left.-2 b_{3} c_{3} t-2 b_{5} c_{6} t-2 a_{3} d_{3} t-2 a_{6} d_{5} t\right) J_{i 0} J_{0}^{k}+ \\
& -b_{2} c_{1}-b_{1} c_{2}-b_{6} c_{4}+b_{4} c_{5}-a_{2} d_{1}-a_{1} d_{2}+a_{5} d_{4}-a_{4} d_{6}- \\
& \left.-2 b_{2} c_{2} t-2 b_{6} c_{5} t-2 a_{2} d_{2} t-2 a_{5} d_{6} t\right) g_{i 0} y^{k}- \\
& \left(b_{6} c_{1}-b_{4} c_{3}-b_{2} c_{4}+b_{1} c_{6}+a_{6} d_{1}-a_{4} d_{2}-a_{3} d_{4}+a_{1} d_{6}+\right. \\
& \left.+2 b_{6} c_{3} t+2 b_{2} c_{6} t+2 a_{6} d_{2} t+2 a_{3} d_{6} t\right) J_{i 0} y^{k} .
\end{aligned}
$$

Replacing $b_{\alpha}, d_{\alpha} ; \alpha=1, \ldots, 6$ and using Lemma 1 we get the following relations (from the vanishing of the first two coefficients)

$$
\begin{aligned}
& \left(a_{1} c_{1}+a_{4} c_{4}\right)\left(a_{1}^{2}+a_{4}^{2}+c_{1}^{2}+c_{4}^{2}\right)=0, \\
& \left(a_{4} c_{1}-a_{1} c_{4}\right)\left(a_{1}^{2}+a_{4}^{2}-c_{1}^{2}-c_{4}^{2}\right)=0 .
\end{aligned}
$$

Since $a_{1}^{2}+a_{4}^{2} \neq 0, c_{1}^{2}+c_{4}^{2} \neq 0$, we obtain the relations

$$
c_{1}= \pm a_{4}, \quad c_{4}=\mp a_{1} .
$$

From now on we shall consider only the case $c_{1}=a_{4}, c_{4}=-a_{1}$. The expressions of c_{3}, c_{5} are obtained from the vanishing of the next 4 coefficients. Then the other relations obtained from $J_{1} J_{2}+J_{2} J_{1}=0$ are identically fulfilled.

Remark that the final expression of c_{5} is obtained after replacing the obtained expression of c_{3}.

Hence an almost hyper-complex structure on $T M$, of the considered type depends on 8 essential parameters $a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, c_{2}, c_{6}$ (real valued smooth functions depending on the density energy $t \in[0, \infty)$. Remark that the functions $a_{\alpha} ; \alpha=1, \ldots, 6$, must fulfill some supplementary conditions which assure the existence of the expressions obtained above.

Now we shall study the integrability problem for the obtained almost hypercomplex structure. The integrability conditions for such a structure are expressed with the help of various Nijenhuis tensor fields obtained from the tensor fields $J_{1}, J_{2}, J_{3}=$ $J_{1} J_{2}$. For a tensor field K of type $(1,1)$ on a given manifold, we can consider its Nijenhuis tensor field N_{K} defined by

$$
N_{K}(X, Y)=[K X, K Y]-K[X, K Y]-K[K X, Y]+K^{2}[X, Y]
$$

where X, Y are vector fields on the given manifold. For two tensor fields K, L of type $(1,1)$ on the given manifold, we can consider the corresponding Nijenhuis tensor field $N_{K, L}$ defined by

$$
\begin{gathered}
N_{K, L}(X, Y)=[K X, L Y]+[L X, K Y]-K([X, L Y]+[L X, Y])- \\
-L([K X, Y]+[X, K Y])+(K L+L K)[X, Y]
\end{gathered}
$$

The almost hyper-complex structure defined by J_{1}, J_{2} is integrable iff $N_{1}=$ $0, N_{2}=0$, where N_{1}, N_{2} are the Nijenhuis tensor fields of J_{1}, J_{2}. Equivalently, the structure is integrable iff $N_{1}+N_{2}+N_{3}=0$, or iff $N_{12}=0$, where N_{3} is the Nijenhuis tensor field of $J_{3}=J_{1} J_{2}$ and $N_{12}=N_{J_{1}, J_{2}}$ is the Nijenhuis tensor field of J_{1}, J_{2}.

In the case of the almost hyper-complex structure defined on $T M$ by the tensor fields J_{1}, J_{2} the most convenient way to study its integrability is the using of the Nijenhuis tensor fields N_{1}, N_{2}.

Proposition 4. If the almost hyper-complex structure defined by $\left(J_{1}, J_{2}\right)$ on $T M$ is integrable then the Kählerian manifold (M, g, J) has constant holomorphic sectional curvature.

Proof. Recall the following formulas, useful in computing the expressions of N_{1}, N_{2}

$$
\begin{aligned}
& {\left[\partial_{i}, \partial_{j}\right]=0, \quad\left[\partial_{i}, \delta_{j}\right]=-\Gamma_{i j}^{k} \partial_{k}, \quad\left[\delta_{i}, \delta_{j}\right]=-R_{0 i j}^{k} \partial_{k}} \\
& \delta_{i} y^{h}=-\Gamma_{i 0}^{h}, \delta_{i} g_{j k}=\Gamma_{i j}^{h} g_{h k}+\Gamma_{i k}^{h} g_{j h}, \delta_{i} g_{j 0}=g_{0 h} \Gamma_{i j}^{h} \\
& \delta_{i} J_{l}^{k}=-\Gamma_{i h}^{k} J_{l}^{h}+\Gamma_{i l}^{h} J_{h}^{k}, \delta_{i} J_{0}^{k}=-\Gamma_{i h}^{k} J_{0}^{h}, \delta_{i} J_{j 0}=\Gamma_{i j}^{h} J_{h 0}
\end{aligned}
$$

We have used the notations

$$
R_{0 i j}^{k}=y^{h} R_{h i j}^{k}, \Gamma_{i 0}^{k}=y^{h} \Gamma_{i h}^{k}, g_{j 0}=g_{j h} y^{h}, J_{0}^{k}=J_{h}^{k} y^{h}, J_{j 0}=J_{j h} y^{h}
$$

Then we get

$$
N_{1}\left(\delta_{i}, \delta_{j}\right)=\left(J_{1} H_{i}^{k} \partial_{k} J_{1} H_{j}^{h}-J_{1} H_{j}^{k} \partial_{k} J_{1} H_{i}^{h}+R_{0 i j}^{h}\right) \partial_{h}
$$

Remark that all the terms containing the Christoffel symbols cancel. Doing the necessary replacements, we get a relation of the following type
$\alpha_{1}\left(J_{i}^{h} g_{j 0}-J_{j}^{h} g_{i 0}\right)+\alpha_{2}\left(g_{0 i} \delta_{j}^{h}-g_{0 j} \delta_{i}^{h}\right)+2 \alpha_{3} J_{i j} y^{h}+\alpha_{4}\left(J_{i 0} J_{j}^{h}-J_{j 0} J_{i}^{h}\right)+2 \alpha_{5} J_{i j} J_{0}^{h}+$

$$
+\alpha_{6}\left(\delta_{i}^{h} J_{j 0}-\delta_{j}^{h} J_{i 0}\right)+R_{0 i j}^{h}+\alpha_{7}\left(g_{i 0} J_{j 0}-g_{j 0} J_{i 0}\right) y^{h}+\alpha_{8}\left(g_{i 0} J_{j 0}-g_{j 0} J_{i 0}\right) J_{0}^{h}=0
$$

where the coefficients $\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}, \alpha_{5}, \alpha_{6}, \alpha_{7}, \alpha_{8}$, are functions of t, expressed with the help of the coefficients $a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}$ and their derivatives.

Differentiating this relation with respect to y^{k}, then taking $y=0$, one gets

$$
\begin{gathered}
\alpha_{1}(0)\left(J_{i}^{h} g_{j k}-J_{j}^{h} g_{i k}\right)+\alpha_{2}(0)\left(g_{k i} \delta_{j}^{h}-g_{k j} \delta_{i}^{h}\right)+2 \alpha_{3}(0) J_{i j} \delta_{k}^{h}+\alpha_{4}(0)\left(J_{i k} J_{j}^{h}-J_{j k} J_{i}^{h}\right)+ \\
+2 \alpha_{5}(0) J_{i j} J_{k}^{h}+\alpha_{6}(0)\left(\delta_{i}^{h} J_{j k}-\delta_{j}^{h} J_{i k}\right)+R_{k i j}^{h}=0 .
\end{gathered}
$$

Then, using the well known (skew) symmetries of the components of R, as well as the (first) Bianchi identity and the invariance properties of R with respect to J, one finds

$$
\begin{equation*}
R_{k i j}^{h}=c\left(g_{j k} \delta_{i}^{h}-g_{i k} \delta_{j}^{h}+J_{i}^{h} g_{k l} J_{j}^{l}-J_{j}^{h} g_{k l} J_{i}^{l}+2 J_{k}^{h} g_{i l} J_{j}^{l}\right), \tag{1.8}
\end{equation*}
$$

i.e. the Kählerian manifold (M, g, J) has constant holomorphic sectional curvature 4c.

Replacing the obtained expression of $R_{k i j}^{h}$ in the relation $N_{1}\left(\delta_{i}, \delta_{j}\right)=0$, and using Lemma 1, one obtains some further relations

$$
\begin{equation*}
a_{3}=\frac{c-a_{4} a_{5}}{a_{1}}, \quad a_{6}=-\frac{a_{2} a_{4}}{a_{1}} . \tag{1.9}
\end{equation*}
$$

Then, replacing these expressions of a_{3}, a_{6} in the remaining terms one gets

$$
\begin{equation*}
a_{2}=\frac{a_{1}\left(a_{1} a_{1}^{\prime}+a_{4} a_{4}^{\prime}-c\right)}{a_{1}^{2}+a_{4}^{2}-2 a_{1} a_{1}^{\prime} t-2 a_{4} a_{4}^{\prime} t}, \quad a_{5}=\frac{-a_{2} a_{4}+a_{1} a_{4}^{\prime}+2 a_{2} a_{4}^{\prime} t}{a_{1}} . \tag{1.10}
\end{equation*}
$$

Next, computing the expressions $N_{1}\left(\partial_{i}, \partial_{j}\right), N_{1}\left(\delta_{i}, \partial_{j}\right)$, we get that they are identically zero.

Similar results are obtained from the integrability conditions for J_{2}, but we should prefer to present some other expressions (we shall assume that $c_{4} \neq 0$)

$$
\left\{\begin{array}{l}
c_{2}=-\frac{c_{1} c_{6}}{c_{4}}, \quad c_{5}=\frac{c-c_{1} c_{3}}{c_{4}}, \tag{1.11}\\
c_{3}=\frac{c_{1} c_{6}+c_{1}^{\prime} c_{4}-2 c_{1}^{\prime} c_{6} t}{c_{4}}, c_{6}=\frac{c_{4}\left(c-c_{1} c_{1}^{\prime}-c_{4} c_{4}^{\prime}\right)}{c_{1}^{2}+c_{4}^{2}-2 c_{1} c_{1}^{\prime} t-2 c_{4} c_{4}^{\prime} t} .
\end{array}\right.
$$

Finally, by using the relations obtained in Theorem 3, one gets the expressions of $c_{2}, c_{3}, c_{5}, c_{6}$ as functions a_{1}, a_{4} an their derivatives

$$
\left\{\begin{array}{l}
c_{2}=\frac{a_{4}\left(a_{1} a_{1}^{\prime}+a_{4} a_{4}^{\prime}-c\right)}{a_{1}^{2}+a_{4}^{2}-2 a_{1} a_{1}^{\prime} t-2 a_{4} a_{4}^{\prime} t}, \quad c_{3}=\frac{a_{4}\left(c-a_{1} a_{1}^{\prime}\right)+a_{4}^{\prime}\left(a_{1}^{2}-2 c t\right)}{a_{1}^{2}+a_{4}^{2}-2 a_{1} a_{1}^{\prime} t-2 a_{4} a_{4}^{\prime} t}, \tag{1.12}\\
c_{5}=\frac{a_{1}\left(a_{4} a_{4}^{\prime}-c\right)-a_{1}^{\prime}\left(a_{4}^{2}-2 c t\right)}{a_{1}^{2}+a_{4}^{2}-2 a_{1} a_{1}^{\prime} t-2 a_{4} a_{4}^{\prime} t}, \quad c_{6}=\frac{a_{1}\left(a_{1} a_{1}^{\prime}+a_{4} a_{4}^{\prime}-c\right)}{a_{1}^{2}+a_{4}^{2}-2 a_{1} a_{1}^{\prime} t-2 a_{4} a_{4}^{\prime} t}
\end{array}\right.
$$

Remark that the values of c_{3}, c_{5} obtained in (1.12) do coincide with the values of c_{3}, c_{5} obtained in Theorem 3 after replacing c_{2}, c_{6} obtained in (1.12) and $a_{2}, a_{3}, a_{5}, a_{6}$ obtained in (1.9) and (1.10).

2 Hyper-Kähler structures on $T M$

Consider a natural Riemannian metric G on $T M$ of diagonal type induced from g and J and given by

$$
\left\{\begin{array}{l}
G_{y}\left(X^{H}, Y^{H}\right)=p_{1}(t) g_{\tau(y)}(X, Y)+p_{2}(t) g_{\tau(y)}(y, X) g_{\tau(y)}(y, Y)+ \tag{2.1}\\
+p_{3}(t) g_{\tau(y)}(J X, y) g_{\tau(y)}(J Y, y)+p_{4}(t)\left(g_{\tau(y)}(J X, y) g_{\tau(y)}(Y, y)+\right. \\
\left.+g_{\tau(y)}(J Y, y) g_{\tau(y)}(X, y)\right), \\
G_{y}\left(X^{V}, Y^{V}\right)=q_{1}(t) g_{\tau(y)}(X, Y)+q_{2}(t) g_{\tau(y)}(y, X) g_{\tau(y)}(y, Y)+ \\
+q_{3}(t) g_{\tau(y)}(J X, y) g_{\tau(y)}(J Y, y)+q_{4}(t)\left(g_{\tau(y)}(J X, y) g_{\tau(y)}(Y, y)+\right. \\
\left.+g_{\tau(y)}(J Y, y) g_{\tau(y)}(X, y)\right), \\
G_{y}\left(X^{H}, Y^{V}\right)=G_{y}\left(Y^{V}, X^{H}\right)=G_{y}\left(X^{V}, Y^{H}\right)=G_{y}\left(Y^{H}, X^{V}\right)=0
\end{array}\right.
$$

where $p_{1}, p_{2}, p_{3}, p_{4}, q_{1}, q_{2}, q_{3}, q_{4}$ are smooth real valued functions defined on $[0, \infty)$. Remark that we have to find the conditions under which G is real Riemannian metric.

The expression of G in local adapted frames is defined by the following M-tensor fields

$$
\begin{aligned}
& G_{i j}=G\left(\delta_{i}, \delta_{j}\right)=p_{1} g_{i j}+p_{2} g_{0 i} g_{0 j}+p_{3} J_{i 0} J_{j 0}+p_{4}\left(g_{i 0} J_{j 0}+g_{j 0} J_{i 0}\right) \\
& H_{i j}=G\left(\partial_{i}, \partial_{j}\right)=q_{1} g_{i j}+q_{2} g_{0 i} g_{0 j}+q_{3} J_{i 0} J_{j 0}+q_{4}\left(g_{i 0} J_{j 0}+g_{j 0} J_{i 0}\right)
\end{aligned}
$$

and the associated $2 m \times 2 m$-matrix with respect to the adapted local frame

$$
\left(\frac{\delta}{\delta x^{1}}, \ldots, \frac{\delta}{\delta x^{m}}, \frac{\partial}{\partial y^{1}}, \ldots, \frac{\partial}{\partial y^{m}}\right)
$$

has two $m \times m$-blocks on the first diagonal

$$
G=\left(\begin{array}{cc}
G_{i j} & 0 \\
0 & H_{i j}
\end{array}\right)
$$

We shall be interested in the conditions under which the metric G is almost Hermitian with respect to the almost complex structures J_{1}, J_{2}, considered in the previous section, i.e.

$$
G\left(J_{1} X, J_{1} Y\right)=G(X, Y), \quad G\left(J_{2} X, J_{2} Y\right)=G(X, Y)
$$

for all vector fields X, Y on $T M$.
From the relation

$$
G\left(J_{1} \delta_{i}, J_{1} \delta_{j}\right)=G\left(\delta_{i}, \delta_{j}\right)
$$

we get

$$
\begin{equation*}
H_{k l} J_{1} H_{i}^{k} J_{1} H_{j}^{l}=G_{i j} \tag{2.2}
\end{equation*}
$$

from which we obtain the following expressions for $p_{1}, p_{2}, p_{3}, p_{4}$

$$
\left\{\begin{array}{l}
p_{1}=\left(a_{1}^{2}+a_{4}^{2}\right) q_{1} \tag{2.3}\\
p_{2}=\left(2 a_{1} a_{2}+2 a_{4} a_{5}+2 a_{2}^{2} t+2 a_{5}^{2} t\right) q_{1}+ \\
\left(a_{1}+2 a_{2} t\right)^{2} q_{2}+\left(a_{4}+2 a_{5} t\right)^{2} q_{3}+2\left(a_{1}+2 a_{2} t\right)\left(a_{4}+2 a_{5} t\right) q_{4} \\
p_{3}=\left(2 a_{1} a_{3}-2 a_{4} a_{6}+2 a_{3}^{2} t+2 a_{6}^{2} t\right) q_{1}+ \\
\left(a_{4}-2 a_{6} t\right)^{2} q_{2}+\left(a_{1}+2 a_{3} t\right)^{2} q_{3}-2\left(a_{1}+2 a_{3} t\right)\left(a_{4}-2 a_{6} t\right) q_{4} \\
p_{4}=\left(-a_{2} a_{4}+a_{3} a_{4}+a_{1} a_{5}+a_{1} a_{6}+2 a_{3} a_{5} t+2 a_{2} a_{6} t\right) q_{1}+ \\
+\left(-a_{1} a_{4}-2 a_{2} a_{4} t+2 a_{1} a_{6} t+2 a_{1} a_{6} t\right) q_{2}+\left(a_{1}+2 a_{3} t\right)\left(a_{4}+2 a_{5} t\right) q_{3}+ \\
+\left(a_{1}^{2}-a_{4}^{2}+2 a_{1} a_{2} t+2 a_{1} a_{3} t-2 a_{4} a_{5} t+2 a_{4} a_{6} t+4 a_{2} a_{3} t^{2}+4 a_{5} a_{6} t^{2}\right) q_{4}
\end{array}\right.
$$

Remark that from the conditions $G\left(J_{1} \partial_{i}, J_{1} \partial_{j}\right)=G\left(\partial_{i}, \partial_{j}\right), G\left(J_{1} \delta_{i}, J_{1} \partial_{j}\right)=$ $G\left(\delta_{i}, \partial_{j}\right)$, we do not obtain new essential relations fulfilled by $p^{\prime} s$ and $q^{\prime} s$.

Now we deal with the condition

$$
G\left(J_{2} \delta_{i}, J_{2} \delta_{j}\right)=G\left(\delta_{i}, \delta_{j}\right)
$$

from which we get

$$
\begin{equation*}
H_{k l} J_{2} H_{i}^{k} J_{2} H_{j}^{l}=G_{i j} \tag{2.4}
\end{equation*}
$$

We find the coefficients $p_{1}, p_{2}, p_{3}, p_{4}$ expressed in function of the coefficients $q_{1}, q_{2}, q_{3}, q_{4}$ by formulas similar to (2.3), where the parameters $a_{1}, a_{2}, a_{4}, a_{5}, a_{6}$ are replaced by $c_{1}, c_{2}, c_{3}, c_{4}, c_{5}, c_{6}$ respectively. Next, we may write the system fulfilled by $q_{1}, q_{2}, q_{3}, q_{4}$, obtained by equalizing the obtained values for $p_{1}, p_{2}, p_{3}, p_{4}$. Remark that, due to the formula (1.7), the first equation, corresponding to p_{1}, is trivial. So, we get a homogeneous system consisting of 3 equations

$$
\begin{aligned}
& q_{1}\left(-2 a_{1} a_{2}-2 a_{4} a_{5}+2 a_{4} c_{2}-2 a_{1} c_{5}-2 a_{2}^{2} t-2 a_{5}^{2} t+2 c_{2}^{2} t+2 c_{5}^{2} t\right)+ \\
& \quad+q_{2}\left(-a_{1}^{2}+a_{4}^{2}-4 a_{1} a_{2} t+4 a_{4} c_{2} t-4 a_{2}^{2} t^{2}+4 c_{2}^{2} t^{2}\right)+ \\
& \quad+q_{3}\left(a_{1}^{2}-a_{4}^{2}-4 a_{4} a_{5} t-4 a_{1} c_{5} t-4 a_{5}^{2} t^{2}+4 c_{5}^{2} t^{2}\right)+ \\
& \quad+q_{4}\left(-4 a_{1} a_{4}-4 a_{2} a_{4} t-4 a_{1} a_{5} t-4 a_{1} c_{2} t+4 a_{4} c_{5} t-8 a_{2} a_{5} t^{2}+8 c_{2} c_{5} t^{2}\right)=0, \\
& q_{1}\left(-a_{2} a_{4}+a_{3} a_{4}+a_{1} a_{5}+a_{1} a_{6}-a_{1} c_{2}+a_{1} c_{3}-a_{4} c_{5}-a_{4} c_{6}+2 a_{3} a_{5} t+2 a_{2} a_{6} t-2 c_{3} c_{5} t-\right. \\
& \left.\quad-2 c_{2} c_{6} t\right)+q_{2}\left(-2 a_{1} a_{4}-2 a_{2} a_{4} t+2 a_{1} a_{6} t-2 a_{1} c_{2} t-2 a_{4} c_{6} t+4 a_{2} a_{6} t^{2}-4 c_{2} c_{6} t^{2}\right)+ \\
& \quad+q_{3}\left(2 a_{1} a_{4}+2 a_{3} a_{4} t+2 a_{1} a_{5} t+2 a_{1} c_{3} t-2 a_{4} c_{5} t+4 a_{3} a_{5} t^{2}-4 c_{3} c_{5} t^{2}\right)+q_{4}\left(2 a_{1}^{2}-2 a_{4}^{2}+\right. \\
& \quad+2 a_{1} a_{2} t+2 a_{1} a_{3} t-2 a_{4} a_{5} t+2 a_{4} a_{6} t-2 a_{4} c_{2} t-2 a_{4} c_{3} t-2 a_{1} c_{5} t+2 a_{1} c_{6} t+4 a_{2} a_{3} t^{2}+ \\
& \left.\quad+4 a_{5} a_{6} t^{2}-4 c_{2} c_{3} t^{2}-4 c_{5} c_{6} t^{2}\right)=0, \\
& q_{1}\left(2 a_{1} a_{3}-2 a_{4} a_{6}-2 a_{4} c_{3}-2 a_{1} c_{6}+2 a_{3}^{2} t+2 a_{6}^{2} t-2 c_{3}^{2} t-2 c_{6}^{2} t\right)+ \\
& \quad+q_{2}\left(-a_{1}^{2}+a_{4}^{2}-4 a_{4} a_{6} t-4 a_{1} c_{6} t+4 a_{6}^{2} t^{2}-4 c_{6}^{2} t^{2}\right)+ \\
& \quad+q 3\left(a_{1}^{2}-a_{4}^{2}+4 a_{1} a_{3} t-4 a_{4} c_{3} t+4 a_{3}^{2} t^{2}-4 c_{3}^{2} t^{2}\right)+ \\
& \quad+q_{4}\left(-4 a_{1} a_{4}-4 a_{3} a_{4} t+4 a_{1} a_{6} t-4 a_{1} c_{3} t-4 a_{4} c_{6} t+8 a_{3} a_{6} t^{2}-8 c_{3} c_{6} t^{2}\right)=0 .
\end{aligned}
$$

The matrix of this system has the rank 2 and we may obtain its general solution depending on two parameters

$$
\begin{equation*}
q_{1}=\lambda, \quad q_{3}=\mu, \tag{2.5}
\end{equation*}
$$

$$
\begin{aligned}
q_{4} & =\left(\left(a_{3} a_{4}-a_{1} a_{5}+a_{1} c_{2}-a_{4} c_{6}+2 a_{3} c_{2} t-2 a_{5} c_{6} t\right) \lambda+\right. \\
& \left.+\left(2 a_{3} a_{4} t-2 a_{1} a_{5} t+2 a_{1} c_{2} t-2 a_{4} c_{6} t+4 a_{3} c_{2} t^{2}-4 a_{5} c_{6} t^{2}\right) \mu\right) / \\
& \left(a_{1}^{2}+a_{4}^{2}+2 a_{1} a_{2} t-2 a_{4} a_{6} t+2 a_{4} c_{2} t+2 a_{1} c_{6} t-4 a_{6} c_{2} t^{2}+4 a_{2} c_{6} t^{2}\right), \\
q_{1} & +2 t q_{2}= \\
& =\left(\left(a_{1}^{4}+2 a_{1}^{2} a_{4}^{2}+a_{4}^{4}+4 a_{1}^{3} a_{2} t+4 a 1^{3} a_{3} t+4 a_{1} a_{2} a_{4}^{2} t+4 a_{1} a_{3} a_{4}^{2} t+4 a_{1}^{2} a_{4} a_{5} t+\right.\right. \\
& +4 a_{4}^{3} a_{5} t-4 a_{1}^{2} a_{4} a_{6} t-4 a_{4}^{3} a_{6} t+4 a_{1}^{2} a_{2}^{2} t^{2}+16 a_{1}^{2} a_{2} a_{3} t^{2}+4 a_{1}^{2} a_{3}^{2} t^{2}+8 a_{2} a_{3} a_{4}^{2} t^{2}+ \\
& +4 a_{3}^{2} a_{4}^{2} t^{2}+8 a_{1} a_{2} a_{4} a_{5} t^{2}+4 a_{1}^{2} a_{5}^{2} t^{2}+4 a_{4}^{2} a_{5}^{2} t^{2}-8 a_{1} a_{2} a_{4} a_{6} t^{2}-8 a_{1} a_{3} a_{4} a_{6} t^{2}- \\
& -8 a_{1}^{2} a_{5} a_{6} t^{2}-16 a_{4}^{2} a_{5} a_{6} t^{2}+4 a_{4}^{2} a_{6}^{2} t^{2}+8 a_{1} a_{3} a_{4} c_{2} t^{2}-8 a_{1}^{2} a_{5} c_{2} t^{2}+4 a_{1}^{2} c_{2}^{2} t^{2}- \\
& -8 a_{3} a_{4}^{2} c_{6} t^{2}+8 a_{1} a_{4} a_{5} c_{6} t^{2}-8 a_{1} a_{4} c_{2} c_{6} t^{2}+4 a_{4}^{2} c_{6}^{2} t^{2}+16 a_{1} a_{2}^{2} a_{3} t^{3}+16 a_{1} a_{2} a_{3}^{2} t^{3}+ \\
& +16 a_{2} a_{3} a_{4} a_{5} t^{3}-16 a_{2} a_{3} a_{4} a_{6} t^{3}-16 a_{1} a_{2} a_{5} a_{6} t^{3}-16 a_{1} a_{3} a_{5} a_{6} t^{3}-16 a_{4} a_{5}^{2} a_{6} t^{3}+ \\
& +16 a_{4} a_{5} a_{6}^{2} t^{3}+16 a_{3}^{2} a_{4} c_{2} t^{3}-16 a_{1} a_{3} a_{5} c_{2} t^{3}+16 a_{1} a_{3} c_{2}^{2} t^{3}-16 a_{3} a_{4} a_{5} c_{6} t^{3}+ \\
& +16 a_{1} a_{5}^{2} c_{6} t^{3}-16 a_{3} a_{4} c_{2} c_{6} t^{3}-16 a_{1} a_{5} c_{2} c_{6} t^{3}+16 a_{4} a_{5} c_{6}^{2} t^{3}+16 a_{2}^{2} a_{3}^{2} t^{4}- \\
& \left.\left.-32 a_{2} a_{3} a_{5} a_{6} t^{4}+16 a_{5}^{2} a_{6}^{2} t^{4}+16 a_{3}^{2} c_{2}^{2} t^{4}-32 a_{3} a_{5} c_{2} c_{6} t^{4}+16 a_{5}^{2} c_{6}^{2} t^{4}\right)(\lambda+2 t \mu)\right) / \\
& \left(a_{1}^{2}+a_{4}^{2}+2 a_{1} a_{2} t-2 a_{4} a_{6} t+2 a_{4} c_{2} t+2 a_{1} c_{6} t-4 a_{6} c_{2} t^{2}+4 a_{2} c_{6} t^{2}\right)^{2} .
\end{aligned}
$$

The explicit expression of q_{2} is obtained from the expression of $q_{1}+2 t q_{2}$ and is more complicate. Next, the expressions of $p_{1}, p_{2}, p_{3}, p_{4}$ are obtained from (2.3).

$$
\begin{aligned}
& p_{1}=\left(a_{1}^{2}+a_{4}^{2}\right) \lambda, \\
& p_{1}+2 t p_{2}=\left(a_{1}^{2}+a_{4}^{2}+2 a_{1} a_{2} t+2 a_{1} a_{3} t+2 a_{4} a_{5} t-2 a_{4} a_{6} t+4 a_{2} a_{3} t^{2}-4 a_{5} a_{6} t^{2}\right)^{2} \\
& \quad\left(a_{1}^{2}+a_{4}^{2}+4 a_{1} a_{2} t+4 a_{4} c_{2} t+4 a_{2}^{2} t^{2}+4 c_{2}^{2} t^{2}\right)(\lambda+2 t \mu) /\left(a_{1}^{2}+a_{4}^{2}+2 a_{1} a_{2} t-2 a_{4} a_{6} t+\right. \\
& \left.\quad+2 a_{4} c_{2} t+2 a_{1} c_{6} t-4 a_{6} c_{2} t^{2}+4 a_{2} c_{6} t^{2}\right)^{2}, \\
& p_{1}+2 t p_{3}=\left(a_{1}^{2}+a_{4}^{2}+2 a_{1} a_{2} t+2 a_{1} a_{3} t+2 a_{4} a_{5} t-2 a_{4} a_{6} t+4 a_{2} a_{3} t^{2}-4 a_{5} a_{6} t^{2}\right)^{2} \\
& \quad\left(a_{1}^{2}+a_{4}^{2}-4 a_{4} a_{6} t+4 a_{1} c_{6} t+4 a_{6}^{2} t^{2}+4 c_{6}^{2} t^{2}\right)(\lambda+2 t \mu) /\left(a_{1}^{2}+a_{4}^{2}+2 a_{1} a_{2} t-2 a_{4} a_{6} t+\right. \\
& \left.\quad+2 a_{4} c_{2} t+2 a_{1} c_{6} t-4 a_{6} c_{2} t^{2}+4 a_{2} c_{6} t^{2}\right)^{2}, \\
& p_{4}=\left(-a_{2} a_{4}+a_{1} a_{6}+a_{1} c_{2}+a_{4} c_{6}+2 a_{2} a_{6} t+2 c_{2} c_{6} t\right)\left(a_{1}^{2}+a_{4}^{2}+2 a_{1} a_{2} t+2 a_{1} a_{3} t+\right. \\
& \left.\left.+2 a_{4} a_{5} t-2 a_{4} a_{6} t+4 a_{2} a_{3} t^{2}-4 a_{5} a_{6} t^{2}\right)^{2}(\lambda+2 t \mu)\right) /\left(a_{1}^{2}+a_{4}^{2}+2 a_{1} a_{2} t-2 a_{4} a_{6} t+\right. \\
& \left.+2 a_{4} c_{2} t+2 a_{1} c_{6} t-4 a_{6} c_{2} t^{2}+4 a_{2} c_{6} t^{2}\right)^{2} .
\end{aligned}
$$

If we assume that the almost hyper-complex structure defined by J_{1}, J_{2} is integrable, the expressions of the coefficients in G are simpler.

For the almost hyper-Hermitian manifold ($T M, G, J_{1}, J_{2}$) the fundamental 2-forms ϕ_{1}, ϕ_{2} are defined by

$$
\phi_{1}(X, Y)=G\left(X, J_{1} Y\right), \quad \phi_{2}(X, Y)=G\left(X, J_{2} Y\right)
$$

where X, Y are vector fields on $T M$.

Since we have a third almost complex structure $J_{3}=J_{1} J_{2}$ which is almost Hermitian with respect to G, we can consider a third 2 -form ϕ_{3} defined by $\phi_{3}(X, Y)=$ $G\left(X, J_{3} Y\right)$, next we have the fundamental 4 form Ω, defined by

$$
\Omega=\phi_{1} \wedge \phi_{1}+\phi_{2} \wedge \phi_{2}+\phi_{3} \wedge \phi_{3}
$$

The almost hyper-Hermitian manifold $\left(T M, G, J_{1}, J_{2}\right)$ is hyper-Kählerian if the almost complex structures J_{1}, J_{2} are parallel with respect to the Levi Civita connection ∇ defined by G, i.e. $\nabla J_{1}=0, \nabla J_{2}=0$. Equivalently, $\left(T M, G, J_{1}, J_{2}\right)$ is hyperKählerian if and only if the almost hyper-complex structure (J_{1}, J_{2}) is integrable and the 4 -form Ω is closed, i.e. $N_{1}=0, N_{2}=0, d \Omega=0$. The condition for Ω to be closed is equivalent to the conditions for ϕ_{1}, ϕ_{2} (and hence for ϕ_{3} too) to be closed i.e. $d \phi_{1}=0, d \phi_{2}=0$. In our case, it is more convenient to study the conditions under which the 2 -forms ϕ_{1}, ϕ_{2} are closed.

The expressions of ϕ_{1}, ϕ_{2} in adapted local frames are

$$
\phi_{1}=\phi_{1, j k} D y^{j} \wedge d x^{k}, \quad \phi_{2}=\phi_{2, j k} D y^{j} \wedge d x^{k}
$$

where

$$
\begin{aligned}
& D y^{j}=d y^{j}+\Gamma_{i 0}^{j} d x^{i}, \\
& \phi_{1, j k}=G\left(\partial_{j}, J_{1} \delta_{k}\right)=H_{j h} J_{1} H_{k}^{h}=-J_{1} V_{j}^{h} G_{h k}, \\
& \phi_{2, j k}=G\left(\partial_{j}, J_{2} \delta_{k}\right)=H_{j h} J_{2} H_{k}^{h}=-J_{2} V_{j}^{h} G_{h k} .
\end{aligned}
$$

Replacing the expressions of $H_{j h}$ and $J_{1} H_{k}^{h}, J_{2} H_{k}^{h}$, we find the following expressions

$$
\begin{aligned}
& \phi_{1, j k}=a_{1} q_{1} g_{j k}+a_{4} q_{1} J_{j k}+\left(a_{2} q_{1}+a_{1} q_{2}+a_{4} q_{4}+2 a_{2} q_{2} t+2 a_{5} q_{4} t\right) g_{j 0} g_{k 0}+ \\
&+\left(a_{6} q_{1}-a_{4} q_{2}+a_{1} q_{4}+2 a_{6} q_{2} t+2 a_{3} q_{4} t\right) g_{j 0} J_{k 0}+ \\
&+\left(a_{5} q_{1}+a_{4} q_{3}+a_{1} q_{4}+2 a_{5} q_{3} t+2 a_{2} q_{4} t\right) J_{j 0} g_{k 0}+ \\
&+\left(-a_{3} q_{1}-a_{1} q_{3}+a_{4} q_{4}-2 a_{3} q_{3} t-2 a_{6} q_{4} t\right) J_{j 0} J_{k 0} \\
& \phi_{2, j k}=a_{4} q_{1} g_{j k}-a_{1} q_{1} J_{j k}+\left(c_{2} q_{1}+c_{4} q_{2}-a_{1} 4 q_{4}+2 c_{2} q_{2} t+2 c_{5} q_{4} t\right) g_{j 0} g_{k 0}+ \\
&+\left(c_{6} q_{1}+a_{1} q_{2}+a_{4} q_{4}+2 c_{6} q_{2} t+2 c_{3} q_{4} t\right) g_{j 0} J_{k 0}+ \\
&+\left(c_{5} q_{1}-a_{1} q_{3}+a_{4} q_{4}+2 c_{5} q_{3} t+2 c_{2} q_{4} t\right) J_{j 0} g_{k 0}+ \\
&+\left(-c_{3} q_{1}-a_{4} q_{3}-a_{1} q_{4}-2 c_{3} q_{3} t-2 c_{6} q_{4} t\right) J_{j 0} J_{k 0} .
\end{aligned}
$$

The final expressions of ϕ_{1}, ϕ_{2} are obtained by replacing the values of $q_{1}, q_{2}, q_{3}, q_{4}$ obtained from (2.5), then the values of c_{3}, c_{5}, obtained in Theorem 3. We get for $\phi_{1, j k}$ an expression of the type

$$
\phi_{1, j k}=\alpha_{1} g_{j k}+\alpha_{2} J_{j k}+\alpha_{3} J_{j k}+\alpha_{4} J_{0 j} g_{0 k}+\alpha_{5} g_{0 j} J_{0 k}+\alpha_{6} J_{0 j} J_{0 k}
$$

where $\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}, \alpha_{5}, \alpha_{6}$ are functions of t, expressed with the help of the coefficients $a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, c_{2}, c_{6}$. A similar expression is obtained for $\phi_{2, j k}$.

Now we shall compute the expression of $\mathrm{d} \phi_{1}$ by using the following formulas

$$
\mathrm{d} \alpha_{r}=\alpha_{r}^{\prime} g_{0 i} D y^{i}, \quad r=1,2,3,4,5,6, \quad \mathrm{~d} g_{j k}=\left(\Gamma_{i j}^{h} g_{h k}+\Gamma_{i k}^{h} g_{j h}\right) \mathrm{d} x^{i}
$$

$$
\begin{gathered}
\mathrm{d} g_{0 j}=\mathrm{d} g_{j 0}=g_{j i} D y^{i}+g_{0 h} \Gamma_{j i}^{h} \mathrm{~d} x^{i}, \mathrm{~d} J_{j k}=\left(\Gamma_{i j}^{h} J_{h k}+\Gamma_{i k}^{h} J_{j h}\right) \mathrm{d} x^{i} \\
\mathrm{~d} J_{j 0}=-\mathrm{d} J_{0 j}=J_{h 0} \Gamma_{j i}^{h} \mathrm{~d} x^{i}+J_{j i} D y^{i}, \quad \mathrm{~d} D y^{h}=\Gamma_{i j}^{h} D y^{i} \wedge \mathrm{~d} x^{j}+\frac{1}{2} R_{0 i j}^{h} \mathrm{~d} x^{i} \wedge \mathrm{~d} x^{j} .
\end{gathered}
$$

We get the cancellation of all terms containing $\mathrm{d} x^{i} \wedge D y^{j} \wedge \mathrm{~d} x^{k}$ in the expression of $\mathrm{d} \phi_{1}$. Next the terms containing $\mathrm{d} x^{i} \wedge \mathrm{~d} x^{j} \wedge \mathrm{~d} x^{k}$ are

$$
\frac{1}{6}\left(\phi_{1, h k} R_{0 i j}^{h}+\phi_{1, h i} R_{0 j k}^{h}+\phi_{1, h j} R_{0 k i}^{h}\right) \mathrm{d} x^{i} \wedge \mathrm{~d} x^{j} \wedge \mathrm{~d} x^{k}
$$

From the vanishing of this term and under the assumption that the base manifold (M, g, J) has constant holomorphic sectional curvature $4 c$, we get that the factors λ, μ are related by

$$
\begin{equation*}
\lambda=-\left(\frac{a_{1}^{2}+a_{4}^{2}}{c}+2 t\right) \mu \tag{2.6}
\end{equation*}
$$

Finally, assuming that this relation as, well as the integrability conditions for the almost hyper-complex structure defined by J_{1}, J_{2} are fulfilled, we get that $\alpha_{5}=\alpha_{6}=0$ and the expression of $d \phi_{1}$ becomes

$$
\mathrm{d} \phi_{1}=\left(\alpha_{1}^{\prime} g_{0 i} g_{j k}+\alpha_{2}^{\prime} g_{0 i} J_{j k}+\alpha_{3} g_{0 j} g_{k i}+\alpha_{4} g_{0 j} J_{i k}\right) D y^{i} \wedge D y^{j} \wedge \mathrm{~d} x^{k}
$$

where the coefficients $\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}$ are given by

$$
\begin{align*}
& \alpha_{1}=a_{1} \lambda, \quad \alpha_{2}=a_{4} \lambda \\
& \alpha_{3}=\frac{\lambda\left(-a_{1}^{2} a_{1}^{\prime}+a_{1}^{\prime} a_{4}^{2}-2 a_{1} a_{4} a_{4}^{\prime}+2 a_{1} c-2 a_{1}^{\prime} c t\right)}{a_{1}^{2}+a_{4}^{2}-2 c t} \tag{2.7}\\
& \alpha_{4}=\frac{\lambda\left(-2 a_{1} a_{1}^{\prime} a_{4}+a_{1}^{2} a_{4}^{\prime}-a_{4}^{\prime} a_{4}^{2}+2 a_{4} c-2 a_{4}^{\prime} c t\right)}{a_{1}^{2}+a_{4}^{2}-2 c t}
\end{align*}
$$

Doing the necessary alternation in the relation $\mathrm{d} \phi_{1}=0$, we get the equations

$$
\alpha_{1}^{\prime}=\alpha_{3}, \quad \alpha_{2}^{\prime}=\alpha_{4} .
$$

Then, after some simple computations, we obtain that the coefficients λ, μ are given by

$$
\lambda=\frac{k}{a_{1}^{2}+a_{4}^{2}-2 c t}, \quad \mu=\frac{-c k}{\left(a_{1}^{2}+a_{4}^{2}\right)^{2}-4 c^{2} t^{2}}
$$

where k is a constant.
Under the same assumptions that the relation (2.6) is true and that the integrability conditions for the almost hyper-complex structure defined by J_{1}, J_{2} are fulfilled, we get the following expression expression for the 2 -form ϕ_{2}

$$
\phi_{2}=\left(\alpha_{2} g_{j k}-\alpha_{1} J_{j k}+\alpha_{4} g_{0 j} g_{0 k}-\alpha_{3} g_{0 j} J_{0 k}\right) D y^{j} \wedge d x^{k}
$$

If $d \phi_{1}=0$ we have that $d \phi_{2}=0$ too, so that the structure $\left(G, J_{1}, J_{2}\right)$ on $T M$ becomes Kählerian. We write down the explicit expressions of the coefficients involved in the expressions of $\left(G, J_{1}, J_{2}\right)$. First of all, from the integrability condition $N_{1}=0$, we get

$$
\begin{equation*}
a_{2}=\frac{a_{1}\left(a_{1} a_{1}^{\prime}+a_{4} a_{4}^{\prime}-c\right)}{a_{1}^{2}+a_{4}^{2}-2 a_{1} a_{1}^{\prime} t-2 a_{4} a_{4}^{\prime} t}, a_{3}=\frac{a_{1}^{\prime} a_{4}^{2}-a_{1} a_{4} a_{4}^{\prime}+a_{1} c-2 a_{1}^{\prime} c t}{a_{1}^{2}+a_{4}^{2}-2 a_{1} a_{1}^{\prime} t-2 a_{4} a_{4}^{\prime} t} \tag{2.8}
\end{equation*}
$$

$$
a_{5}=\frac{-a_{1} a_{1}^{\prime} a_{4}+a_{1}^{2} a_{4}^{\prime}+a_{4} c-2 a_{4}^{\prime} c t}{a_{1}^{2}+a_{4}^{2}-2 a_{1} a_{1}^{\prime} t-2 a_{4} a_{4}^{\prime} t}, a_{6}=\frac{-a_{4}\left(a_{1} a_{1}^{\prime}+a_{4} a_{4}^{\prime}-c\right)}{a_{1}^{2}+a_{4}^{2}-2 a_{1} a_{1}^{\prime} t-2 a_{4} a_{4}^{\prime} t} .
$$

The values of $c_{2}, c_{3}, c_{5}, c_{6}$ are given by (1.12). Next we have

$$
\begin{gather*}
p_{1}=\frac{k\left(a_{1}^{2}+a_{4}^{2}\right)}{a_{1}^{2}+a_{4}^{2}-2 c t}, p_{2}=p_{3}=\frac{c k}{a_{1}^{2}+a_{4}^{2}-2 c t}, p_{4}=0 \tag{2.9}\\
q_{1}=\lambda=\frac{k}{a_{1}^{2}+a_{4}^{2}-2 c t}, q_{3}=\mu=\frac{-c k}{\left(a_{1}^{2}+a_{4}^{2}\right)^{2}-4 c^{2} t^{2}}, q_{4}=\frac{k\left(a_{1}^{\prime} a_{4}-a_{1} a_{4}^{\prime}\right)}{\left(a_{1}^{2}+a_{4}^{2}\right)^{2}-4 c^{2} t^{2}} .
\end{gather*}
$$

The expression of q_{2} is quite complicate and can be obtained from (2.5). Hence we may state

Theorem 5. Consider the almost hyper-Hermitian structure (G, J_{1}, J_{2}) defined as above on the tangent bundle TM of the Kählerian manifold M. This structure is hyper-Kählerian if and only if the almost complex structures J_{1}, J_{2} are integrable (hence the Proposition 4 and the relations (1.9), (1.10), (1.11), (1.12) are fulfilled) and and the relations (2.6), (2.7), (2.8), (2.9) are fulfilled by the hyper-Hermitian metric G.

The case where $a_{4}=0$

We shall study a special case when $a_{4}=0$. In this case we shall obtain some much more simple formulas and results and many of them are related to those obtained in [19], [20]. However, our parametrization is quite different.

Since the integrability conditions for the almost complex structure J_{1} we get that the condition $a_{4}=0$ implies the conditions $a_{5}=0, a_{6}=0$. We are interested in the integrable case, so that we shall assume from the beginning $a_{4}=a_{5}=a_{6}=0$. According to the result obtained in Proposition 2, the tensor field J_{1} defines almost complex structure on $T M$ if and only if

$$
\left\{\begin{array}{l}
b_{1}=\frac{1}{a_{1}}, b_{2}=-\frac{a_{2}}{a_{1}\left(a_{1}+2 a_{2} t\right)}, b_{3}=-\frac{a_{3}}{a_{1}\left(a_{1}+2 a_{3} t\right)}, \tag{2.10}\\
b_{4}=0, \quad b_{5}=0, \quad b_{6}=0
\end{array}\right.
$$

he integrability condition for J_{1} gives

$$
\begin{equation*}
a_{2}=\frac{a_{1} a_{1}^{\prime}-c}{a_{1}-2 a_{1}^{\prime} t}, a_{3}=\frac{c}{a_{1}} \tag{2.11}
\end{equation*}
$$

Next, from (1.5), (1.6), the Theorem 3 and the integrability conditions for J_{2}, we get

$$
\left\{\begin{array}{lll}
c_{1}=0, & c_{2}=0, & c_{3}=0, \tag{2.12}\\
c_{4}=-a_{1}, c_{5}=\frac{-c}{a_{1}}, \quad c_{6}=\frac{a_{1} a_{1}^{\prime}-c}{a_{1}-2 a_{1}^{\prime} t} \\
d_{1}=0, & d_{2}=0, \quad d_{3}=0, \quad d_{4}=\frac{1}{a_{1}}, d_{5}=\frac{c-a_{1} a_{1}^{\prime}}{a_{1}\left(a_{1}^{2}-2 c t\right)}, \quad d_{6}=\frac{c}{a_{1}\left(a_{1}^{2}+2 c t\right) .}
\end{array}\right.
$$

Finally, in the case where $\left(T M, G, J_{1}, J_{2}\right)$ is hyper-Kähler, we have

$$
\left\{\begin{array}{l}
p_{1}=\frac{k a_{1}^{2}}{a_{1}^{2}-2 c t}, p_{2}=\frac{c k}{a_{1}^{2}-2 c t}, p_{3}=\frac{c k}{a_{1}^{2}-2 c t}, p_{4}=0 \tag{2.13}\\
q_{1}=\frac{k}{a_{1}^{2}-2 c t}, q_{1}+2 q_{2} t=\frac{k\left(a_{1}-2 a_{1}^{\prime} t\right)^{2}\left(a_{1}^{2}+2 c t\right)}{\left(a_{1}^{2}-2 c t\right)^{3}}, q_{3}=\frac{-c k}{a_{1}^{4}-4 c^{2} t^{2}}, q_{4}=0
\end{array}\right.
$$

Hence we may state
Theorem 6. In the case where $a_{4}=0$, the almost hyper-Hermitian structure $\left(G, J_{1}, J_{2}\right)$ defined on the tangent bundle TM becomes hyper-Kählerian if the conditions (2.10)-(2.13) are fulfilled.

References

[1] L. Bejan, V. Oproiu, Tangent bundles of quasi-constant holomorphic sectional curvatures, Balkan J. Geom. Appl. 11, 1 (2006), 11-22.
[2] I. Burdujan, Clifford-Kahler manifolds, Balkan J. Geom. Appl., 13, 2 (2008), 12-23.
[3] S. L. Druţă, Kahler-Einstein structures of general natural lifted type on the cotangent bundles, Balkan J. Geom. Appl. 14, 1 (2009), 30-39.
[4] S. L. Druţă, V. Oproiu, General natural Kähler structures of constant holomorphic sectional curvature on tangent bundles, An. St. Univ. "Al.I.Cuza" Iasi, Matematica, 53 (2007), 149-166.
[5] C. Eni, A pseudo-Riemannian metric on the tangent bundle of a Riemannian manifold, Balkan J. Geom. Appl. 13, 2 (2008), 35-42.
[6] A. Gray, L.M. Hervella, The sixteen classes of almost Hermitian manifolds and their linear invariants, Ann. di Mat. Pura ed Applic, (IV), 123 (1980), 35-58.
[7] I. Kolář, P. Michor, J. Slovak, Natural Operations in Differential Geometry, Springer Verlag, Berlin 1993.
[8] O. Kowalski, M. Sekizawa, Natural transformations of Riemannian metrics on manifolds to metrics on tangent bundles - a classification, Bull. Tokyo Gakugei Univ. (4), 40 (1988), 1-29.
[9] D. Krupka, J. Janyška, Lectures on Differential Invariants, Folia Fac. Sci. Nat. Univ. Purkinianae Brunensis, 1990.
[10] K.P. Mok, E.M. Patterson, Y.C. Wong, Structure of symmetric tensors of type $(0,2)$ and tensors of type $(1,1)$ on the tangent bundle, Trans. Amer. Math. Soc. 234 (1977), 253-278.
[11] V. Oproiu, A locally symmetric Kaehler Einstein structure on the tangent bundle of a space form, Beiträge Algebra Geom. 40 (1999), 363-372.
[12] V. Oproiu, A Kähler Einstein structure on the tangent bundle of a space form, Int. J. Math. Math. Sci. 25 (2001), 183-195.
[13] V. Oproiu, Some new geometric structures on the tangent bundles, Public. Math. Debrecen. 55 (1999), 261-281.
[14] V. Oproiu, A generalization of natural almost Hermitian structures on the tangent bundles, Math. J. Toyama Univ. 22 (1999), 1-14.
[15] V. Oproiu, General natural almost Hermitian and anti-Hermitian structures on the tangent bundles, Bull. Soc. Sci. Math. Roum. 43 (91), (2000), 325-340.
[16] V. Oproiu, N. Papaghiuc, Some examples of almost complex manifolds with Norden metric, Publ. Math. Debrecen 41 (1992), 199-211.
[17] V. Oproiu, N. Papaghiuc, A Kaehler structure on the nonzero tangent bundle of a space form, Differential Geom. Appl. 11 (1999), 1-12.
[18] V. Oproiu, N. Papaghiuc, A locally symmetric Kaehler Einstein structure on a tube in the tangent bundle of a space form, Revue Roumaine Math. Pures Appl. 45 (2000), 863-871.
[19] M. Tahara, S. Marchiafava, Y. Watanabe, Quaternion Kähler structures on the tangent bundle of a complex space form, Rend. Instit. Mat. Univ. Trieste, Suppl. Vol 30 (1999), 163-175.
[20] M. Tahara, L. Vanhecke, Y. Watanabe, New structures on tangent bundles, Note di Matematica Lecce), 18 (1998), 131-141.
[21] M. Tahara, Y. Watanabe, Natural almost Hermitian, Hermitian and Kähler metrics on the tangent bundles, Math. J. Toyama Univ. 20 (1997), 149-160.

Author's address:
V.Oproiu

Faculty of Mathematics, University "Al.I.Cuza", Iaşi, Romania.
Institute of Mathematics "O.Mayer",
Iaşi Branch of the Romanian Academy, România.
E-mail: voproiu@uaic.ro

[^0]: Balkan Journal of Geometry and Its Applications, Vol.15, No.1, 2010, pp. 104-119.
 (C) Balkan Society of Geometers, Geometry Balkan Press 2010.

