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Abstract. In this article we find upper and lower bounds for the slope of
genus g hyperelliptic Lefschetz fibrations. We demonstrate the connection
between the slope of genus g hyperelliptic Lefschetz fibrations and the
number of separating vanishing cycles: we show that λ > 4 − 4/g if and
only if the fibration contains separating vanishing cycles. We also improve
the existing bound on s/n, the ratio of number of separating vanishing
cycles to the number of non-separating vanishing cycles, for hyperelliptic
Lefschetz fibrations of genus g ≥ 2. In particular we show that s < n
when g ≥ 6.

M.S.C. 2010: 57M07, 57R17, 20F38.
Key words: low dimensional topology; symplectic topology; mapping class group:
Lefschetz fibration; vanishing cycle; slope.

1 Introduction

A Lefschetz fibration over S2 is a smooth map f : X → S2 from a compact, connected,
oriented, smooth 4- manifold X with the following properties :

1. f has finitely many critical values q1, q2, . . . , qk in S2,

2. each of the preimages f−1(q1), f−1(q2), . . . , f−1(qk) consists of exactly one crit-
ical point, say p1, p2, . . . , pk in X,

3. around each of the points p1, p2, . . . , pk and q1, q2, . . . , qk there are local charts,
agreeing with the orientations of X and S2, on which f is locally given as
(z1, z2) 7→ z2

1 + z2
2 in complex coordinates.

The fibers over B = {q1, q2, . . . , qk} are called singular fibers. The points in S2 \ B
are called regular values and the fibers over them are called regular fibers. It’s a con-
sequence of this definition that the restriction of f to f−1

(
S2 \B

)
is a fiber bundle

over S2 \ B with fibers diffeomorphic to Σg, a compact, connected, oriented surface
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of genus g. We also refer to g as the genus of the fibration f : X 7−→ S2, [8].

The monodromy around each of the singular fibers is given by a positive Dehn
twist about a simple closed curve in Σg, which is called a vanishing cycle. A vanishing
cycle is a simple closed curve on regular fibers that collapses to a point on a singular
fiber as one gets near a critical point. Choosing a reference point q∗ ∈ S2 \B one can
characterize the fibration f by its monodromy homomorphism

(1.1) ψ : π1

(
S2 \B

) 7−→Mg,

where Mg = π0

(
Diff+ (Σg)

)
is the mapping class group of Σg, [1, 5] .

We can assume that each vanishing cycle is homotopically nontrivial because we
can eliminate those that are trivial by blowing down the fibration to obtain another
one that is relatively minimal,[4, 5, 8]. We call a vanishing cycle γ nonseparating if
Σg \ γ is connected. Otherwise we call it separating.

γ

Σ2

γ

Σ2

nonseparating separating

Figure 1: A separating and a nonseparating vanishing cycle on Σ2

f

D
qk q2 q1

Figure 2: Fibration restricted to D ⊂ S2

It’s possible to arrange the critical points of f : X 7−→ S2 in such a way that they
are distinct and each singular fiber contains only one of them as we assumed in the
definition of Lefschetz fibration. Let’s now take a disc D within S2 including the set
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of critical values B and restrict the fibration to f−1(D), [4]. The crucial information
about the fibration lies over this part of S2, Figure (2).

Let’s define now the monodromy homomorphism in (1.1) explicitly.
Let q∗ be a regular value in D and choose α1, α2, . . . , αk in D as the generators

of π1

(
S2 \B

)
as shown in Figure 3. As we go around q1 along α1 a smooth fiber

bundle over α1 with fiber Σg is formed and the way we identify the fibers over the
inital and final points of α1, both of which are q∗, with a model surface Σg gives
us a diffeomorphism of Σg. The isotopy class of this map is an element of Mg by
definition. It turns out that this mapping class is realized by a positive Dehn twist
about a (homotopically) nontrivial simple closed curve in Σg, call it γ1. Let’s denote
the Dehn twist about γ1 by Dγ1 .

We do the same for α2 and obtain another element of Mg, call it Dγ2 . It’s not
difficult to see that the map ψ in (1.1) respects composition both in the domain and
in the range and we have

(1.2) ψ ([α1 ∗ α2]) = ψ([α1] ∗ [α2]) = ψ([α1])ψ([α2]) = Dγ2Dγ1 .

q1

q2
qk

q∗

α1

α2

αk

∂D

Figure 3: Generators of π1

(
S2 \B

)

Strictly speaking, the last equality in (1.2) must have Dγ1Dγ2 on the right hand
side but it’s customary to compose elements of the mapping class group from right
to left. Therefore it shouldn’t cause a problem as long as we keep that little detail
in mind. Continuing the same way until we go around the last critical value qk and
composing along we obtain

(1.3) ψ ([α1 ∗ α2 ∗ · · ·αk]) = Dγk
· · ·Dγ2Dγ1 .

It’s clear from Figure 3 that [α1 ∗ α2 ∗ · · ·αk] = [∂D] in π1

(
S2 \B

)
and [∂D] = Id in

π1

(
S2 \B

)
; therefore we have Dγk

· · ·Dγ2Dγ1 = Id in Mg. This shows that a genus
g Lefschetz fibration over S2 gives us a word that is equal to identity in the mapping
class group of the fiber Σg. The converse is also true: Every such word that is equal
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to identity in the mapping class group of Σg defines a Σg fibration over S2.

It’s important to note two things here: First one is, this correspondence is not
one-to-one. In order to have a one-to-one correspondence we have to consider equiv-
alence classes of Lefschetz fibrations and words in the mapping class group. On one
side we have isomorphism classes of genus g Lefschetz fibrations and on the other side
we have equivalence classes of words with positive exponents that are equal to iden-
tity in Mg. Two such words in Mg are equivalent if it’s possible to obtain one from
the other through cyclic permutation of the twists Dγi

, conjugating the word by an
element of Mg, or through elementary transformations such as replacing Dγi+1Dγi

by

Dγi+1

(
D−1

γi+1
Dγi

Dγi+1

)
, [4, 5, 8]. The correspondence between isomorphism classes

of Lefschetz fibrations and equivalence classes of words in the mapping class group as
defined above would be one-to-one. Secondly the words in the mapping class group
must carry only positive exponents. It’s due to orientation preserving condition for the
charts in the definition of Lefschetz fibrations that we allow only positive Dehn twists.
If we relax the definition to allow orientation reversing ones then the 4-manifold X can
no longer be shown to be symplectic, [4]. One of the goals that we seek in studying
Lefschetz fibrations is to obtain information about symplectic 4-manifolds because
Lefschetz fibrations are roughly topological descriptions of symplectic 4- manifolds
due to the companion theorems of Donaldson and Gompf, [4, 5]. The reader is re-
ferred to [5] for a thorough review of Lefschetz fibrations and symplectic 4-manifolds.

All Lefschetz fibrations throughout this article are assumed to have genus g ≥ 2
fibering over S2. It’s known that the 4- manifold X in the definition of Lefschetz
fibration carries an almost complex structure, [5]; therefore it makes sense to define
its holomorphic Euler characteristic χh and first Chern class c1. Let

(1.4) χh :=
1
4

(σ + e) and c2
1 := 2e + 3σ,

where e is the Euler characteristic and σ is the signature of the 4- manifold X. The
slope λf of a fibration f : X 7−→ S2 is defined as λf := K2

f/χf , where

(1.5) K2
f := c2

1 + 8(g − 1) and χf := χh + g − 1.

It is known that
λf ≥ 4− 4

g

for a relatively minimal holomorphic genus g Lefschetz fibration, and this bound
is sharp since all of the known hyperelliptic Lefschetz fibrations over S2 with no
separating vanishing cycle satisfy λf = 4−4/g [10]. For example consider the words

(
c1c2 · · · c2

2g+1 · · · c2c1

)2
= 1

(c2g · · · c2c1)
4g+2 = 1

(c2g+1 · · · c2c1)
2g+2 = 1

(1.6)

in the hyperelliptic mapping class group Hg.
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c1

c2

c3

c4

c5

c6 c2g

c2g+1

Figure 4: Generators of hyperelliptic mapping class group

Let X1, X2, X3 be the Lefschetz fibrations defined by those words, respectively.
The Euler characteristic of each of these 4-manifolds can be computed using the
formula

(1.7) e(X) = 2(2− 2g) + µ,

where µ is the number of singular fibers, which is equal to the number of twists, [4].
(Here we don’t make a distinction between the simple closed curves ci and the Dehn
twists about them in order to keep the notation simple ) Therefore

e(X1) = 2(2− 2g) + 4(2g + 1) = 4g + 8

e(X2) = 2(2− 2g) + 2g(4g + 2) = 8g2 + 4

e(X3) = 2(2− 2g) + (2g + 1)(2g + 2) = 4g2 + 2g + 6.

For hyperelliptic Lefschetz fibrations, ”local signature” formulas have been computed
by Endo, [3]. The ”local contribution” of a nonseparating vanishing cycle to the

signature is − g + 1
2g + 1

. Therefore we can compute the signatures of X1, X2, X3 as

σ(X1) = − g + 1
2g + 1

· 4(2g + 1) = −4(g + 1)

σ(X2) = − g + 1
2g + 1

· 2g(4g + 2) = −4g(g + 1)

σ(X3) = − g + 1
2g + 1

· (2g + 1)(2g + 2) = −2(g + 1)2.

Using (1.4) we obtain

(χh(X1), c2
1(X1)) = (1, 4− 4g)

(χh(X2), c2
1(X2)) = (g2 − g + 1, 4g2 − 12g + 8)

(χh(X2), c2
1(X2)) = (

1
2
g2 − 1

2
g + 1, 2g2 − 8g + 6).

When we compute the slopes of each of these three fibrations using (1.5) we see that
they are all equal to 4− 4/g.

Monden gave examples of nonholomorphic Lefschetz fibrations violating the bound
λf ≥ 4− 4/g by using inverse lantern substitution to lower the slope, [7]. The reader
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is also referred to [7] for a short list of articles where more examples of Lefschetz
fibrations proven to be nonholomorphic using various techniques can be found.

We will write λ instead of λf throughout this article for simplicity. The connection
between λ and the number of separating vanishing cycles in an hyperelliptic Lefschetz
fibration seems to be unaccounted for in the literature. In the next section we will
prove Theorem 2.2 that reveals this connection.

Let s be the number of separating vanishing cycles and n be the number of those
that are non-separating. Recall that a Lefschetz fibration over S2 can not contain
only separating vanishing cycles, (Corollary 8, [8]). Therefore Theorem 2.2 should
be understood as a fibration containing a mixture of separating and non-separating
vanishing cycles.

An interesting quantity that is worth calculating at this point is the proportion
of the number of separating cycles within a fibration, in particular its ratio to the
number of non-separating vanishing cycles,

s

n
. We do not find any estimates in the

literature on this ratio except for
s

n
≤ 5(1.8)

due to A.Stipsicz, [9], and
s

n
≤ 5− 6

g

n
(1.9)

for Lefschetz pencils due to V. Braungardt and D. Kotschick, [2]. We’ll assume that
n > 0 throughout this article. Therefore s/n is always defined. Let rg := s/n for a
Lefschetz fibration of genus g. There isn’t enough evidence to justify that the bounds
(1.8) and (1.9) could actually be sharp. On the contrary, all of the known examples
suggest that rg should not be too high. In this article we will improve the bound on
rg for hyperelliptic Lefschetz fibrations and prove

Theorem 1.1. For an hyperelliptic Lefschetz fibration of genus g ≥ 2 we have

rg ≤ 3g + 2
4 (g − 1)

− 2g + 1
n(g − 1)

.

We will also prove

Theorem 1.2. For a relatively minimal holomorphic Lefschetz fibration of genus
g ≥ 2 we have

rg ≤ 3 +
2
g
− 4

n
− 2

ng
.

2 Main Section

The signature of a genus g hyperelliptic Lefschetz fibration X → S2 is given by

σ = − g + 1
2g + 1

n +
[g/2]∑

h=1

4h (g − h) sh

2g + 1
− s,
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where sh is the number of separating vanishing cycles which separate the surface into

two components one with genus h ≤
[g

2

]
and s =

[g/2]∑

h=1

sh, [3]. Let

x =
[g/2]∑

h=1

h (g − h) sh.

The other invariants of X that will be used throughout this article are:
Euler characteristic

e = n + s− 4 (g − 1) ,

using (1.7), holomorphic Euler characteristic

χh =
1
4

(e + σ) =
1
4

(
n + s− 4 (g − 1)− g + 1

2g + 1
n +

4x

2g + 1
− s

)

=
ng + 4x

4 (2g + 1)
− (g − 1),(2.1)

and square of the first Chern class c2
1

c2
1 = 2e + 3σ = 2 (n + s− 4 (g − 1)) + 3

(
− g + 1

2g + 1
n +

4x

2g + 1
− s

)

= 2n− s− 8 (g − 1)− 3
g + 1
2g + 1

n +
12x

2g + 1
,

where s is the number of separating vanishing cycles and n is the number of non-
separating vanishing cycles.

Lemma 2.1. sg ≤ 2x for g ≥ 2.

Proof. It’s not difficult to see that s(g − 1) ≤ x by definition of x and s. Therefore

s ≤ x

g − 1
and sg ≤ gx

g − 1
.

The proof follows from the fact that
g

g − 1
≤ 2 for g ≥ 2. ¤

We will use this lemma to prove the theorem that shows the connection between
λ and s :

Theorem 2.2. A genus g hyperelliptic Lefschetz fibration X → S2 satisfies λ > 4− 4
g

if and only if s 6= 0, i.e., it contains separating vanishing cycles.

Proof. The slope λ of the fibration is given as

λ =
c2
1 + 8 (g − 1)
χh + (g − 1)

=
2n− s− 3 g+1

2g+1n + 12x
2g+1

ng+4x
4(2g+1)

= 4
n (g − 1)− s (2g + 1) + 12x

ng + 4x
.(2.2)
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Assume s 6= 0. Then x 6= 0 and we have

λ− (4− 4/g) = 4
n (g − 1)− s (2g + 1) + 12x

ng + 4x
− 4 + 4/g

= 4
−2sg2 − sg + 8gx + 4x

(ng + 4x) g
= 4

(2g + 1) (4x− sg)
(ng + 4x) g

> 0,

because 4x > sg by Lemma 2.1. and all other factors are positive. Therefore λ− (4−
4/g) = 0 if and only if 4x = sg; i.e., if and only if s = 0. ¤

Note that if every fiber is smooth then λ = 12, otherwise λ < 12, [10].

Proposition 2.3. For a genus g Lefschetz fibration the slope is given by

λ = 12− n + s

χh + g − 1
.(2.3)

Proof. By definition

λ =
c2
1 + 8 (g − 1)
χh + g − 1

=
12χh − e + 8 (g − 1)

χh + g − 1

=
12χh + 12g − 12− e− 4 (g − 1)

χh + g − 1

= 12 +
− (n + s− 4 (g − 1))− 4 (g − 1)

χh + g − 1

= 12− n + s

χh + g − 1

¤

Remark 2.1. Using χh =
1
4

(e + σ) =
1
4

(n + s− 4 (g − 1) + σ) , we can substitute

σ + n + s = 4 (χh + g − 1)(2.4)

in (2.3), in order to obtain

λ = 12− 4
n + s

σ + n + s
= 12− 4

1 + σ
n+s

.(2.5)

Solving the first equality for σ gives

σ =
λ− 8
12− λ

(n + s) , i.e.,
σ

n + s
=

λ− 8
12− λ

,(2.6)

which relates the signature of a Lefschetz fibration to the total number of vanishing
cycles through scalar multiplication and the average signature σ

n+s per vanishing cycle
to the slope. In particular σ > 0 corresponds to λ > 8 and σ < 0 corresponds to
λ < 8 just as c2

1 > 8χh and c2
1 < 8χh correspond to σ > 0 and σ < 0 , respectively.
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Remark 2.2. When λ = 10 the average signature
σ

n + s
must be 1. This can never

happen because the signature contribution of each vanishing cycle is either -1, or
0, or +1 and according to the handlebody decomposition of Lefschetz fibrations the
first handle attached along the first vanishing cycle, which can be arranged to be a
non-separating one by cyclically permuting, will always result in a 4- manifold with
0 signature, [8]. Therefore σ

n+s < 1. This proves

Proposition 2.4. The slope of a Lefschetz fibration satisfies λ < 10.

Corollary 2.5. A genus g Lefschetz fibration satisfies the bound c2
1 < 10χh + 2g− 2.

More is true if the Lefschetz fibration is hyperelliptic:

Proposition 2.6. For a genus g hyperelliptic Lefschetz fibration we have

(2.7) λ ≤ 10− 2 + s

χh + g − 1
.

Proof. First we estimate χh as

χh =
1
4

(σ + e) =
1
4


− g + 1

2g + 1
n +

[g/2]∑

h=1

4h (g − h) sh

2g + 1
− s + n + s− 4 (g − 1)




≤ 1
4

(
ng

2g + 1
+

4 g
2

(
g − g

2

)
s

2g + 1
− 4 (g − 1)

)

=
1
4

ng

2g + 1
+

1
4

sg2

2g + 1
− (g − 1) := M,(2.8)

using the fact that h(g − h) ≤ g
2 (g − g

2 ) and
∑[g/2]

h=1 sh = s. Now, use this to write
Euler characteristic as

e = n + s− 4 (g − 1)

=
4 (2g + 1)

g

(
1
4

ng

2g + 1
+

1
4

sg2

2g + 1
− (g − 1)

)
+ (1− g) s + 4g − 4

g

=
4 (2g + 1)

g
M + (1− g) s + 4g − 4

g
.(2.9)

The estimate

σ ≤ n− s− 4 = n + s− 4 (g − 1)− 2s + 4 (g − 2) = e− 2s + 4 (g − 2) ,

(Corollary 9, [8]), can be used to write

χh =
1
4

(σ + e) ≤ 1
4

(e− 2s + 4 (g − 2) + e) =
1
2
e− 1

2
s + g − 2,(2.10)

and using (2.9) we obtain

χh ≤ 1
2

(
4 (2g + 1)

g
M + (1− g) s + 4g − 4

g

)
− 1

2
s + g − 2

= 2
2g + 1

g
M − 1

2
sg + 3g − 2− 2

g
.
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We will solve this for sg

sg ≤ 4
2g + 1

g
M − 2χh + 6g − 4− 4

g

and use it in estimating

c2
1 = 12χh − e = 12χh −

(
4 (2g + 1)

g
M + (1− g) s + 4g − 4

g

)

= 12χh − 4
2g + 1

g
M + (g − 1) s− 4g +

4
g

≤ 12χh − 4
2g + 1

g
M + 4

2g + 1
g

M − 2χh + 6g − 4− 4
g
− s− 4g +

4
g

= 10χh + 2g − 4− s.

Now,

λ =
c2
1 + 8 (g − 1)
χh + g − 1

≤ 10χh + 2g − 4− s + 8 (g − 1)
χh + g − 1

=
10χh + 10g − 10− 2− s

χh + g − 1
,

and we have

λ ≤ 10− 2 + s

χh + g − 1
.

¤

For hyperelliptic Lefschetz fibrations we can do even better:

Proposition 2.7. The slope of an hyperelliptic genus g Lefschetz fibration satisfies

4
g − 1

g
+

4s (2g + 1) (3g − 4)
(ng + 4s (g − 1)) g

≤ λ ≤ 10− 2
2 + s

n− 2
.(2.11)

Proof. The signature satisfies the bound

σ = − g + 1
2g + 1

n +
4x

2g + 1
− s ≥ − g + 1

2g + 1
n +

4s(g − 1)
2g + 1

− s = − g + 1
2g + 1

n +
2g − 5
2g + 1

s,

because s(g − 1) ≤ x by definition of x and s. Now, using (2.6) we can write

− g + 1
2g + 1

n +
2g − 5
2g + 1

s ≤ − 8− λ

12− λ
(n + s) ,

and solving this for λ gives the first inequality. To prove the second inequality we
begin with the fact that χh +g−1 > 0, as we can see it from (2.4) because |σ| < n+s
(see Remark 2.2 above or Corollary 9 in [8] ). Also using (2.10) we can write

χh ≤ 1
2
e− 1

2
s + g − 2 =

1
2

(n + s− 4 (g − 1))− 1
2
s + g − 2 =

1
2
n− g,

which can be rewritten as
− 1

χh + g − 1
≤ −2

n− 2
.

Now, adding 10 to both sides after multiplying by 2 + s proves the second inequality
thanks to Proposition 2.6. ¤
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Remark 2.3. We wrote (2.11) in that particular form instead of simplifying it in order
to emphasize the fact that it is another proof for Theorem 2.2 and that 4− 4

g ≤ λ < 10
for hyperelliptic Lefschetz fibrations.

Proof. (of Theorem 1.1) Using the bound σ ≤ n − s − 4 (Corollary 9, [8]) we get
1
4

(n− s− σ) ≥ 1. Then

1
4

(n− s− σ) =
1
4

(
n− s−

(
− g + 1

2g + 1
n +

4x

2g + 1
− s

))
=

1
4

(3g + 2) n− 4x

2g + 1

gives

1 ≤ 1
4

(3g + 2) n− 4x

2g + 1
, i.e., x ≤ 1

4
n (3g + 2)− (2g + 1) .

Using the estimate (g − 1)s ≤ x one more time, we have

(g − 1) s ≤ 1
4
n (3g + 2)− (2g + 1) .

Dividing through by n(g − 1) gives

r =
s

n
≤ 3g + 2

4 (g − 1)
− 2g + 1

n (g − 1)
.

¤

Corollary 2.8. For an hyperelliptic Lefschetz fibration of genus g ≥ 6 we have s < n.

Remark 2.4. One can prove Theorem 1.1 by solving

4
g − 1

g
+

4s (2g + 1) (3g − 4)
(ng + 4s (g − 1)) g

≤ 10− 2
2 + s

n− 2

for
s

n
as well, (2.11). Also, solving

λ = 12− 4
n + s

n + s + σ
≤ 10− 2

2 + s

n− 2

for σ results in σ ≤ n − s − 4, which is another proof for Proposition 2.6 thanks to
(Corollary 9, [8]). Finally, solving

4
g − 1

g
≤ λ = 12− 4

1 + σ
n+s

for
σ

n + s
gives

(2.12)
σ

n + s
≥ − g + 1

2g + 1
,

which shows that the average signature per vanishing cycle is at least − g + 1
2g + 1

for

relatively minimal holomorphic Lefschetz fibrations. For hyperelliptic Lefschetz fibra-
tions equality holds when s = 0, [3], and it’s strict inequality when s > 0 by virtue of
Theorem 2.2.
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Note that violating the bound λ ≥ 4 − 4/g is equivalent to violating the average
signature bound in (2.12). In other words the average signature bound (2.12) can
be used as a simple tool to prove that a Lefschetz fibration is nonholomorphic. Xiao
conjectured that λ > 4 − 4/g for non-hyperelliptic holomorphic Lefschetz fibrations
which was proved for some low genus by Konno, [6].

Now we will prove Theorem 1.2 using (2.12).

Proof. (of Theorem 1.2) By Corollary 7 in [8] we have σ ≤ n − s. Since we assume
n > 0 we can conclude that σ ≤ n− s− 2, [9]. Combining this with (2.12) we get

− g + 1
2g + 1

≤ σ

n + s
≤ n− s− 2

n + s
.

Solving for s/n yields rg ≤ 3 +
2
g
− 4

n
− 2

gn
. ¤
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