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Abstract. The geometry of the second order osculating bundle Osc2M ,
is in many cases determined by its spray and the associated nonlinear
connection. For a Banach manifold M , we firstly endow Osc2M with a
fiber bundle structure over M . Three different concepts which are used in
many finite dimensional literatures, that is the horizontal distributions,
nonlinear connections and sprays are studied in detail and their close
interaction is revealed. Moreover we propose a special lift for a connection
on the base manifold to Osc2M .
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1 Introduction

The second-order osculator bundle of a smooth Banach manifold M , denoted by
Osc2M , consists of the space of all equivalence classes of curves on M which agree up
to their accelerations. This natural extension of the tangent bundle TM was studied
by numerous authors in finite and infinite dimensional cases ([1], [6], [3], [7], etc.).

There are two different approaches in higher order geometry literatures. The first
one considers Osc2M as a fibre bundle over M , and the research mainly focuses on
the study of Lagrangians, Finsler structure, second order differential equations, sprays
and prolongations on Osc2M . This approach includes many references which consider
finite dimensional manifolds ([1], [2], [6] and their references). The second approach
includes those works which introduce the second order tangent bundle as a vector
bundle over M and is the subject of study for both finite and infinite dimensional
cases ([3], [4], [7]).

As a part of a continuous research in higher order geometry, we shall extend the
first framework to the infinite dimensional case of Banach manifolds. Moreover our
results are susceptible to be extended to the non-Banach case. However a connec-
tion between the two approaches appeared in [8] and reveals the necessity of further
research on this subject.
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In the present paper, we first endow Osc2M with a Banach manifold structure
which simultaneously offers a fibre bundle structure for π : Osc2M −→ M . Then
we deal with different geometric tools, mainly related to connections, on this bundle.
We first introduce the notion of horizontal distribution on Osc2M , and further the
connection maps as well as their correspondence with horizontal distributions and
nonlinear connections.

The next part deals with sprays on Osc2M . For a Banach manifold we define
the concept of the 2-spray as a vector field on Osc2M that obeys a special condition
determined by the Liouville vector field and a 2-tangent structure. The local behav-
ior of a 2-spray and its relation with connection maps (and consequently nonlinear
connections) are subsequently studied in detail. We finally introduce a special way
to lift connections from the base manifold M to Osc2M . All the maps and mani-
folds are assumed to be C∞. However, if necessary, we may suppose less degrees of
differentiability. Moreover, whether a partition of unity is needed, we consider our
manifolds to be partitionable (see also [7]).

2 Preliminaries

Let M be a manifold modeled on a Banach space E. For x ∈ M define

Cx := {f | f : (−ε, ε) −→ M ; f is smooth and f(0) = x}.
As a natural extension of the tangent bundle define the following equivalence relation.
The curves f, g ∈ Cx are said to be 2-equivalent iff f ′(0) = g′(0) and f ′′(0) = g′′(0)
and we write f ≈x g. Define Osc2

xM := Cx/ ≈x and the second osculating bundle of
M to be Osc2M :=

⋃
x∈M Osc2

xM . Denote the representative of the equivalence class
containing f with [f ]x and the canonical projection π : Osc2M −→ M which sends
[f ]x to x.

Let A = {(Uα, ψα)}α∈I be a C∞ atlas for M . For any α ∈ I define

Ψα : π−1(Uα) −→ Uα × E× E[γ]x0 7−→
(
(ψα ◦ γ)(0), (ψα ◦ γ)′(0),

1
2
(ψα ◦ γ)′′(0)

)
.

Theorem 2.1. The family B = {(π−1(Uα), Ψα)}α∈I defines a manifold structure for
Osc2M , which models it on E× E× E.

Proof. Clearly Ψα is well defined and
⋃

α∈I π−1(Uα) = Osc2M . Ψα is surjective, since
for any (x, ξ1, ξ2) ∈ ψa(Uα)×E×E, the curve γ := ψ−1

α ◦ γ̄ with γ̄(t) = x + tξ1 + t2ξ2

is mapped to (x, ξ1, ξ2) via Ψα. It is easily seen that Ψα is also injective. For any α
and β ∈ I with Uαβ := Uα ∩ Uα 6= ∅ the overlap map

Ψα ◦Ψ−1
β : ψβ(Uαβ)× E× E −→ ψα(Uαβ)× E× E

is given by

Ψα ◦Ψ−1
β (x, ξ1, ξ2) = Ψα([γ]x0) =

(
(ψα ◦ γ)(0), (ψα ◦ γ)′(0), 1

2 (ψα ◦ γ)′′(0)
)

=
(
(ψα ◦ ψ−1

β ◦ γ̄)(0), (ψα ◦ ψ−1
β ◦ γ̄)′(0), 1

2 (ψα ◦ ψ−1
β ◦ γ̄)′′(0)

)
=

(
ψαβ(x), dψαβ(x)ξ1, dψαβ(x)ξ2 + 1

2d2ψαβ(x)(ξ1, ξ1)
)

where ψβ(x0) = x, ψαβ := ψα ◦ ψ−1
β , d2 = d(d) means the second order differential,

and γ̄(t) = x + tξ1 + t2ξ2. ¤
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Due to the transition functions of the bundle (π, Osc2M, M), we can see that
generally π is a smooth fibre bundle.

Remark 2.1. Osc2M can be considered as a subbundle of the fibre bundle σ :
TTM −→ M with σ(x, ξ, y, η) = x. In fact Osc2M is locally made of those elements
(x, ξ, y, η) with the property ξ = y ([7]). Moreover, (σ, TTM, M), and consequently
(π,Osc2M, M), admits a vector bundle structure if and only if M it is endowed with
a linear connection [3, 7, 8].

By using the transition functions for the bundle π : Osc2M −→ M , we can
compute the transformation rule of natural charts for TOsc2M as follows

(2.1)

TΨα ◦Ψ−1
β (x, ξ1, ξ2; y, η1, η2)

=
(
ψαβ(x) , dψαβ(x)ξ1 , dψαβ(x)ξ2 + 1

2d2ψαβ(x)(ξ1, ξ1)
dψαβ(x)y , dψαβ(x)η1 + d2ψαβ(x)(ξ1, y) ,

dψαβ(x)η2 + d2ψαβ(x)(ξ2, y) + d2ψαβ(x)(ξ1, η1) + 1
2d3ψαβ(x)(ξ1, ξ1, y)

)
.

3 Distributions, connection maps and sprays

In this section we discuss in detail the relationship between various definitions of a
nonlinear connections on π : Osc2M −→ M . We shall hereinafter denote Osc2M by
E.

3.1 Distributions

The vertical subbundle of π : E −→ M , denoted by V π, is V π =
⋃

u∈M Vuπ
where Vuπ = kerduπ for u ∈ E. Locally, on a bundle chart (Ψ, π−1(U)), dπ maps
(x, ξ1, ξ2, y, η1, η2) onto (x, y) where x, y, ξi, ηi ∈ E for 1 ≤ i ≤ 2. It is easily seen that
the elements of Vuπ locally have the form (x, ξ1, ξ2, η1, η2) and V π is a subbundle of
τE : TE −→ E with fibres of type E× E.

Definition 3.1. A nonlinear connection on π is a smooth subbunlde Hπ of TE such
that at every point u ∈ E, Vuπ ⊕Huπ = TuE.

Let ν : TE −→ V π and h : TE −→ Hπ be the natural vector bundle projections.
Smoothness of a nonlinear connection means that for any vector field X on E, h ◦X
is a smooth map. Let

(
π−1(Uα),Ψα

)
be a chart of E. Since να := ν|Uα is continuous

and linear on fibres, there exist the local maps
1

Nα,
2

Nα: Ψα(Uα) −→ L(E,E) given by

να : Uα × E5 −→ Uα × E4

(x, ξ1, ξ2; y, η1, η2) 7−→ (x, ξ1, ξ2; 0, η1+
1

Nα (x, ξ1, ξ2)y, η2+
2

Nα (x, ξ1, ξ2)y)

for any (x, ξ1, ξ2; y, η1, η2) ∈ TuE.
1

Nα and
2

Nα are the local components of the con-
nection for the given local chart (Uα, Ψα) and the sign ”+” is conventional. Moreover,
since ν ⊕ h = id, we have

hα(x, ξ1, ξ2; y, η1, η2) =
(
x, ξ1, ξ2; y,− 1

Nα (x, ξ1, ξ2)y,− 2

Nα (x, ξ1, ξ2)y
)
.



110 A. Suri and H. Abedi

The compatibility condition for { 1

Nα,
2

Nα} and { 1

Nβ ,
2

Nα} on different charts
(
π−1(Uα)

, Ψα

)
and

(
π−1(Uβ), Ψβ

)
with Uα ∩ Uα 6= ∅, is a consequence of the equality

να ◦ T (Ψα ◦Ψ−1
β ) = T (Ψα ◦Ψ−1

β ) ◦ νβ .

A short computation shows that

(3.1) dψαβ(x)[
1

Nβ (u)y] =
1

Nα (u′)dψαβ(x)y + d2ψαβ(x)(ξ1, y)

and

dψαβ(x)[
2

Nβ (u)y] + d2ψαβ(x)
(
ξ1,

1

Nβ (u)y
)

=
2

Nα (u′)y′ +
1
2
d3ψαβ(x)(ξ1, ξ1, y)

+d2ψαβ(x)(ξ2, y)(3.2)

where u = (x, ξ1, ξ2) and u′ :=
(
ψαβ(x), dψαβ(x)ξ1, dψαβ(x)ξ2 + 1

2d2ψαβ(x)(ξ1, ξ1)
)
.

3.2 Connection maps

Another known and useful definition for connections due to different literatures is
the concept of connection map [1]. We associate to a nonlinear connection on the 2-
osculator bundle its connection map. It will be proved that the kernel of a connection
map is a nonlinear connection.

As a first step we introduce on E the ”2-tangent structure”, introduced for the
finite dimensional case by Miron [6].

Definition 3.2. A 2-tangent structure on E is a C∞(E)-linear map J : X(E) −→
X(E) s.t. locally on a chart (Ψα, π−1(Uα)),it is given by

Jα(x, ξ1, ξ2; y, η1, η2) = (x, ξ1, ξ2; 0, y, η1).

Proposition 3.1. The map J is globally defined.

Proof. It suffices to show that on the overlaps Jα ◦ TΨαβ = TΨαβ ◦ Jβ . Using the
above definition and equation (2.1) we get

Jα ◦ TΨαβ(x, ξ1, ξ2; y, η1, η2) =
(
ψαβ(x) , dψαβ(x)ξ1 , dψαβ(x)ξ2

+
1
2
d2ψαβ(x)(ξ1, ξ1); 0 , dψαβ(x)y , dψαβ(x)η1 + d2ψαβ(x)(ξ1, y)

)

= TΨαβ ◦ Jβ(x, ξ1, ξ2; y, η1, η2),

which means that J can be considered as a global map. ¤

Now we state the following

Definition 3.3. A connection map on π : E −→ M is a vector bundle morphism

K = (K1,K2) : (TE, τE , E) −→ (TM ⊕ TM, τM ⊕ τM ,M ⊕M)

such that K2 ◦ J = K1 and K2 ◦ J2 = π∗.
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The property K1 ◦ J = π∗ is directly follolows from the above definition, since

π∗ = K2 ◦ J2 = (K2 ◦ J) ◦ J = K1 ◦ J.

We now introduce the local representation of the connection map K. On a chart
(U, φ), since K is a vector bundle morphism, we have

K|U (x, ξ1, ξ2, y, 0, 0) =
(
x,K1|U (x, ξ1, ξ2, y, 0, 0)

)⊕ (
x,K2|U (x, ξ1, ξ2, y, 0, 0)

)

:= (x,
1

M (x, ξ1, ξ2)y)⊕ (x,
2

M (x, ξ1, ξ2)y)

where
i

M : U × E× E −→ L(E,E) i = 1, 2.

Using the properties of connection maps, we get

K|U (x, ξ1, ξ2, 0, η1, 0) =
(
x,K1|U ◦ J(x, ξ1, ξ2, η1, 0, 0)

)

⊕(
x,K2|U ◦ J(x, ξ1, ξ2, η1, 0, 0)

)

=
(
x, π∗(x, ξ1, ξ2, η1, 0, 0)

)⊕ (
x,K1(x, ξ1, ξ2, η1, 0, 0)

)

= (x, η1)⊕ (x,
1

M (x, ξ1, ξ2)η1)

and

K|U (x, ξ1, ξ2, 0, 0, η2) =
(
x,K1|U ◦ J(x, ξ1, ξ2, 0, η2, 0)

)

⊕(
x,K2|U ◦ J2(x, ξ1, ξ2, η1, 0, 0)

)

=
(
x, π∗(x, ξ1, ξ2, 0, η2, 0)

)⊕ (
x, π∗(x, ξ1, ξ2, η2, 0, 0)

)

= (x, 0)⊕ (x, η2).

As a consequence of the above computations, we have the following

Theorem 3.2. The local expression of K = (K1,K2) is given by

K1(x, ξ1, ξ2; y, η1, η2) =
(
x, η1+

1

M (x, ξ1, ξ2)y
)

K2(x, ξ1, ξ2; y, η1, η2) =
(
x, η2+

2

M (x, ξ1, ξ2)y+
1

M (x, ξ1, ξ2)η1

)

for any (x, ξ1, ξ2; y, η1, η2) ∈ TuE.

Proof. The result is a direct consequence of the above computations. More precisely,
we have

K|U (x, ξ1, ξ2; y, η1, η2) = K|U{(u; y, 0, 0) + (u; 0, η1, 0) + (u; 0, 0, η2)}
=

(
x,

1

M (u)y
)⊕ (

x,
2

M (u)y
)

+ (x, η1)⊕ (x,
1

M (u)η1) + (x, 0)⊕ (x, η2)

=
(
x, η1+

1

M (x, ξ1, ξ2)y
)⊕ (

x, η2+
2

M (x, ξ1, ξ2)y+
1

M (x, ξ1, ξ2)η1

)
.

¤
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To obtain the compatibility conditions for
1

M,
2

M we verify the equality Tψαβ ◦
Kiβ = Kiα ◦ TΨαβ , for 1 ≤ i ≤ 2. A key step in obtaining these conditions is the
equality (2.1). In fact

d2ψαβ(x)(ξ1, y)+
1

Mα

(
u′

)
dψαβ(x)y = dψαβ(x)

1

Mβ (u)y(3.3)

and

dψαβ(x)
2

Mβ (x, ξ1, ξ2, )y =
2

Mα (u′)dψαβ(x)y+
1

Mα (u′)(d2ψαβ(x)(ξ1, y))

+d2ψαβ(x)(ξ2, y) +
1
2
d3ψαβ(x)(ξ1, ξ1, y)(3.4)

holds true.

Proposition 3.3. Let K be a connection map on π : E −→ M . Then K determines

a nonlinear connection for which
1

Nα=
1

Mα and

(3.5)
2

Nα (x, ξ1, ξ2)y =
2

Mα (x, ξ1, ξ2)y−
1

Mα (x, ξ1, ξ2)[
1

Mα (x, ξ1, ξ2)y].

Proof. These local components defined by the above equations produce a nonlinear
connection if and only if they satisfy the equations (3.1) and (3.2). The compatibility

condition for
1

Nα and
1

Nβ immediately follows from equation (3.3). The rest of the
proof is a verification of (3.2) as follows.

dψαβ(x)[
2

Nβ (u)y] = dψαβ(x)
2

Mα (u)y − dψαβ(x){ 1

Mα (u)[
1

Mα (u)y]}
=

2

Mα (u′)dψαβ(x)y+
1

Mα (u′)(d2ψαβ(x)(ξ1, y)) + d2ψαβ(x)(ξ2, y)

+
1
2
d3ψαβ(x)(ξ1, ξ1, y)− d2ψαβ(x)

(
ξ1,

1

Mβ (u)y
)− 1

Mα (u′)[d2ψαβ(x)(ξ1, y)]

+
1

Mα (u′)[
1

Mα (u′)dψαβ(x)y]

=
2

Nα (u′)dψαβ(x)y + d2ψαβ(x)(ξ2, y) +
1
2
d3ψαβ(x)(ξ1, ξ1, y)

−d2ψαβ(x)
(
ξ1,

1

Mβ (u)y
)
.

¤

The next two propositions reveal the mutual relation between connection maps
and connections as distributions.

Proposition 3.4. The kernel of K is Hπ where Hπ is the horizontal distribution
determined by the components obtained form proposition (3.3).

Proof. Let Xu := (x, ξ1, ξ2; y, η1, η2) ∈ TuE. Then K(Xu) = 0 if and only if η1 =

− 1

M (u)y and

η2 = − 2

M (u)y− 1

M (u)η1 = − 2

M (u)y+
1

M (u)[
1

M (u)y]

= −( 1

N (u)y+
1

N (u)[
1

N (u)y]
)
+

1

N (u)[
1

N (u)y] =
2

N (u)y
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which means that Xu ∈ Huπ. Conversely, we suppose that Xu ∈ Huπ or

Xu = (x, ξ1, ξ2; y,− 1

N (u)y,
2

N (u)y).

Then it is easily seen that K(Xu) = 0. ¤

Computation similar to that in theorem 3.5 shows that:

Proposition 3.5. Let N be a nonlinear connection on π. Then one can associate a

connection map with the local components
1

Mα=
1

Nα and

(3.6)
2

Mα (x, ξ1, ξ2)y =
2

Nα (x, ξ1, ξ2)y+
1

Nα (x, ξ1, ξ2)[
1

Nα (x, ξ1, ξ2)y].

3.3 2-Sprays and Nonlinear connections on Osc2M

Another geometric tool ([5], [6]) is the concept of spray. Consider the Lioville vector
field Γ2 : E −→ TE mapping (x, ξ1, ξ2) to (x, ξ1, ξ2; 0, ξ1, 2ξ2). It is not hard to show
that if M admits a partition of unity then Γ2 is a global vector field.

Definition 3.4. A 2-spray on π : E −→ M is a vector field S on E with the property
JS = Γ2.

Note that the notion of spray defined by Lang [5] contains the requirement of ho-
mogeneity for local components. More precisely Lang considered those homogeneous
sprays, on TM , which associate to linear connections on M .

Theorem 3.6. A 2-spray S on a chart (π−1(Uα), Ψa) is locally given by

Sα(x, ξ1, ξ2) =
(
x, ξ1, ξ2; ξ1, 2ξ2,−3Gα(x, ξ1, ξ2)

)

for some smooth mapping Gα : Uα × E× E −→ E.

Proof. Consider the chart (π−1(Uα),Ψα) for E and restriction of the vector field S,
say Sa, to this chart. There exist the smooth functions fi : Uα × E × E −→ E,
1 ≤ i ≤ 3, such that

Sα(x, ξ1, ξ2) =
(
x, ξ1, ξ2, f1(u), f2(u), f3(u)

)
; u = (x, ξ1, ξ2) ∈ Uα × E× E.

Since J ◦ S = Γ2 then f1(x, ξ1, ξ2) = ξ1, f2(x, ξ1, ξ2) = 2ξ2 and f3(x, ξ1, ξ2) :=
−3Gα(x, ξ1, ξ2) for some smooth function

Gα : Uα × E× E −→ E.

The technical coefficient 3 is necessary to avoid extra heavy coefficients in the com-
patibility conditions (which holds in higher order geometry as well). To compute the
compatibility condition for Sα and Sβ on overlaps we first note that

Sα ◦Ψαβ(x, ξ1, ξ2) =
(
ψαβ(x) , dψαβ(x)ξ1 ,

A︷ ︸︸ ︷
dψαβ(x)ξ2 +

1
2
d2ψαβ(x)(ξ1, ξ1) ;

dψαβ(x)ξ1 , 2A , 3Gα

(
ψαβ(x), dψαβ(x)ξ1, A

))
.
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After some computations we obtain the following compatibility condition

3Gα

(
ψαβ(x), dψαβ(x)ξ1, A

)
= d2ψαβ(x)(ξ2, ξ1) +

1
2
d3ψαβ(x)(ξ1, ξ1, y)

−3dψαβ(x)[Gβ(x, ξ1, ξ2)] + d2ψαβ(x)(ξ1, 2ξ2)

= 3d2ψαβ(x)(ξ2, ξ1) +
1
2
d3ψαβ(x)(ξ1, ξ1, ξ1)(3.7)

−3dψαβ(x)[Gβ(x, ξ1, ξ2)].

¤

For a given 2-spray S on M , one can associate a connection map, and consequently
a nonlinear connection on T 2M , in the following way.

Proposition 3.7. Let S be a 2-spray with the local components {Sα}α∈I . Then

1

Mα (x, ξ1, ξ2)y := ∂3Gα(x, ξ1, ξ2)y and
2

Mα(x, ξ1, ξ2)y := ∂2Gα(x, ξ1, ξ2)y ; α ∈ I

are the local components of a connection map on T 2M .

Proof. It is enough to show that
1

M and
2

M satisfy the equations (3.3) and (3.4)
respectively. If α, β ∈ I and Uα ∩ Uβ 6= ∅ then for every (x, ξ1, ξ2, y) ∈ Uαβ × E3 we
have

dψαβ(x)
1

Mβ (x, ξ1, ξ2)y = dψαβ(x)Gβ(x, ξ1, ξ2)y

= dψαβ(x)limt→0

(
Gβ(x, ξ1, ξ2 + ty)−Gβ(x, ξ1, ξ2)

)
/t

= limt→0

(
dψαβ(x)Gβ(x, ξ1, ξ2 + ty)− dψαβ(x)Gβ(x, ξ1, ξ2)

)
/t

∗= ∂3Gα(u′)dψαβ(x)y + d2ψαβ(x)(ξ1, y)

=
1

Mα (u′)y + d2ψαβ(x)(ξ1, y).

where in (*) we used the equation (3.7). In a similar way the compatibility conditions

for
2

M can be proved. ¤

3.4 Lifting of connections

The aim of this section is to provide a way to lift a linear connection from the base
manifold M to a connection map (and consequently to lead to a connection by propo-
sition (3.3)) on the bundle π : E −→ M .

Theorem 3.8. Let ∇ be a linear connection on M with the local components {Γα}α∈I .
Then there exists a nonlinear connection on E which only depends on ∇.

Proof. Suppose that ∇ is a linear connection on M . For α ∈ I define

1

Mα (x, ξ1)y := Γα(x)[ξ1, y]
2

Mα (x, ξ1, ξ2)y := 1
2{∂1

1

Mα (x, ξ1)(y, ξ1)+
1

Mα (x, ξ1)[
1

Mα (x, ξ1)y]}+ 1

Mα (x, ξ2)y
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where {Γα}α∈I are the local components associated to the linear connection ∇.

Clearly the introduced local maps
1

M and
2

M depend only on the connection ∇. To

prove that the pairs { 1

Mα,
2

Mα}α∈I are the local components of a connection map, it
suffices to show that they satisfy the compatibility conditions (3.3) and (3.4). The
relation (3.3) is a direct consequence of the compatibility condition for the local forms
of the connection ∇ ([7])

dψαβ(x)Γβ(x)[ξ, y] = d2ψαβ(x)(y, ξ) + Γα(ψαβ(x))[dψαβ(x)ξ, dψαβ(x)y].

For more details we refer the reader to [7], [9] or [10]. The second equality holds due
to the fact that

dψαβ(x)∂1

1

Mβ (x, ξ1)(y, ξ1) = d3ψαβ(x)(ξ1, ξ1, y)− d2ψαβ(x)
(
ξ1,

1

Mβ (x, ξ1)y
)

+
1

Mα

(
ψαβ(x), dψαβ(x)ξ1

)
d2ψαβ(x)(ξ1, y)

+
1

Mα

(
ψαβ(x), d2ψαβ(x)(ξ1, ξ1)

)
dψαβ(x)y

+∂1

1

Mα

(
ψαβ(x), dψαβ(x)ξ1

)[
dψαβ(x)y, dψαβ(x)ξ1

]

and

dψαβ(x)
1

Mα (x)
(
ξ1,

1

Mα (x, ξ1, y)
)

=
1

Mα

(
ψαβ(x), dψαβ(x)ξ1

)
d2ψαβ(x)(ξ1, y)

+
1

Mα

(
ψαβ(x), dψαβ(x)ξ1

) 1

Mα

(
ψαβ(x), dψαβ(x)ξ1

)
dψαβ(x)y

+d2ψαβ(x)
(
ξ1,

1

Mβ (x, ξ1)y
)
.

As a consequence, we get

dψαβ(x)
2

Mβ (x, ξ1, ξ2)y =
1
2
{dψαβ(x)∂1

1

Mβ (x, ξ1)(y, ξ1)

+dψαβ(x)
1

Mβ (x, ξ1)[
1

Mβ (x, ξ1)y]}+ dψαβ(x)
1

Mβ (x, ξ2)y

=
1
2
d3ψαβ(x)

(
ξ1, ξ1, y

)
+ d2ψαβ(x)(ξ2, y)+

1

Mα

(
ψαβ(x), dψαβ(x)ξ1

)
d2ψαβ(x)

(ξ1, y)+
2

Mα

(
ψαβ(x), dψαβ(x)ξ1, dψαβ(x)ξ2 + d2ψαβ(x)(ξ1, ξ1)

)
dψαβ(x)y

which completes the proof. ¤
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