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1 Introduction

Let Qn+p
p (c) be an (n+p)-dimensional connected semi-Riemannian manifold of index

p and of constant curvature c, which is called an indefinite space form of index p. If
c > 0, we call it the de Sitter space of index p and denote it by Sn+p

p (c). If c < 0,
we call it the semi-Hyperbolic space of index p and denote it by Hn+p

p (c). A smooth
immersion φ : Mn → Qn+p

p (c) of an n dimensional connected manifold Mn is said to
be a spacelike if the induced metric via φ is a Riemannian metric on Mn. As is usual,
the spacelike submanifold is said to be complete if the Riemannian induced metric is
a complete metric on Mn.

The study of spacelike hypersurfaces in an indefinite space form of index p has
been recently the the focus of substantial interest from both physics and mathemat-
ical community. It was pointed by Marsdenand Tipler [21] and Stumbles [27] that
spacelike hypersurfaces with constant mean curvature in arbitrary spacetime are in-
teresting in the relativity theory. The interest in the study of spacelike hypersurfaces
immersed in the de Sitter space is motivated by their nice Bernstein-type properties.
It was proved by E. Calabi [5] (for n ≤ 4) and by S.Y. Cheng and S.T. Yau [16] (for
all n) that a complete maximal spacelike hypersurface in Ln+2 is totally geodesic. In
[24], S. Nishikawa obtained similar results for others Lorentzian manifolds. In partic-
ular, he proved that a complete maximal spacelike hypersurface in Sn+1

1 (1) is totally
geodesic.
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Goddard [17] conjectured that a complete spacelike hypersurface with constant
mean curvature in de Sitter space Sn+1

1 should be umbilical. Although the conjecture
turned out to be false in its original statement, it motivated a great deal of work of
several authors trying to find a positive answer to the conjecture under appropriate
additional hypotheses ([3, 11, 22, 23]). There are also many works about the God-
dard’s problem for spacelike hypersurface with constant scalar curvature in de Sitter
space ([6, 8, 10, 13, 19, 29]).

In higher codimension, the condition on the mean curvature is replaced by a
condition on the mean curvature vector. Let Qn+p

p (c) be the complete connected semi-
Riemannian manifolds of index p with constant curvature c and Mn be a spacelike
submanifold of Qn+p

p (c) with parallel mean curvature vector h. When Mn is maximal,
i.e., h ≡ 0, T. Ishihara [18] established a inequality for the squared norm S of the
second fundamental form of Mn: 1

2△S ≥ S(nc+ S/2). As an important application,
Ishihara proved that maximal complete spacelike submanifolds in Qn+p

p (c), c ≥ 0, are
totally umbilical and, if c < 0, then 0 ≤ S ≤ −npc. Moreover, he determined all the
complete spacelike maximal submanifolds Mn of Qn+p

p (c), c < 0, satisfying S = −npc.
R. Aiyama [2] studied compact spacelike submanifolds in Sn+p

p (c) with parallel mean
curvature vector and proved that if the normal connection of Mn is flat, then Mn

is totally umbilical. She also proved that compact spacelike submanifolds in Sn+p
p (c)

with parallel mean curvature vector and non-negative sectional curvatures are also
totally umbilical. Q. M. Cheng [12] showed that Akutagawa’s result [3] is valid for
complete spacelike submanifolds in Sn+p

p (c) with parallel mean curvature vector.

In [14] and [15], Chaves-Sousa obtained a Simon type formula for the squared
norm of the traceless tensor ϕ = B − Hg, where g stands for the induced metric
on a spacelike submanifold in Qn+p

p (c) with parallel mean curvature vector. As an
application of this formula, Brasil-Chaves-Mariano [4] obtained an other limitation

for the supremum of the mean curvature supH2 < 4(n−1)c
(n−2)2p+4(n−1) as an extension

of results of [3] and [12]. Camargo-Chaves-Sousa [7] considered complete spacelike
submanifold in Qn+p

p (c) with parallel normalized mean curvature vector (which is
much weaker than the condition to have parallel mean curvature vector) and constant
normalized scalar curvature r satisfying r ≤ c. They proved that if the mean curvature

satisfies supH2 < 4(n−1)c
(n−2)2p+4(n−1) , then Mn is totally umbilical. In [9], the author

improved this result and proved a rigidity theorem under the hypothesis of the mean
curvature and the normalized scalar curvature being linearly related.

However, all these works have pointwise conditions on the squared norm of the
second fundamental form S or on the mean curvature H. There are some works that
consider Lp-pinching conditions instead of pointwise one. Shen [26] proved that if Mn

be an oriented closed embedded minimal hypersurface in Sn+1(1) with nonnegative
Ricci curvature and

∫
M

S
n
2 dv < C(n), where C(n) is a positive universal constant,

then Mn is a totally geodesic hypersurface. Lin and Xia [20] proved that if M2n

be an even dimensional oriented closed minimal submanifold in S2n+p(1) with Euler
characteristic not greater than two and

∫
M

S
n
2 dv < C(n, p), where C(n, p) is a positive

universal constant depending on n and p, then M is totally geodesic. Xu [28] proved
that if Mn be an oriented closed submanifold with parallel mean curvature in Sn+p(1)
with

∫
M
(S − nH2)

n
2 dv < C(n, p), then M is totally umbilical. Recently Araujo and

Barbosa [1] considered the case of compact spacelike submanifolds with parallel mean
curvature vector in an indefinite space form and proved the following result.
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Theorem 1.1 ([1]). Let Mn be a compact spacelike submanifold in Qn+p
p (c), with

mean curvature H ̸= 0 such that the mean curvature vector is parallel. Then there
exists a positive constant C = C(n,H) such that if ∥S∥n

2
< C, where S is the squared

norm of the second fundamental form of Mn and

∥S∥n
2
=

(∫
M

S
n
2 dv

) 2
n

,

then Mn is totally umbilical.

In this paper, we deal with the case of compact spacelike submanifolds with parallel
normalized mean curvature vector (which is much weaker than the condition to have
parallel mean curvature vector as stated above) in an indefinite space form and obtain
the following global pinching result.

Theorem 1.2. Let Mn be a compact spacelike submanifold in Qn+p
p (c) (c ≥ 0) with

mean curvature H bounded away from zero and parallel normalized mean curvature
vector. If the normalized scalar curvature r = aH + b, a, b ∈ R and b < c, then there
exists positive constant C(n) such that if ∥S∥n

2
< C(n), then Mn is totally umbilical.

As a corollary, taking a = 0 in Theorem 1.2, we have a global pinching result on
compact spacelike submanifold in Qn+p

p (c) with parallel normalized mean curvature
vector and constant scalar curvature.

Corollary 1.3. Let Mn be a compact spacelike submanifold in Qn+p
p (c) (c ≥ 0)

with parallel normalized mean curvature vector and constant scalar curvature r < c.
If mean curvature H is bounded away from zero, then there exists positive constant
C(n) such that if ∥S∥n

2
< C(n), then Mn is totally umbilical.

2 Preliminaries

Let Mn be an n-dimensional Riemannian manifold immersed in Qn+p
p (c). For any q ∈

M , we choose a local orthonormal frame e1, · · · , en+p in Qn+p
p (c) around q such that

e1, · · · , en are tangent to Mn. Take the corresponding dual coframe ω1, · · · , ωn+p.
We use the following standard convention for indices:

1 ≤ A,B,C, · · · ≤ n+ p, 1 ≤ i, j, k, · · · ≤ n, n+ 1 ≤ α, β, γ · · · ≤ n+ p.

Let εi = 1, εα = −1, then the structure equations of Qn+p
p (c) are given by

dωA =
∑
B

εBωAB ∧ ωB , ωAB + ωBA = 0,(2.1)

dωAB =
∑
C

εCωAC ∧ ωCB − 1

2

∑
C,D

εCεDRABCDωC ∧ ωD,(2.2)

RABCD = cεAεB(δACδBD − δADδBC).(2.3)

Restricting those forms to Mn, we have

(2.4) ωα = 0, n+ 1 ≤ α ≤ n+ p.
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So the Riemannian metric of Mn is written as ds2 =
∑
i

ω2
i . Since 0 = dωα =∑

i

ωαi ∧ ωi, from Cartan lemma, we can write

(2.5) ωαi =
∑
j

hα
ijωj , hα

ij = hα
ji.

Let B =
∑
α,i,j

hα
ijωiωjeα be the second fundamental form. We will denote by h =

1
n

∑
α
(
∑
i

hα
ii)eα and by H = |h| = 1

n

√∑
α
(
∑
i

hα
ii)

2 the mean curvature vector and the

mean curvature of Mn, respectively.
The structure equations of Mn are

dωi =

n∑
j=1

ωij ∧ ωj , ωij + ωji = 0,(2.6)

dωij =
n∑

k=1

ωik ∧ ωkj −
1

2

n∑
k,l=1

Rijklωk ∧ ωl.(2.7)

The Gauss equations are

Rijkl = c(δikδjl − δilδjk)−
∑
α

(hα
ikh

α
jl − hα

ilh
α
jk),(2.8)

n(n− 1)r = n(n− 1)c− n2H2 + S,(2.9)

where r is the normalized scalar curvature of Mn and S =
∑
α,i,j

(hα
ij)

2 is the norm

square of the second fundamental form of Mn.
The Codazzi equations are

hα
ijk = hα

ikj = hα
jik,(2.10)

where the covariant derivative of hα
ij is defined by∑

k

hα
ijkωk = dhα

ij +
∑
k

hα
kjωki +

∑
k

hα
ikωkj −

∑
β

hβ
ijωβα.(2.11)

Similarly, the components hα
ijkl of the second derivative ∇2h are given by∑

l

hα
ijklωl = dhα

ijk +
∑
l

hα
ljkωli +

∑
l

hα
ilkωlj +

∑
l

hα
ijlωlk −

∑
β

hβ
ijkωβα.(2.12)

By exterior differentiation of (2.11), we can get the following Ricci formula

hα
ijkl − hα

ijlk =
∑
m

hα
imRmjkl +

∑
m

hα
jmRmikl +

∑
β

hβ
ijRαβkl.(2.13)

The Laplacian △hα
ij of hα

ij is defined by △hα
ij =

∑
k h

α
ijkk, from the Codazzi equation

and Ricci formula, we have

△hα
ij =

∑
k

hα
kkij +

∑
m,k

hα
kmRmijk +

∑
m,k

hα
imRmkjk +

∑
k,β

hβ
ikRαβjk.(2.14)
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If H ̸= 0, we choose en+1 = h
H , then it follows that

(2.15) Hn+1 :=
1

n
tr(hn+1) = H; Hα :=

1

n
tr(hα) = −Hωn+1α, ∀α ≥ n+ 2,

where hα denotes the matrix (hα
ij). From (2.11) and (2.15), we can see that

(2.16)
∑
k

Hn+1
k ωk = dH;

∑
k

Hα
k ωk = −Hωn+1α,∀α ≥ n+ 2.

From (2.12),(2.15) and (2.16) we have

(2.17) Hn+1
kl = Hkl −

1

H

∑
β>n+1

Hβ
kH

β
l ,

where
dH =

∑
i

Hiωi, ∇Hk =
∑
l

Hklωl = dHk +
∑
l

Hlωlk.

If Mn has parallel normalized mean curvature vector, we have

(2.18) ωn+1α = 0, hn+1hα = hαhn+1, ∀α.

Then (2.16) and (2.17) yield

(2.19) Hα
k = 0, ∀k, α ≥ n+ 2; Hn+1

kl = Hkl.

From (2.12) and (2.19) we obtain

(2.20) Hα
kl = 0, α ≥ n+ 2.

From (2.24) of [7] we have

1

2
△S =

1

2

∑
α,i,j

△(hα
ij)

2 =
∑

α,i,j,k

(hα
ijk)

2 +
∑
α,i,j

hα
ij△hα

ij

=
∑

α,i,j,k

(hα
ijk)

2 + n
∑
α,i,j

hα
ijH

α
ij + nc(S − nH2)

− nH
∑
α

tr(hn+1(hα)2) +
∑
α,β

(tr(hαhβ))2

+
∑
α,β

N(hαhβ − hβhα),(2.21)

where N(A) = tr(AAt), for all matrix A = (aij).
Set ϕα

ij = hα
ij −Hαδij , it is easy to check that ϕα is traceless and

|ϕ|2 =
∑
α,i,j

(ϕα
ij)

2 = S − nH2

N(ϕα) = N(hα)− n(Hα)2, n+ 1 ≤ α ≤ n+ p,(2.22)
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where ϕα denotes the matrix (ϕα
ij). Following the operator � in [16], as in [9], we

introduce a Cheng-Yau’s modified operator L

(2.23) L = �+
n− 1

2
a△.

Here the operator � acting on any smooth function f is defined by

�(f) =
∑
i,j

(nHδij − hn+1
ij )fij

and fij is given by the following∑
j

fijωj = dfi + fjωij .

Lemma 2.1. Let Mn ↪→ Qn+p(c) be an oriented isometrically immersed submanifold
with R = aH + b, where a, b are real constants and b < c. Then L is elliptic.

Proof. Combining Gauss equation (2.9) and the assumption r = aH + b, we have

S = n2H2 + n(n− 1)(aH + b− c).(2.24)

Together with the assumption b < c gives

nH[nH + (n− 1)a] = n(n− 1)(c− b) + S > 0.

Thus the connectedness of M implies that H does not change sign if b < c. So we
can choose the orientation of M such that H > 0 on Σ. Choose a local orthonormal
frame field e1, . . . , en at q ∈ M such that hn+1

ij = λn+1
i δij . Let µi be the eigenvalue of

P = (nH + n−1
2 a)I − hn+1 at every point q ∈ M , then µi = nH + n−1

2 a− λn+1
i (i =

1, 2, · · · , n). Since H ̸= 0, we can obtain from (2.9) that

n− 1

2
a =

1

2nH

(
S − n2H2 + n(n− 1)(c− b)

)
.

Therefore, for every i,

µi = nH +
n− 1

2
a− λn+1

i

= nH − λn+1
i +

1

2nH

(
S − n2H2 + n(n− 1)(c− b)

)
=

n− 1

2H
(c− b) +

1

2nH

(
S + n2H2 − 2nHλn+1

i

)
.(2.25)

Observe now that

S + n2H2 − 2nHλn+1
i =

n∑
j=1

(λn+1
j )2 +

( n∑
j=1

λn+1
j

)2
− 2
( n∑

j=1

λn+1
j

)
λn+1
i

=

n∑
j=1,j ̸=i

(λn+1
j )2 +

( n∑
j=1,j ̸=i

λn+1
j

)2
≥ 0.(2.26)

So (2.25), (2.26) and b < c imply that µi > 0 for each i and L is elliptic. �



Global pinching theorem for spacelike submanifolds 15

Lemma 2.2 ([25]). Let A,B : Rn → Rn be symmetric linear maps such that AB −
BA = 0 and tr(A) = tr(B) = 0. Then

|trA2B| ≤ n− 2√
n(n− 1)

N(A)
√
N(B).

Proposition 2.3. Let Mn be a spacelike submanifold in Qn+p
p (c) with parallel nor-

malized mean curvature vector. If r = aH + b, a, b ∈ R, then the following inequality
holds

(2.27) L(nH) ≥
∑

i,j,k,α

(hα
ijk)

2−n2|∇H|2+ |ϕ|2
( |ϕ|2

p
− n(n− 2)√

n(n− 1)
H|ϕ|+n(c−H2)

)
.

Proof. From (2.23) we have

L(nH) =
∑
i,j

((nH +
1

2
(n− 1)a)δij − hn+1

ij )(nH)ij

= (nH +
1

2
(n− 1)a)△(nH)−

∑
i,j

hn+1
ij (nH)ij

= (nH +
1

2
(n− 1)a)△(nH +

1

2
(n− 1)a)−

∑
i,j

hn+1
ij (nH)ij

=
1

2
△(nH +

1

2
(n− 1)a)2 − |∇(nH +

1

2
(n− 1)a)|2 −

∑
i,j

hn+1
ij (nH)ij

=
1

2
△(nH +

1

2
(n− 1)a)2 − n2|∇H|2 −

∑
i,j

hn+1
ij (nH)ij .(2.28)

On the other side, from Gauss equation and r = aH + b, we have

△S = △(n2H2 + n(n− 1)(r − c))

= △(n2H2 + n(n− 1)(aH + b− c))

= △(n2H2 + (n− 1)anH) = △(nH +
1

2
(n− 1)a)2.(2.29)

From (2.21), (2.28) and (2.29) we get

L(nH) =
1

2
△S − n2|∇H|2 −

∑
i,j

hn+1
ij (nH)ij

=
∑

α,i,j,k

(hα
ijk)

2 − n2|∇H|2 + n
∑
α,i,j

hα
ijH

α
ij − n

∑
i,j

hn+1
ij Hij

+ nc(S − nH2)− nH
∑
α

tr(hn+1(hα)2) +
∑
α,β

(tr(hαhβ))2

+
∑
α,β

N(hαhβ − hβhα).(2.30)
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Since Mn has parallel normalized mean curvature vector, (2.19), (2.20) and (2.30)
yield

L(nH) =
∑

α,i,j,k

(hα
ijk)

2 − n2|∇H|2 + nc(S − nH2)

− nH
∑
α

tr(hn+1(hα)2) +
∑
α,β

(tr(hαhβ))2 +
∑
α,β

N(hαhβ − hβhα).(2.31)

From (2.15) and (2.22), we have

ϕn+1
ij = hn+1

ij −Hδij ,

N(ϕn+1) = tr(ϕn+1)2 = tr(hn+1)2 − nH2 = N(hn+1)− nH2,

tr(hn+1)3 = tr(ϕn+1)3 + 3HN(ϕn+1) + nH3,

ϕα
ij = hα

ij , N(ϕα) = N(hα), α ≥ n+ 2.(2.32)

By (2.31) and (2.32), we see that

L(nH) ≥
∑

α,i,j,k

(hα
ijk)

2 − n2|∇H|2 + n|ϕ|2(c−H2)− nH
∑
α

tr(ϕn+1(ϕα)2)

+
∑
α,β

(tr(hαhβ))2 +
∑
α,β

N(hαhβ − hβhα).(2.33)

By (2.18) we know that the traceless matrix ϕn+1 commutes with the traceless ma-
trices ϕα, for all α. Hence we can apply Lemma 2.2 in order to obtain

(2.34)
∑
α

tr(ϕn+1(ϕα)2) ≤ n− 2√
n(n− 1)

√
N(ϕn+1)|ϕ|2 ≤ n− 2√

n(n− 1)
|ϕ|3.

Moreover, Cauchy-Schwarz inequality implies that

(2.35) |ϕ|4 ≤ p
∑
α

(N(ϕα))2 ≤ p
∑
α,β

(tr(hαhβ))2.

Inserting (2.34) and (2.35) into (2.33), we arrive to (2.27). �

Following the idea of Lemma 1 in [28], we obtain the next key lemma for the proof
of Theorem 1.2.

Lemma 2.4. Let Mn be a spacelike submanifold in Qn+p
p (c) with parallel normalized

mean curvature vector. Setting

fε =
(∑

i,j

(hn+1
ij )2 − nH2 + nε2

)1/2
and gε =

( ∑
i,j,β ̸=n+1

(hβ
ij)

2 + n(p− 1)ε2
)1/2

,

we have ∑
i,j,k

(hn+1
ijk )2 − n|∇H|2 ≥ n+ 2

n
|∇fε|2,

∑
i,j,k,β ̸=n+1

(hβ
ijk)

2 ≥ n+ 2

n
|∇gε|2, for p ̸= 1.
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Proof. Set xn+1
ij = hn+1

ij −Hδij + εδij . Hence∑
i,j

(xn+1
ij )2 = f2

ε ,

and

(2.36)
∑
i,j,k

(xn+1
ijk )2 =

∑
i,j,k

(hn+1
ijk )2 − n|∇H|2.

Let ei be a frame diagonalizing the matrix (hn+1
ij ) such that hn+1

ij = λiδij , 1 ≤ i, j ≤ n.
Then,

xn+1
ij = (λi −H + ε)δij ,

∑
i,j

(xn+1
ij )2 = f2

ε

and

(2fε|∇fε|)2 = 4
∑
k

(∑
i

xn+1
ii xn+1

iik

)2
≤ 4
(∑

i

(xn+1
ii )2

)(∑
i,k

(xn+1
iik )2

)
= 4f2

ε

∑
i,k

(xn+1
iik )2.(2.37)

Also,

(2.38)
∑
i,j,k

(xn+1
ijk )2 ≥ 2

∑
i ̸=k

(xn+1
iik )2 +

∑
i,k

(xn+1
iik )2.

Now, for each fixed k, we have∑
i

(xn+1
iik )2 =

∑
i ̸=k

(xn+1
iik )2 + (xn+1

kkk )
2

=
∑
i ̸=k

(xn+1
iik )2 +

(∑
i

xn+1
iik −

∑
i ̸=k

xn+1
iik

)2
=
∑
i ̸=k

(xn+1
iik )2 +

(∑
i ̸=k

xn+1
iik

)2
≤
∑
i ̸=k

(xn+1
iik )2 + (n− 1)

∑
i ̸=k

(xn+1
iik )2 = n

∑
i̸=k

(xn+1
iik )2.(2.39)

Combining (2.36),(2.37),(2.38) and (2.39), we obtain

(2.40)
∑
i,j,k

(hn+1
ijk )2 − n|∇H|2 ≥ n+ 2

n

∑
i,k

(xn+1
iik )2 ≥ n+ 2

n
|∇fε|2.

If p ≥ 2, we put xβ
ij = hβ

ij + εδij , n + 2 ≤ β ≤ n + p. By using the argument above,
we obtain

(2.41) |∇(gβε )
2|2 ≤ 4n

n+ 2
(gβε )

2
∑
i,j,k

(hβ
ijk)

2,
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where gβε =
(∑

i,j

(xβ
ij)

2
) 1

2

. From (2.41) we have

|∇g2ε | ≤
∑

β ̸=n+1

|∇(gβε )
2| ≤ 2

√
n

n+ 2

∑
β ̸=n+1

(
(gβε )

2
∑
i,j,k

(hβ
ijk)

2
) 1

2

≤ 2

√
n

n+ 2

∑
β ̸=n+1

(g2ε)
1
2

( ∑
i,j,k,β ̸=n+1

(hβ
ijk)

2
) 1

2

.

It follow that ∑
i,j,k,β ̸=n+1

(hβ
ijk)

2 ≥ n+ 2

n
|∇gε|2.

�

Lemma 2.5 ([1]). Let Mn (n ≥ 3) be a compact connected Riemannian manifold.
Then, for every f ∈ C∞(M) and t ∈ R+, we have

(2.42)

∫
M

|∇f |2dv ≥ k1
1 + t

∥f∥22∗ − k2
t
∥f∥22,

where

k1 = 2−3− 2
n

(n− 2

n− 1

)2
C

2
n
1 , k2 = 2E(n)+ 2

n−2
(n− 2

n− 1

)2
C

2
n
1 vol(M)−

2
n

and C1 is the isoperimetric contant of M ,

E(n) =

{
(n−4)(n−2)

2 , n > 3
1, n = 3.

3 Proof of Theorem 1.2

Let Mn be a compact spacelike submanifold in Qn+p
p (c) with parallel normalized

mean curvature vector. From proposition 2.3 and Lemma 2.4, we have

L(nH) ≥
∑
i,j,k

(hn+1
ijk )2 − n2|∇H|2 +

∑
i,j,k,β ̸=n+1

(hβ
ijk)

2

+ |ϕ|2
( |ϕ|2

p
− n(n− 2)√

n(n− 1)
H|ϕ|+ n(c−H2)

)
≥ n+ 2

n
|∇fε|2 +

n+ 2

n
|∇gε|2

+ |ϕ|2
( |ϕ|2

p
− n(n− 2)√

n(n− 1)
H|ϕ|+ n(c−H2)

)
.(3.1)

Since, for any s ∈ R+,

(3.2) − n(n− 2)√
n(n− 1)

H|ϕ| ≥ −s

2
|ϕ|2 − n(n− 2)2

2(n− 1)s
H2.
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Therefore, from (3.1) and (3.2), we get

L(nH) ≥ n+ 2

n
|∇fε|2 +

n+ 2

n
|∇gε|2

+ |ϕ|2
( |ϕ|2

p
− s

2
|ϕ|2 − n(n− 2)2

2(n− 1)s
H2 + n(c−H2)

)
.(3.3)

Since L is elliptic (by Lemma 2.1) and self-adjoint on compact manifold, we obtain
from (3.3) that

0 ≥ n+ 2

n

∫
M

|∇fε|2dv +
n+ 2

n

∫
M

|∇gε|2dv

+

∫
M

|ϕ|2
( |ϕ|2

p
− s

2
|ϕ|2 − n(n− 2)2

2(n− 1)s
H2 + n(c−H2)

)
dv.(3.4)

Hence, from (2.42), we have

0 ≥ n+ 2

n

k1
1 + t

∥fε∥22∗ − n+ 2

n

k2
t
∥fε∥22 +

n+ 2

n

k1
1 + t

∥gε∥22∗ − n+ 2

n

k2
t
∥gε∥22

+

∫
M

|ϕ|2
( |ϕ|2

p
− s

2
|ϕ|2 − n(n− 2)2

2(n− 1)s
H2 + n(c−H2)

)
dv(3.5)

Now, letting ε → 0 in (3.5) and writing f2 =
∑
i,j

(hn+1
ij )2−nH2 and g2 =

∑
i,j,β ̸=n+1

(hβ
ij)

2,

we get

0 ≥ n+ 2

n

k1
1 + t

∥f∥22∗ − n+ 2

n

k2
t
∥f∥22 +

n+ 2

n

k1
1 + t

∥g∥22∗ − n+ 2

n

k2
t
∥g∥22

+

∫
M

|ϕ|2
( |ϕ|2

p
− s

2
|ϕ|2 − n(n− 2)2

2(n− 1)s
H2 + n(c−H2)

)
dv(3.6)

Note that f2 + g2 = |ϕ|2 and ∥f∥22 + ∥g∥22 = ∥ϕ∥22. Then, from (3.6), Minkowski
inequality

∥ϕ∥22∗ =
∥∥|ϕ|2∥∥ 2∗

2

= ∥f2 + g2∥ 2∗
2
≤ ∥f2∥ 2∗

2
+ ∥g2∥ 2∗

2
= ∥f∥22∗ + ∥g∥22∗

and Hölder’s inequality

∫
M

S|ϕ|2 ≤ ∥S∥n
2
∥ϕ∥22∗ ,
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we obtain

0 ≥ n+ 2

n

k1
1 + t

∥ϕ∥22∗ − n+ 2

n

k2
t
∥ϕ∥22

+

∫
M

|ϕ|2
( |ϕ|2

p
− s

2
|ϕ|2 − n(n− 2)2

2(n− 1)s
H2 + n(c−H2)

)
dv

≥ n+ 2

n

k1
1 + t

∥ϕ∥22∗ − n+ 2

n

k2
t
∥ϕ∥22

+

∫
M

|ϕ|2
(
− s

2
S +

ns

2
H2 − n(n− 2)2

2(n− 1)s
H2 + n(c−H2)

)
dv

≥
(
ns

2
H2 − n(n− 2)2

2(n− 1)s
H2 + n(c−H2)− n+ 2

n

k2
t

)
∥ϕ∥22

+

(
n+ 2

n

k1
1 + t

− s

2
∥S∥n

2

)
∥ϕ∥22∗ .(3.7)

Since the mean curvature H is bounded away from zero, if we set |H| ≥ k > 0 and

choose t = t(s) = 2sk2(n−1)(n+2)
n2(n−2)2k2 ≥ 2sk2(n−1)(n+2)

n2(n−2)2H2 , we have

n(n− 2)2

2(n− 1)s
H2 ≥ n+ 2

n

k2
t

and

ns

2
H2 − n(n− 2)2

2(n− 1)s
H2 + n(c−H2)− n+ 2

n

k2
t

≥ ns

2
H2 − n(n− 2)2

(n− 1)s
H2 + n(c−H2)

=
n

s

(
H2

2
s2 + (c−H2)s− (n− 2)2

n− 1
H2

)
.

So, taking

s > α(n,H) =
1

H2

(√
(c−H2)2 +

2(n− 2)2

n− 1
H4 − (c−H2)

)

and t(s) = 2sk2(n−1)(n+2)
n2(n−2)2k2 , we have

(3.8)
ns

2
H2 − n(n− 2)2

2(n− 1)s
H2 + n(c−H2)− n+ 2

n

k2
t

≥ 0.

Hence, if c = 0, we take β(n) = α(n,H) =
√
1 + 2(n−2)2

n−1 + 1; if c > 0, we take

β(n) = 2 +
√
2(n−2)√
n−1

> α(n,H). Therefore, if

∥S∥n
2
< C(n) = sup

s>β(n)

2(n+ 2)k1
ns(1 + t(s))

,

we obtain |ϕ|2 ≡ 0 and Mn is a totally umbilical.



Global pinching theorem for spacelike submanifolds 21

References

[1] K. O. Araujo, E. R. Barbosa, Pinching theorems for compact spacelike submani-
folds in semi-Riemmannian space forms, Diff. Geom. Appl. 31(2013), 672-681.

[2] R. Aiyama, Compact space-like m-submanifolds in a pseudo-Riemannian sphere
Sm+p
p (c), Tokyo J. Math. 18(1995), 81-90.

[3] K. Akutagawa, On spacelike hypersurfaces with constant mean curvature in the
de Sitter space, Math. Z. 196(1987), 13-19.

[4] A. Brasil, R. M. B. Chaves, M. Mariano, Complete spacelike submanifolds with
parallel mean curvature vector in a semi-Riemannian space form, J. Geom. Phys.
56(2006), 2177-2188.

[5] E. Calabi, Examples of Bernstein problems for some nonlinear equations, Math.
Proc. Cambridge Phil. Soc. 82(1977), 489-495.

[6] F. E. C. Camargo, R. M. B. Chaves, L. A. M. Sousa Jr, Rigidity theorems for
complete spacelike hypersurfaces with constant scalar curvature in de Sitter space,
Diff. Geom. Appl. 26(2008), 592-599.

[7] F. E. C. Camargo, R. M. B. Chaves, L. A. M. Sousa Jr, New characterizations of
complete spacelike submanifolds in semi-Riemannian space forms, Kodai Math.
J., 32(2009), 209-230.

[8] A. Caminha, A rigidity theorem for complete CMC hypersurfaces in Lorentz man-
ifolds, Diff. Geom. Appl. 24(2006), 652-659.

[9] X. L. Chao, On complete spacelike submanifolds in semi-Riemannian space forms
with parallel normalized mean curvature vector, Kodai Math. J. 34(2011), 42-54.

[10] X. L. Chao, Complete spacelike hypersurfaces in the de Sitter space, Osaka J.
Math. 50(2013), 715-723.

[11] Q. M. Cheng, Complete spacelike hypersurfaces of a de Sitter space with R = kH,
Mem, Fac. Sci, Kyushu Univ, 44(1990), 67-77.

[12] Q. M. Cheng, Complete space-like submanifolds in de Sitter space with parallel
mean curvature vector, Math. Z. 206(1991), 333-339.

[13] Q. M. Cheng, S. Ishikawa, Spacelike hypersurfaces with constant scalar curvature,
Manuscripta Math. 95(1998), 499-505.

[14] R. M. B. Chaves, L. A. M. Sousa Jr., On complete spacelike submanifolds in the
De Sitter space with parallel mean curvature vector, Rev. Un. Mat. Argentina
47(2006), 85-98.

[15] R. M. B. Chaves, L. A. M. Sousa Jr., Some applications of a Simons′ type for-
mula for complete spacelike submanifolds in a semi-Riemannian space form, Diff.
Geom. Appl. 25(2007), 419-432.

[16] S. Y. Cheng, S. T. Yau, Hypersurfaces with constant scalar curvature, Math.
Ann. 255(1977), 195-204.

[17] A. J. Goddard, Some remarks on the existence of spacelike hypersurfaces of con-
stant mean curvature, Math. Proc. Cambridge Philos. Soc. 82(1977), 489-495.

[18] T. Ishihara, Maximal spacelike submanifolds of a pseudo-Riemannian space of
constant curvature, Mich. Math. J. 35(1988), 345-352.

[19] H. Li, Global rigidity theorems of hypersurfaces, Ark. Math. 35(1997), 327-351.

[20] J. M. Lin, C. Y. Xia, Global pinching theorems for even dimensional minimal
submanifolds in a unit sphere, Math.Z. 201(1989), 381-389.



22 Xiaoli Chao, Bin Shen

[21] J. Marsden, F. Tipler, Maximal hypersurfaces and foliations of constant mean
curvature in general relativity, Phys. Rep. 66(1980), 109-139.

[22] S. Montiel, An integral inequality for compact spacelike hypersurfaces in de Sitter
space and applications to the case of constant mean curvature, Indiana Univ.
Math. J. 37 (1988), 909-917.

[23] S. Montiel, A characterization of hyperbolic cylinders in the de Sitter space, To-
hoku Math. J. 48 (1996), 23-31.

[24] S. Nishikawa, On spacelike hypersurfaces in a Lorentzian manifold, Nagoya Math.
J. 95(1984), 117-124.

[25] W. Santos, Submanifolds with parallel mean curvature vector in spheres, Tohoku
Math. J. 46(1994), 403-415.

[26] C. L. Shen, A global pinching theorem for minimal hypersurfaces in a sphere,
Proc. Amer. Math. Soc. 105(1989), 192-198.

[27] S. Stumbles, Hypersurfaces of constant mean extrinsic curvature, Ann. Phys.
133(1981), 28-56.

[28] H. W. Xu, Ln/2-pinching theorems for submanifolds with parallel mean curvature
in a sphere, J. Math. Soc. Japan. 46(1994), 503-515.

[29] Y. Zheng, Spacelike hypersurfaces with constant scalar curvature in the De Sitter
spaces, Diff. Geom. Appl. 6(1996), 51-54.

Authors’ address:

Xiaoli Chao, Bin Shen

Department of Mathematics,
Southeast University, 210096, Nanjing, China.

E-mail: xlchao@seu.edu.cn , shenbin@seu.edu.cn


