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Abstract. We investigate the elliptic curves, expressed in the Weierstrass
form, from a differential geometric viewpoint. The curvature function is
carefully studied and bounds for the number of vertices of the elliptic
curves are given. As a generalization, a program for the classification of
algebraic curves is sketched, using geometric invariants.
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1 Introduction

The growing interest in the study of elliptic curves is motivated, mainly, by their
applications in Criptography ([1], [2]). Despite a huge amount of litterature about
them, several important problems remain still open. One such a problem is their
classification over the real field. The topological and the affine classification follow
from the respective classifications of cubics ([5], [6]; see also [3]).

The metric clasification of the cubics (in particular, of the elliptic curves) was
pointed as an interesting open field in 2007 by Viro, in a widely disseminated lecture.

In §2, we begin the study of elliptic curves (in their Weierstrass form), using
techniques of classical differential geometry. We show that these elliptic curves are
completely determined by a point and the velocity vector in that point, behaving like
geodesics. We look for the number of their vertices. Numerical simulations lead us to
the following conjecture:

Any elliptic curve in the Weierstrass form y2 = x3 + ax+ b has: 4 or 6 vertices,
if 4a3 + 27b2 > 0; 8 or 10 vertices, if 4a3 + 27b2 < 0.

Additional support for the conjecture is provided by the main result of this paper
(§3):

Consider an elliptic curve in the Weierstrass form.
(i) If 4a3 + 27b2 > 0, then the number of vertices is an even number between 4

and 16.
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(ii) If 4a3 + 27b2 < 0, then the number of vertices is an even number between 8
and 18.

(iii) Suppose a = 0. If b < 1
27 , then the number of vertices is 4. If b > 1

27 , then
then the number of vertices is 6.

(iv) Suppose b = 0. If a > 0, then the number of vertices is 4. If a < −1
9 , then

the number of vertices is 10.If −1
9 ≤ a < 0, then the number of vertices is 8.

Several examples, supporting the conjecture, are also provided.

In §4 we sketch a program for classifying the real, non-singular, irreducible alge-
braic curves, using three integer invariants. For conics and (partially) for cubics, we
give the tables with the respective classes.

2 The differential geometry of elliptic curves

All the elliptic curves considered herein will have real coefficients. Define

EL1 = {(a, b) ∈ R2 | 4a3 + 27b2 > 0} , EL2 = {(a, b) ∈ R2 | 4a3 + 27b2 < 0}

and EL = EL1 ∪ EL2. For each (a, b) ∈ EL, consider the elliptic curve Ea,b, given
by the implicit equation in R2, written in the Weierstrass form:

(2.1) y2 = x3 + ax+ b.

The set Ea,b has one or two connected components if (a, b) belongs to EL1 or EL2,
respectively. We may parameterize the upper branch of Ea,b as

(2.2) c(t) = (t,
√

t3 + at+ b).

The geometric properties corresponding to the lower branch will be deduced by sym-
metry; for the properties around the points of intersection of Ea,b with the horizontal
axis, we shall use the implicit form. The curve c is defined onD = {t ∈ R | t3+at+b >
0}. The curvature function of c is k : D → R,

(2.3) k(t) = 2
3t4 + 6at2 + 12bt− a2

(9t4 + 4t3 + 6at2 + 4at+ a2 + 4b)3/2

and its derivative

(2.4)

k′(t) = 12[−9t7 − t6 − 33at5 − (5a+ 90b)t4 + (5a2 − 20b)t3+

+(5a2 − 24ab)t2 + (5a3 + 4ab)t+ a3 + 8b2 + 2a2b]×

×(9t4 + 4t3 + 6at2 + 4at+ a2 + 4b)−5/2.

We can express the curvature function, using the implicit equation of Ea,b:

(2.5) k(x, y) = −2
9x4 + 6ax2 − 12xy2 + a2

(9x4 + 6ax2 + 4y2 + a2)3/2
.

Proposition 2.1. Let t1 ∈ D be an arbitrary fixed parameter for c. Then the curve
c (hence also Ea,b) is completely determined by c(t1) and ċ(t1).
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Proof. Denote (x1, y1) := c(t1) and (1, z1) := ċ(t1). A short calculation leads to

(2.6) a = 2y1z1 − 3x2
1 , b = y21 − 4x3

1 − 2x1y1z1.

It follows that both c and Ea,b are completely determined. �
Remarks 2.2. (i) The Proposition 2.1 exhibits an interesting similarity of elliptic
curves with the geodesics: both kinds of curves are completely determined by (their
value in) a point and the ”velocity” vector there.

(ii) Let x1, y1 and z1 three (arbitrary and fixed) real numbers (y1 > 0), such that
4(2y1z1 − 3x2

1)
3 + 27(y21 − 4x3

1 − 2x1y1z1)
2 ̸= 0, i.e. the triple (x1, y1, z1) does not

belong to the algebraic surface

(2.7) 32y3z3 − 36x2y2z2 + 648x4yz + 324x6 + 27y4 − 216x3y2 − 108xy3z = 0.

Then there exists a unique elliptic curve y2 = x3 + ax + b, with a and b subject to
(2.6), such that it passes through (x1, y1) and its velocity there be (1, z1).

The surface (2.7) is cone-like; the two halves correspond to EL1 and EL2, and
may be characterized by strict inequalities in (2.7), instead of equality.

Proposition 2.3. There exists a unique non-negative t0 ∈ D, zero of the curvature
function k.

Proof. Consider the equation k(t) = 0. From (2.3), we get

(2.8) 3t4 + 6at2 + 12bt− a2 = 0

or, in equivalent form,
12t(t3 + at+ b) = (3t2 + a)2

and deduce that the solutions of (2.8) must be positive. Denote by φ(t) the left side
of (2.8). The function φ : D → R has the derivative φ′ = 12(t3 + at + b) strictly
positive on D.

Denote by (t1, 0) a point of intersection of Ea,b with the axis Ox; as sgnφ(t1) =
sgnk(t1, 0) < 0, we deduce that equation (2.8) has a unique solution t0 > 0. We
denote A = (t0,

√
t30 + at0 + b). �

Remarks 2.4. (i) In fact, the core of Proposition 2.3. is well-known, under another
formalism, in the algebraic theory of elliptic curves. The point A has order three in
the group associated to Ea,b and is the inflexion point, unique on the upper branch
of the curve Ea,b.

(ii) Consider Ea,b an elliptic curve given by (2.1). Fix a non-null real number α and
make a coordinate change

(2.9) x = α2x̃ , y = α3ỹ.

Thus, Ea,b transforms to Ẽã,b̃, where a = α4ã and b = α6b̃.

A simple calculation shows that, in general, Ea,b and Ẽã,b̃ have distinct curvature

functions k and k̃, so the curvature is not an invariant for (2.9). Instead, we have the

Proposition 2.5. Let Ea,b and Ẽã,b̃ be as in the previous remark. Let t0 be the zero

of the curvature function k. Then the zero of the curvature function k̃ is t̃0 = α−2t0.
(The zero of the curvature function is an invariant with respect to (2.9)).
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3 The vertices of the elliptic curves

Theorem 3.1. The following assertions hold true:

(i) The number of vertices of an elliptic curve is an even number from 4 to 18.

(ii) If 4a3 + 27b2 > 0, then the number of vertices is an even number from 4 to 16.

(iii) If 4a3 + 27b2 < 0, then the number of vertices is an even number from 8 to 18.

(iv) Suppose a = 0. If b < 1
27
, then the number of vertices is 4. If b > 1

27
, then then the

number of vertices is 6.

(v) Suppose b = 0. If a > 0, then the number of vertices is 4. If a < − 1
9
, then the number

of vertices is 10. If − 1
9
≤ a < 0, then the number of vertices is 8.

Proof. We use a ”brute force” method, by checking case-by-case.

(i) Step 1. Consider Ea,b an elliptic curve, given by (2.1). A vertex is a critical point
of the curvature function (2.5). So, we are looking for solutions of the system:

f(x, y) = 0 , kx(x, y) fy(x, y)− ky(x, y) fx(x, y) = 0.

The second equation writes, successively:

2y kx(x, y) + (3x2 + a) ky(x, y) = 0 ⇔

y{y2(9x4 + 6ax2 + 4y2 + a2) + 2x(3x2 + a)(9x4 + 6ax2 − 12xy2 + a2)} = 0.

The points (x, 0) on the curve are solutions, so any point of order 2 is a vertex (by
abuse, the point at infinity O is considered a vertex also). (Hence, there exist at least
2 or 4 vertices, accordingly to the type of the curve).

The other vertices come in pairs; so, it suffices to look for those of the form c(t),
where t is a solution of the equation k′(t) = 0, with the function k′ given in (2.4). By
symmetry with respect to the Ox-axis, we find their opposites. Obviously, the total
number of vertices must be even.

We consider the function h : D → R,

h(t) = −9t7 − t6 − 33at5 − (5a+ 90b)t4 + (5a2 − 20b)t3+

+(5a2 − 24ab)t2 + (5a3 + 4ab)t+ a3 + 8b2 + 2a2b.

The equation k′(t) = 0 is equivalent to h(t) = 0. As this polynomial function has the
degree 7, it may have 1,3,5 or 7 real roots. It may also happen that some of these
real roots do not belong to D.

We deduce that the number of vertices is: at least 2 and at most 16, if (a, b) ∈ EL1;
at least 4 and at most 18, if (a, b) ∈ EL2. In what follows, we shall refine the lower
bounds.

Step 2. Denote t1 ∈ D the (biggest) root of the equation t31+at1+b = 0 (if (a, b) ∈
EL1, there is only one root). From relation (2.5), we deduce k(t1, 0) = −2(3t21+a)−1;
this value of the curvature is strictly negative, as (3t21 + a) > 0 nearby t1. Thus the
curvature function k has a (strictly negative) minimum in t1, then goes toward the
(unique) zero t0. We have k′(t1) = 0 and for some values greater than t1, the function
k′ is positive. As limt→∞ k′(t) < 0, it follows that there exists at least one more zero
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of k′, greater than t1. Together with its opposite, it increases the lower bound of the
numbers of vertices by 2.

On another hand, if (a, b) ∈ EL2, the bounded component of Ea,b is a simple,
closed curve; using the Four Vertices Theorem, it follows that on that component
there exist at least 4 vertices of that curve.

From these two arguments, we deduce that there exist at least 4 vertices, if (a, b) ∈
EL1 and at least 8 vertices, if (a, b) ∈ EL2. The lower bound estimate in (i),(ii) and
(iii) is proved.

(iv) Suppose a = 0. The function h and its derivative become

h(t) = −9t7 − t6 − 90bt4 − 20bt3 + 8b2

h′(t) = −3t2g(t) , where g(t) = 9t4 + 3t2 + 60bt+ 10b

As g′′ > 0, it follows that g′ has a unique real root; we deduce that g has at most two
real roots. Hence h has at most three real roots.

Denote t1 = (−b)
1
3 ; we have D = (t1,∞).

Consider the case b < 0. We have g′(t1) > 0, h(t1) > 0, g′ positive and strictly
increasing on D.

If g(t1) > 0, then h is strictly decreasing on D from positive values to −∞. If
g(t1) ≤ 0, then h is strictly increasing from h(t1) to a positive maximum, and strictly
decreasing afterthat to −∞. In both cases, h has one, and only one, zero on D; in
this case, the curve has 4 vertices.

Consider the case b > 0. We have g′(0) > 0, g(0) > 0, h′(0) = 0 and h(0) > 0.
Suppose first that b > 0.125, i.e. g′(t1) > 0. We deduce g(t1) < 0 and h(t1) < 0;

it follows that h passes on D from negative to positive, then again to negative values,
so it has exactly two zeroes.This implies that the elliptic curve has 6 vertices.

Suppose now that 0 < b < 0.125, so g′(t1) < 0. As in the previous case, h has a
unique zero on (0,∞).We shall refine the study for (t1, 0).

Denote b1 = ((−5 +
√
178)/51)3 ≈ 0.00437 and b2 = ((5 +

√
178)/51)3 ≈ 0.0465.

We have g(t1) > 0 if, and only if, b ∈ (b1, b2).

It is an easy calculation to show that h(t1) > 0 if, and only if, b < 1/27 ≈ 0.037.

For b ∈ (b2, 0.125) we have g′(t1) < 0, g(t1) < 0, h′(t1) > 0 and h(t1) < 0. We
derive that h has a unique zero on (t1, 0); in this case, the curve has 6 vertices.

For b ∈ (1/27, b2) we have g′(t1) < 0, g(t1) > 0, h′(t1) < 0 and h(t1) < 0. The
function h has a unique zero on (t1, 0); in this case, the curve has 6 vertices.

For b ∈ (0, b1) we have g′(t1) < 0, g(t1) > 0, h′(t1) < 0 and h(t1) > 0. The
function h has no zero on (t1, 0); in this case, the curve has 4 vertices.

For b ∈ (b1, 1/27), we have g′(t1) < 0, g(t1) > 0, h′(t1) < 0 and h(t1) > 0. There
exist t5 ∈ (t1, 0) such that g′(t5) = 0. As g(t5) ≥ 0, we get h strictly decreasing on
(t1, 0), and has no more zeros there.In this case, the curve has 4 vertices.

(v) Suppose b = 0. The function h becomes

h(t) = −9t7 − t6 − 33at5 − 5at4 + 5a2t3 + 5a2t2 + 5a3t+ a3
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Consider the case a > 0. Then, the derivatives h(4), h(5), h(6) are strictly negative
on D = (0,∞) and h(0) > 0, h′(0) > 0, h′′(0) > 0,h(3)(0) > 0, h(4)(0) < 0, h(5)(0) <
0, h(6)(0) < 0.By studying the variation of h, h′, h′′, h′′′, we conclude that on D, the
function h has at most one zero. This implies that the elliptic curve has 4 vertices.

Consider the case a < 0. Then D = (−
√
−a, 0)

∪
(
√
−a,∞).

We calculate h(6)(
√
−a) < 0, h(5)(

√
−a) < 0, h(4)(

√
−a) < 0, h(3)(

√
−a) > 0,

h′′(
√
−a) > 0,h′(

√
−a) > 0,h(

√
−a) > 0. By studying the variation of h on (

√
−a,∞),

we deduce h is strictly increasing up to a positive value, then strictly decreasing to
−∞; thus, on (

√
−a,∞), h has one, and only one, zero.

If −1/3969 < a < 0, then h(6)(−
√
−a) < 0, h(5)(−

√
−a) > 0, h(4)(−

√
−a) < 0,

h(3)(−
√
−a) > 0, h′′(−

√
−a) > 0, h′(−

√
−a) < 0, h(−

√
−a) > 0. Moreover, h(6) < 0

on D. By studying the variation of h on (−
√
−a, 0), we deduce h in strictly decreasing

from a positive value to a negative value; thus, on (−
√
−a, 0), h has one, and only

one, zero.This implies that the elliptic curve has 8 vertices.

If a ≤ −1/3969, then h(6) > 0 on [−
√
−a,−1/63) < 0, h(6)(−1/63) = 0 and

h(6) < 0 on (−1/63, 0] < 0. We study the variation of h and its derivatives up to the
fifth, on [−

√
−a,−1/63) and [−1/63, 0). The key which provides the two different

behaviors is given by the sign of h(−
√
−a). In fact, we have h(−

√
−a) > 0 if, and

only if, a > − 1
9 , leading to a unique zero of h in [−

√
−a, 0) and to a total of 8 vertices

for the elliptic curve. The complementary case involves two zeros of h in [−
√
−a, 0)

and to a total of 10 vertices. �

Remark 3.2. The number of vertices is not invariant under the transformations
(2.9). Indeed, the curve E0,1 has 6 vertices and the curve E0,10−6 has 4 vertices (in
this case, α = 10).

Examples 3.3. (Case 4a3 + 27b2 > 0) (i) Suppose a = b = 1. Then y2 = x3 + x+ 1.
The unique real root of the equation x3 + x + 1 = 0 is -0.68233. The function k
vanishes in 0.08014 (and -1.2226, not in D). The function k′ vanishes in -0.475927,
in 0.521333 (and -1.66173, not in D). So, the curve has 6 vertices: O, (-0.68233,0), (-
0.475927,0.645579), (0.521333,0.580495), (-0.475927,-0.645579), (0.521333,-0.580495).

(ii)Suppose a = 1, b = 0. Then y2 = x3 + x. The unique real root of the equation
x3 + x = 0 is 0. The function k vanishes in 0.39332 (and -0.39332, not in D). The
function k′ vanishes in 1.86 (and -0.234415 and -2.06399, not in D). So, the curve
has 4 vertices: O, (0,0), (1.86,2.88), (1.86,-2.88).

Examples 3.4. (Case 4a3 + 27b2 < 0) (i)Suppose a = −3, b = 1.9. Then y2 = x3 −
3x+1.9. The real roots of the equation x3−3x+1.9 = 0 are -1.9881, 0.811401,1.1774.
The function k vanishes in 1.51176 (and -2.9811, not in D). The function k′ vanishes
in -1.14733, 0.38675, 1.92053 (and -0.99721 and -3.93491, not in D). So, the curve has
10 vertices: O, (-1.9881,0), (0.811401,0),(1.1774,0),(-1.14733,1.957), (-1.14733,-1.957),
(0.38675,0.893), ((0.38675,-0.893), (1.92053,2.285), (1.92053,-2.285).

(ii) Suppose a = −3, b = −1. Then y2 = x3 − 3x − 1. The real roots of the
equation x3 + x = 0 are -1.53, -0.347,1.879. The function k vanishes in 2.79. The
function k′ vanishes in -1.04, 3.75 (and -2.83, -0.33 and 0.89, not in D). So, the curve
has 8 vertices: O, (-1.53,0), (-0.347,0),(1.879,0),(-1.04,0.99), (-1.04,-0.99), (3.75,6.36),
(3.75,-6.36).
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4 Program for the metric classification of
algebraic curves

Consider f ∈ R[X,Y ] an irreducible polynomial of degree n and C : f(x, y) = 0

a non-singular algebraic curve. Denote fx = ∂f
∂x , fxy = ∂2f

∂x∂y ,... and so on. The
curvature function of C is given by

k(x, y) =
α(x, y)

(β(x, y))3/2
,

where α, β ∈ R[X,Y ] and

α = f2
y fxx − 2fxfyfxy + f2

xfyy , β = f2
x + f2

y .

Obviously, deg β = (n − 1)2; also, deg α ≤ n2 − n − 1 and one can easily provide
examples with the upper limit effectively reached. We denote the number of the roots
of α by zer(k). The number deg α is invariant under projective transformations, but
(in general) is not invariant under Cremona transformations.

A vertex of C is a critical point of the curvature function. We denote the number
of vertices by ver(C). The number zer(k) (or ver(C)) is infinite, if and only if C is a
line (or a line or a circle, respectively).

Theorem 4.1. (i) If zer(k) is finite, then zer(k) ≤ n3 − n2 − n.

(ii) If ver(C) is finite, then ver(C) ≤ 2n3 − 2n2 − 2n.

Proof. (i) We have deg f = n, deg α ≤ n2 − n − 1. By the theorem of Bezout, the
number of solutions for the system

f(x, y) = 0 , α(x, y) = 0

is at most n(n2 − n− 1).

(ii) The critical points of the curvature function are solutions of the system

(2αx β − 3α βx)fy − (2αy β − 3α βy)fx = 0 , f(x, y) = 0.

The degree of the first polynomial is at most 2n2 − 2n− 2. We apply the theorem of
Bezout and obtain as maximum number of solutions n(2n2 − 2n− 2). �

Remark 4.2. We propose a classification program for the real, algebraic, non-
singular, irreducible curves having as only invariants the following positive integers:
deg α, zer(k) and ver(C).

We exclude the lines (i.e. n=1), for which we have: deg α = 0, zer(k) = ∞ and
ver(C) = ∞.

For the conics (i.e. n=2), the classification is contained in Table 1. For the
cubics (i.e. n=3), we give the (uncomplete) classification, in Table 2. Here, the
families of cubics are those in ”canonical form” (Newton [4]), described by: (I): xy =
ax3 + bx2 + cx+ d; (II): y2 = ax3 + bx2 + cx+ d; (III): xy2 + ey = ax3 + bx2 + cx+ d;
(IV): y = ax3 + bx2 + cx+ d.
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Table 1: Conics classification

Conic deg α zer(k) ver(C)
parabola 0 0 1
hyperbola 2 0 2
(proper)ellipse 2 0 4
circle 0 0 ∞

Table 2: Cubics classification

cubic degα zer(k) ver(C)
I 2 1 ≤ 7
II 4 2 ≤ 18
III 5 ≤ 15 ≤ 24
IV 1 1 2

We remark that the family (IV) is completely classified, by an elementary study of a
real function of one variable (which we omit here). For the family (II), the (partial)
result rests on our study in §3. For the resting two families, the exact classification
(beyond the upper limitation for zer(k) and ver(C)) is (still) an open problem.

Remark 4.3. Another important (open) problem is the maximal invariance group
of this (projected) classification for the algebraic curves. Obviously, the isometries
group of Rn must be a subgroup into it. As seen in the elliptic curves classification,
it may be enlarged. To what extent - this needs further investigation.
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