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Abstract. The focus of this article is Ionescu-Weitzenböck’ s inequality
using the circumcircle mid-arc triangle. The original results include: (i) an
improvement of the Finsler-Hadwiger’s inequality; (ii) several refinements
and some applications of this inequality; (iii) a new version of the Ionescu-
Weitzenböck inequality, in an inner product space, with applications in
differential geometry.
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1 History of Ionescu-Weitzenböck’s inequality

Given a triangle ABC, denote a, b, c the side lengths, s the semiperimeter, R the cir-
cumradius, r the inradius, ma and ha the lengths of median, respectively of altitude
containing the vertex A, and ∆ the area of ABC. In this paper we give a similar ap-
proach related to Ionescu-Weitzenböck’s inequality and we obtain several refinements
and some applications of this inequality.

R. Weitzenböck [12] showed that: In any triangle ABC, the following inequality
holds:

(1.1) a2 + b2 + c2 ≥ 4
√
3∆.

In the theory of geometric inequalities Weitzenböck’s inequality plays an important
role, its applications are very interesting and useful. This inequality was given to
solve at third International Mathematical Olympiad, Veszprém, Ungaria, 8-15 iulie
1961.

I. Ionescu (Problem 273, Romanian Mathematical Gazette (in Romanian), 3, 2
(1897); 52), the founder of Romanian Mathematical Gazette, published in 1897 the
problem: Prove that there is no triangle for which the inequality

4∆
√
3 > a2 + b2 + c2

can be satisfied. We observe that the inequality of Ionescu is the same with the inequal-
ity of Weitzenböck. D. M. Bătineţu-Giurgiu and N. Stanciu (Ionescu-Weitzenböck’s
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type inequalities (in Romanian), Gazeta Matematică Seria B, 118, 1 (2013), 1–10) sug-
gested that the inequality (1.1) must be named the inequality of Ionescu-Weitzenböck.

A very important result is given in (On Weitzenböck inequality and its general-
izations, 2003, [on-line at http://rgmia.org/v6n4.php]), where S.-H. Wu, Z.-H. Zhang
and Z.-G. Xiao proved that Ionescu-Weitzenböck’s inequality and Finsler-Hadwiger’s
inequality

(1.2) a2 + b2 + c2 ≥ 4
√
3∆ + (a− b)

2
+ (b− c)

2
+ (c− a)

2
,

are equivalent. In fact, applying Ionescu-Weitzenböck’s inequality in a special trian-
gle, we deduce Finsler-Hadwiger’s inequality. C. Lupu, R. Marinescu and S. Monea
(Geometrical proof of some inequalities Gazeta Matematică Seria B (in Romanian),
116, 12 (2011), 257–263) treated this inequality and A. Cipu (Optimal reverse Finsler-
Hadwiger inequalities, Gazeta Matematică Seria A (in Romanian), 3-4/2012, 61–68)
shows optimal reverse of Finsler-Hadwiger inequalities.

The more general form

∆ ≤
√
3

4

(
ak + bk + ck

3

) 2
k

, k > 0,

of Ionescu-Weitzenböck’s inequality appeared in a problem of C. N. Mills, O. Dunkel
(Problem 3207, Amer. Math. Monthly, 34 (1927), 382–384). A number of eleven
proofs of the Weitzenböck’s inequality were presented by A. Engel [4]. N. Minculete
and I. Bursuc (Several proofs of the Weitzenböck Inequality, Octogon Mathematical
Magazine, 16, 1 (2008)) also presented several proofs of the Ionescu-Weitzenböck
inequality. In (N. Minculete, Problema 26132, Gazeta Matematicã Seria B (in Roma-
nian), 4 (2009)) is given the following inequality

a2 + b2 + c2 ≥ 4∆

(
tan

A

2
+ tan

B

2
+ tan

C

2

)
,

which implies the inequality of Ionescu – Weitzenböck, because tan A
2 + tan B

2 +

tan C
2 ≥

√
3.

The papers [1]-[12] provides sufficient mathematical updates for obtaining the
original results included in the following sections.

2 Refinement of Ionescu-Weitzenböck’s inequality

Let us present several improvements of Ionescu – Weitzenböck’s inequality.

Theorem 2.1. Any triangle satisfies the following inequality

(2.1) a2 + b2 + c2 − 4
√
3∆ ≥ 2

(
m2

a − h2
a

)
.

Proof. Using the relation 4m2
a = 2

(
b2 + c2

)
− a2 , the inequality (2.1) is equivalent

with

a2 + b2 + c2 − 4
√
3∆ ≥ 2

2
(
b2 + c2

)
− a2

4
− 2h2

a = b2 + c2 − a2

2
− 2h2

a,
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i.e. 3a2

2 + 2h2
a ≥ 4

√
3∆, which is true, because

3a2

2 + 2h2
a ≥ 2

√
3a2

2 · 2h2
a = 2

√
3aha = 4

√
3∆. �

Given a triangle ABC and a point P not a vertex of triangle ABC, we define the
A1- vertex of the circumcevian triangle as the point other than A in which the line
AP meets the circumcircle of triangle ABC, and similarly for B1 and C1. Then the
triangle A1B1C1 is called the P− circumcevian triangle of ABC [7]. The circumcevian
triangle associated to the incenter I is called circumcircle mid-arc triangle. Next,
we give a similar approach as in [12] related to Ionescu-Weitzenböck’ s using the
circumcircle mid-arc triangle.

Theorem 2.2. Ionescu-Weitzenböck’s inequality and Finsler-Hadwiger’s inequality
are equivalent.

Proof. From inequality (1.2), we obtain that a2+b2+c2 ≥ 4
√
3∆. Therefore, it is easy

to see that Finsler - Hadwiger’s inequality implies Ionescu-Weitzenböck’s inequality.

Now, we show that Ionescu-Weitzenböck’s inequality implies Finsler - Hadwiger’s
inequality. Figure 1

Denote by a1, b1, c1 the opposite sides of circumcircle mid-arc triangle A1B1C1,
A1, B1, C1 the angles, s1 the semiperimeter, ∆1 the area, r1 the inradius and R1

the circumradius (see Figure 1). We observe that R1 = R. In triangle A1B1C1

we have the following: m(B̂A1C) = B+C
2 = π

2 − A
2 , which implies, using the sine

law, that a1 = 2R cos A
2 = 2R

√
s(s−a)

bc = 2R
√

s
abc

√
a (s− a) =

√
R
r

√
a (s− a). In

analogous way, we obtain b1 =
√

R
r

√
b (s− b) and c1 =

√
R
r

√
c (s− c). We make

some calculations and we obtain the following

∑
cyclic

a21 =
∑
cyclic

(√
R

r

√
a (s− a)

)2

=
R

r

∑
cyclic

a (s− a)

=
R

2r

∑
cyclic

a2 −
∑
cyclic

(a− b)
2

(2.2)

and

(2.3) ∆1 =
a1b1c1
4R1

=
8R3 cos A

2 cos B
2 cos C

2

4R
= 2R2

∏
cyclic

cos
A

2
= 2R2 s

4R
=

R

2r
∆.

By applying Ionescu-Weitzenböck’s inequality in the triangle A1B1C1, we deduce the
following relations a21+b21+c21 ≥ 4

√
3∆1, which implies the inequality, using relations

(2.2) and (2.3),

∑
cyclic

a21 =
R

2r

∑
cyclic

a2 −
∑
cyclic

(a− b)
2

 ≥ 4
√
3∆1 =

R

2r
4
√
3∆,
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which is equivalent to ∑
cyclic

a2 −
∑
cyclic

(a− b)
2 ≥ 4

√
3∆.

This is in fact Finsler-Hadwiger’s inequality. �

Remark 2.1. By (2.3), using the Euler inequality (R ≥ 2r), we obtain that ∆1 ≥ ∆.

Remark 2.2. The orthocenter of circumcircle mid-arc triangleA1B1C1 is the incenter
I of triangle ABC.

Remark 2.3. If H is the orthocenter of the triangle ABC and A2B2C2 is H−
circumcevian triangle of ABC, then the lines A2A,B2B,C2C are the bisectors of the
angles of triangle A2B2C2. From Remark 1, we get ∆ ≥ ∆2, where ∆2 is the area of
the triangle A2B2C2.

Lemma 2.3. In any triangle ABC there is the following equality:

a2 + b2 + c2 = 4∆(cotA+ cotB + cotC) .

Proof. We observe that a2 + b2 + c2 = b2 + c2 − a2 + a2 − b2 + c2 + a2 + b2 − c2 =

=
∑
cyclic

2bc cosA = 4∆
∑
cyclic

cosA

sinA
,

which implies the equality of the statement. �

Theorem 2.4. Any triangle ABC satisfies the following equality

(2.4) a2 + b2 + c2 = 4∆
∑
cyclic

tan
A

2
+
∑
cyclic

(a− b)
2
.

Proof. If we apply the equality of Lemma 2.3 in the triangle A1B1C1, we obtain the
relation a21 + b21 + c21 = 4∆1 (cotA1 + cotB1 + cotC1). Therefore, we have

∑
cyclic

a21 =
R

2r

∑
cyclic

a2 −
∑
cyclic

(a− b)
2

 = 4
R

2r
∆
∑
cyclic

tan
A

2
,

which proves the statement. �

Remark 2.4. If use the inequality tan A
2 +tan B

2 +tan C
2 ≥

√
3 , which can be proved

by Jensen’s inequality, in relation (2.4), then we deduce Finsler-Hadwiger’s inequality,
which proved Ionescu-Weitzenböck’s inequality.

Next we refined the Finsler-Hadwiger’s inequality.

Theorem 2.5. In any triangle there are the following inequalities:

1) a2 + b2 + c2 ≥ 4
√
3∆ +

∑
cyclic

(a− b)
2
+ 4Rr sin2

B − C

2
,

2) a2 + b2 + c2 ≥ 4
√
3∆ +

∑
cyclic

(a− b)
2
+ 2

∑
cyclic

(√
a(s− a)−

√
b(s− b)

)2
.
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Proof. 1) If we apply inequality (2.1) in the triangle A1B1C1, we obtain the relation

(2.5) a21 + b21 + c21 − 4
√
3∆1 ≥ 2

(
m2

a1
− h2

a1

)
.

In any triangle, we have the relations{
16∆2 = 2a2b2 + 2b2c2 + 2c2a2 − a4 − b4 − c4

4a2m2
a − 4a2h2

a = 2a2b2 + 2c2a2 − a4 − 16∆2 = b4 − 2b2c2 + c4 =
(
b2 − c2

)2
,

from which we infer the relation 2
(
m2

a − h2
a

)
=

(b2−c2)
2

2a2 . Therefore, this equality
applied in the triangle A1B1C1 becomes

(2.6) 2
(
m2

a1
− h2

a1

)
=

(
b21 − c21

)2
2a21

=
4R4 (cosB − cosC)

2

8R2 cos2 A
2

= 2R2 sin2
B − C

2
.

But, combining relations (2.5), (2.6) and the equality

∑
cyclic

a21 − 4
√
3∆1 =

R

2r

∑
cyclic

a2 −
∑
cyclic

(a− b)
2 − 4

√
3∆

 ,

it follows the inequality of statement.

2) From equality (2.4) applied in the triangle A1B1C1, we deduce the equality:

a2+b2+c2 = 4∆
∑
cyclic

tan
π −A

4
+
∑
cyclic

(a− b)
2
+2

∑
cyclic

(√
a(s− a)−

√
b(s− b)

)2
.

Using Jensen’s inequality we have
∑
cyclic

tan
π −A

4
≥

√
3, which implies the

inequality of the statement. �

3 The Ionescu-Weitzenböck inequality in
an Euclidean vector space

Let X be an Euclidean vector space. The inner product < ·, · > induces an associated
norm, given by ||x|| = √

< x, x >, for all x ∈ X, which is called the Euclidean norm,
thus X is a normed vector space.

Lemma 3.1. In an Euclidean vector space X, we have

(3.1) ||b+ 1

2
a|| ≥ ||b− ⟨a, b⟩

||a||2
a||, for all a, b ∈ X.

Proof. The inequality of statement is equivalently with ||b + 1
2a||

2 ≥ ||b − ⟨a,b⟩
||a||2 a||

2,

which implies

||b||2 + ⟨a, b⟩+ 1

4
||a||2 ≥ ||b||2 − 2

⟨a, b⟩2

||a||2
+

⟨a, b⟩2

||a||2
,

and so, it follows that
(

⟨a,b⟩
||a|| + 1

2 ||a||
)2

≥ 0, for all a, b ∈ X. �
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Remark 3.1. It ie easy to see that ||b− 1
2a|| ≥ ||b− ⟨a,b⟩

||a||2 a||, for all a, b ∈ X.

Theorem 3.2. In an Euclidean vector space X, we have

(3.2) ||a||2 + ||b||2 + ||a+ b||2 ≥ 2
√
3
√
||a||2||b||2 − ⟨a, b⟩2, for all a, b ∈ X.

Proof. From the parallelogram law, for every a, b ∈ X, we deduce the following equal-
ity:

2(||a+ b||2 + ||b||2) = ||a+ 2b||2 + ||a||2,

which is equivalent to 2(||a+ b||2 + ||b||2)− ||a||2 = 4||b+ 1
2a||

2, and hence

(3.3) ||b+ 1

2
a||2 =

||a+ b||2 + ||b||2

2
− ||a||2

4
.

Therefore, combining the relations (3.1) and (3.3), we obtain the following

||a||2 + ||b||2 + ||a+ b||2 = 1
2

[
2(||a+ b||2 + ||b||2)− ||a||2

]
+ 3

2
||a||2 = 2||b+ 1

2
a||2 + 3

2
||a||2

≥ 2
√
3||a||||b+ 1

2
a|| ≥ 2

√
3||a||||b− ⟨a,b⟩

||a||2 a|| = 2
√
3
√

||a||2||b||2 − ⟨a, b⟩2,

which proves the inequality of the statement. �

Corollary 3.3. In an Euclidean vector space X, we have

(3.4) ||a||2 + ||b||2 + ||a− b||2 ≥ 2
√
3
√
||a||2||b||2 − ⟨a, b⟩2, for all a, b ∈ X.

Proof. If we replace the vector b by the vector −b in inequality (3.2), we deduce the
inequality of the statement. �

Remark 3.2. Inequality (13) represents the Ionescu-Weitzenböck inequality in an
Euclidean vector space X over the field of real numbers R.

Remark 3.3. Let E3 be the Euclidean punctual space [11]. If we take the vectors

a =
−−→
BC, b =

−→
AC, c =

−−→
AB in inequality (3.4), then using the Lagrange identity,

||a||2||b||2 − ⟨a, b⟩2 = ||a× b||2 , we obtain the following inequality:

||
−−→
BC||2 + ||

−→
AC||2 + ||

−−→
BA||2 ≥ 2

√
3||

−−→
BC ×

−→
AC|| = 4

√
3∆,

which is in fact Ionescu-Weitzenböck inequality, from relation (1.2).

4 Applications to Differential Geometry

If r : I ⊂ R → R3, r(t) = (x(t), y(t), z(t)), is a parametrized curve in the space, then

the curvature is K(t) = ||ṙ(t)×r̈(t)||
||ṙ(t)||3 and the torsion is τ(t) =

(
ṙ(t),̈r(t)

···
,r(t)

)
||ṙ(t)×r̈(t)||2 . We choose

the curves with the velocity ||ṙ(t)|| = 1. Therefore, we obtain K(t) = ||ṙ(t)×r̈(t)|| and
τ(t)K2(t) = (ṙ(t),̈ r(t)

···
, r(t)). We take a = ṙ(t) and b = r̈(t) in Ionescu-Weitzenbock’s

inequality and we deduce the inequality for the curvature:

1 + ||r̈(t)||2 + ||ṙ(t)− r̈(t)||2 ≥ 2
√
3K(t).
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From Ionescu-Weitzenbock’s inequality, for a → a×b and b → c, we have the inequality

||a× b||2 + ||c||2 + ||a× b− c||2 ≥ 2
√
3
√
||a× b||2||c||2 − (a, b, c)2.

We take a = ṙ(t), b = r̈(t) and c =
···
r (t) in Ionescu-Weitzenbock’s inequality and we

deduce the inequality for the curvature:

K2(t) + ||···r (t)||2 + ||ṙ(t)× r̈(t)− ···
r (t)||2 ≥ 2

√
3 |K(t)|

√
||···r (t)||2 − [K(t)τ(t)]2.
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[12] R. Weitzenböck, Uber eine Ungleichung in der Dreiecksgeometrie, Mathematische
Zeitschrift, 5, 1-2 (1919), 137–146.

Authors’ addresses:

Emil Stoica, Nicuşor Minculete,
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