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Abstract. In this paper, we prove that there do not exist totally contact
umbilical hemi-slant lightlike submanifolds of indefinite Sasakian man-
ifolds and of indefinite contact space forms other than totally contact
geodesic hemi-slant lightlike submanifolds. Consequently, we prove that
the induced connection on a totally contact umbilical hemi-slant lightlike
submanifold of an indefinite Sasakian manifold is a metric connection.
Finally we derive some characterization theorems for minimal hemi-slant
lightlike submanifolds of an indefinite Sasakian manifold.
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1 Introduction

The geometry of submanifolds with degenerate (lightlike) metric is difficult and strik-
ingly different from the geometry of submanifolds with non-degenerate metric because
of the fact that their (of degenerate submanifolds) normal vector bundle intersects
with the tangent bundle. This means that we cannot use the classical theory of sub-
manifolds to define induced objects on a lightlike submanifold. Since the geometry
of lightlike submanifolds is needed to fill a gap in the general theory of submanifolds
and have significant applications in general theory of relativity. Therefore Duggal
and Bejancu [4] introduced and studied the geometry of lightlike submanifolds of
semi-Riemannian manifolds extensively and further studied by many authors. On the
other hand significant uses of the contact geometry in differential equations, optics
and phase spaces of a dynamical system [7, 8] and very limited specific information
available on its lightlike case motivated the authors to do work on the geometry of
lightlike submanifolds of indefinite Sasakian manifolds.

As a generalization of invariant and totally real (anti-invariant) submanifolds of
almost contact metric manifolds, slant submanifolds of Sasakian manifolds were in-
troduced by Lotta [6] and further studied by Cabrerizo et al. [3]. In 2012, Sahin and
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Yildirim [12] introduced slant lightlike submanifolds of indefinite Sasakian manifolds.
Recently, authors have studied the geometry of totally umbilical slant and totally
umbilical hemi-slant lightlike submanifolds when the ambient manifold is an indefi-
nite almost complex or an indefinite almost contact manifold (see [9, 10, 11]). In this
paper, we prove that there do not exist totally contact umbilical hemi-slant light-
like submanifolds of indefinite Sasakian manifolds other than totally contact geodesic
hemi-slant lightlike submanifolds. Finally we also derive some characterization theo-
rems for minimal hemi-slant lightlike submanifolds of an indefinite Sasakian manifold.

2 Lightlike submanifolds

Let (M̄, ḡ) be a real (m+n)-dimensional semi-Riemannian manifold of constant index
q such that m,n ≥ 1, 1 ≤ q ≤ m+n−1 and (M, g) be an m-dimensional submanifold
of M̄ and g be the induced metric of ḡ on M . If ḡ is degenerate on the tangent bundle
TM of M then M is called a lightlike submanifold of M̄ . For a degenerate metric
g on M , TM⊥ is a degenerate n-dimensional subspace of TxM̄ . Thus, both TxM
and TxM

⊥ are degenerate orthogonal subspaces but no longer complementary. In
this case, there exists a subspace Rad(TxM) = TxM ∩ TxM

⊥ which is known as the
radical (null) subspace. If the mapping Rad(TM) : x ∈ M −→ Rad(TxM), defines
a smooth distribution on M of rank r > 0 then the submanifold M of M̄ is called
an r-lightlike submanifold and Rad(TM) is called the radical distribution on M (for
detail see [4]).

Let S(TM) be a screen distribution which is a semi-Riemannian complementary
distribution of Rad(TM) in TM , that is, TM = Rad(TM)⊥S(TM) and S(TM⊥) is
a complementary vector subbundle to Rad(TM) in TM⊥. Let tr(TM) and ltr(TM)
be complementary (but not orthogonal) vector bundles to TM in TM̄ |M and to
Rad(TM) in S(TM⊥)⊥ respectively. Then we have

(2.1) tr(TM) = ltr(TM)⊥S(TM⊥).

(2.2) TM̄ |M= TM ⊕ tr(TM) = (Rad(TM)⊕ ltr(TM))⊥S(TM)⊥S(TM⊥).

For quasi-orthonormal fields of frames, we have

Theorem 2.1. ([4]). Let (M, g, S(TM), S(TM⊥)) be an r-lightlike submanifold of a
semi-Riemannian manifold (M̄, ḡ). Then there exist a complementary vector bundle
ltr(TM) of Rad(TM) in S(TM⊥)⊥ and a basis of Γ(ltr(TM) |U ) consisting of smooth
sections {Ni} of S(TM⊥)⊥ |U , where U is a coordinate neighborhood of M , such that

(2.3) ḡ(Ni, ξj) = δij , ḡ(Ni, Nj) = 0, for any i, j ∈ {1, 2, .., r},

where {ξ1, ..., ξr} is a lightlike basis of Γ(Rad(TM)).

Let ∇̄ be the Levi-Civita connection on M̄ . Then, according to the decomposition
(2.2), the Gauss and Weingarten formulas are given by

(2.4) ∇̄XY = ∇XY + h(X,Y ), ∇̄XU = −AUX +∇⊥
XU,
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for X,Y ∈ Γ(TM) and U ∈ Γ(tr(TM)), where {∇XY,AUX} and {h(X,Y ),∇⊥
XU}

belong to Γ(TM) and Γ(tr(TM)), respectively. Here ∇ is a torsion-free linear connec-
tion on M , h is a symmetric bilinear form on Γ(TM), known as the second fundamen-
tal form and AU is a linear operator on M , known as the shape operator. According
to (2.1), considering the projection morphisms L and S of tr(TM) on ltr(TM) and
S(TM⊥), respectively then (2.4) becomes

(2.5) ∇̄XY = ∇XY + hl(X,Y ) + hs(X,Y ),

(2.6) ∇̄XN = −ANX +∇l
XN +Ds(X,N),

(2.7) ∇̄XW = −AWX +∇s
XW +Dl(X,W ).

As hl and hs are Γ(ltr(TM))-valued and Γ(S(TM⊥))-valued respectively, therefore
they are called as the lightlike second fundamental form and the screen second fun-
damental form on M . Using (2.1)-(2.2) and (2.5)-(2.7), we obtain

(2.8) ḡ(hs(X,Y ),W ) + ḡ(Y,Dl(X,W )) = g(AWX,Y ),

(2.9) ḡ(hl(X,Y ), ξ) + ḡ(Y, hl(X, ξ)) + g(Y,∇Xξ) = 0,

for anyX,Y ∈ Γ(TM), W ∈ Γ(S(TM⊥)) and ξ ∈ Γ(Rad(TM)). Let P̄ is a projection
of TM on S(TM) then we can write

(2.10) ∇X P̄ Y = ∇∗
X P̄ Y + h∗(X, P̄Y ), ∇Xξ = −A∗

ξX +∇∗t
Xξ,

for anyX,Y ∈ Γ(TM) and ξ ∈ Γ(Rad(TM)), where {∇∗
X P̄ Y , A∗

ξX} and {h∗(X, P̄Y ),

∇∗t
Xξ} belong to Γ(S(TM)) and Γ(Rad(TM)), respectively. Here ∇∗ and ∇∗t

X are
linear connections on S(TM) and Rad(TM), respectively. By using (2.6), (2.7) and
(2.10), we obtain

(2.11) ḡ(hl(X, P̄Y ), ξ) = g(A∗
ξX, P̄Y ), ḡ(h∗(X, P̄Y ), N) = ḡ(ANX, P̄Y ).

Definition 2.1. An odd-dimensional semi-Riemannian manifold M̄ is said to be an
indefinite almost contact metric manifold if there exist structure tensors {ϕ, V, η, ḡ},
where ϕ is a (1, 1) tensor field, V a vector field, called characteristic vector field, η a
1-form and ḡ is the semi-Riemannian metric on M̄ satisfying (see [2])

(2.12) ϕ2X = −X + η(X)V, η ◦ ϕ = 0, ϕV = 0, η(V ) = 1,

(2.13) ḡ(ϕX, ϕY ) = ḡ(X,Y )− η(X)η(Y ), ḡ(X,V ) = η(X),

for X,Y ∈ Γ(TM̄). An indefinite almost contact metric manifold M̄ is called an
indefinite Sasakian manifold if (see [5]),

(2.14) (∇̄Xϕ)Y = −ḡ(X,Y )V + η(Y )X, and ∇̄XV = ϕX,

for any X,Y ∈ Γ(TM̄), where ∇̄ denote the Levi-Civita connection on M̄ .
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3 Hemi-slant lightlike submanifolds

Let M be an r-lightlike submanifold of an indefinite Sasakian manifold M̄ of index
q such that V is tangent to M . Then V does not belong to Rad(TM) as if we as-
sume that V ∈ Γ(Rad(TM)), then there exists a vector field N ∈ Γ(ltr(TM)) such
that g(N,V ) = 1, but using (2.3), (2.12) and (2.13), g(N,V ) = g(ϕN, ϕV ) = 0, this
leads to a contradiction. Let the radical distribution be such that ϕ(Rad(TM)) =
ltr(TM); then we have a local quasi-orthonormal field of frames on M̄ along M as
{Xa, V, ξi, Ni,Wα}, where {ξi}ri=1 and {Ni}ri=1 are lightlike basis of Rad(TM) and
ltr(TM), respectively and {Xa}ka=1 and {Wα}lα=1 are orthonormal basis of S(TM)
(except {V }) and S(TM⊥), respectively. From the lightlike basis {ξ1, ..., ξr, Ni, ..., Nr}
of Rad(TM)⊕ ltr(TM), we can construct an orthonormal basis {U1, ..., U2r} as

U1 =
1√
2
(ξ1 +N1) U2 =

1√
2
(ξ1 −N1),

U3 =
1√
2
(ξ2 +N2) U4 =

1√
2
(ξ2 −N2),

. . . . . .

. . . . . .

U2r−1 =
1√
2
(ξr +Nr) U2r =

1√
2
(ξr −Nr).

Thus Span{ξi, Ni} is a non-degenerate space of constant index r implies Rad(TM)⊕
ltr(TM) is non-degenerate and of constant index r on M̄ . Therefore

index (TM̄) = index (Rad(TM)⊕ ltr(TM)) + index (S(TM)⊥S(TM⊥)),

implies that q = r + index (S(TM)⊥S(TM⊥)). If r = q, then S(TM)⊥S(TM⊥) is
Riemannian and hence S(TM) is Riemannian. Thus we have the following lemma.

Lemma 3.1. Let M be an r-lightlike submanifold of an indefinite Sasakian manifold
M̄ of index q such that the characteristic vector field V is tangent to M . Assume that
the radical distribution Rad(TM) is a distribution such that ϕ(Rad(TM)) = ltr(TM).
If r = q then the screen distribution S(TM) is Riemannian.

To define slant submanifolds, we need angle between two vector fields of the sub-
manifold. The radical distribution is totally lightlike so it is not possible to define
an angle between two of its vector fields. From Lemma 3.1, the screen distribution
is Riemannian and it is possible to define an angle between two of its vector fields.
Thus we define hemi-slant lightlike submanifolds of indefinite Sasakian manifolds as:

Definition 3.1. LetM be a q-lightlike submanifold of an indefinite Sasakian manifold
M̄ of index q with characteristic vector field V tangent to M . Then M is said to be
a hemi-slant lightlike submanifold of M̄ if the following conditions are satisfied:
(i) Rad(TM) is a distribution on M such that ϕ(Rad(TM)) = ltr(TM).
(ii) For all x ∈ U ⊂ M and for each non-zero vector field X tangent to S(TM) =
Dθ⊥V , if X and V are linearly independent, then the angle θ(X) between ϕX and
the vector space S(TM) is constant, where Dθ is complementary distribution to V in
screen distribution S(TM).
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A hemi-slant lightlike submanifold is said to be proper if Dθ ̸= 0 and θ ̸= 0, π/2.
Hence by using the definition of hemi-slant lightlike submanifolds, the tangent bundle
TM of M is decomposed as TM = S(TM)⊥Rad(TM) = Dθ⊥{V }⊥Rad(TM).

Example 3.2. Let M be a lightlike submanifold of a semi-Euclidean space (R9
2, ḡ)

and defined by x1 = s, x2 = t, x3 = u sinv, x4 = sinu, y1 = t, y2 = s, y3 = u cosv,
y4 = cosu, where u, v ∈ (0, π/2) and R9

2 is of signature (−,+,+,+,−,+,+,+,+)
with respect to the canonical basis {∂x1, ∂x2, ∂x3, ∂x4, ∂y1, ∂y2, ∂y3, ∂y4, ∂z}. Then
the local frame of fields {ξ1, ξ2, Z1, Z2, V } of TM is given by ξ1 = ∂x1+∂y2, ξ2 = ∂x2+
∂y1, Z1 = sinv∂x3+ cosu∂x4+ cosv∂y3−sinu∂y4, Z2 = u cosv∂x3−u sinv∂y3, V =
∂z. Hence M is a 2-lightlike submanifold with Rad(TM) = span{ξ1, ξ2} and S(TM)
= span{Z1, Z2}⊥V , which is Riemannian. It can be easily seen that S(TM) is a slant
distribution with slant angle θ = π/4. Further the screen transversal bundle S(TM⊥)
is spanned byW1 = sinu∂x4+cosu∂y4, W2 = sinv∂x3−cosu∂x4+cosv∂y3+sinu∂y4.
The transversal lightlike bundle ltr(TM) is spanned by N1 = −1

2 (−∂x1−∂y2), N2 =
1
2 (∂x2 − ∂y1). Clearly ϕξ1 = 2N2, ϕξ2 = −2N1. Hence M is a hemi-slant lightlike
submanifold of R9

2.

Denote the projection morphisms from TM on Dθ and Rad(TM) by P and Q
respectively, then any X tangent to M can be written as X = PX + η(X)V +QX.
On applying ϕ to both sides and then using the definition of hemi-slant lightlike
submanifolds with ϕV = 0, we can write

(3.1) ϕX = TPX + FPX + FQX,

where TPX ∈ Γ(Dθ), FPX ∈ Γ(tr(TM)) and FQX ∈ Γ(ltr(TM)). Similarly, for
any U ∈ Γ(tr(TM)), we can write ϕU = BU +CU , where BU and CU are tangential
and transversal components of ϕU , respectively.

Lemma 3.2. Let M be a hemi-slant lightlike submanifold of an indefinite Sasakian
manifold M̄ then FPX ∈ Γ(S(TM⊥)), for any X ∈ Γ(Dθ).

Proof. Using (2.1) and (2.3), it is clear that FPX ∈ Γ(S(TM⊥)), if and only if,
ḡ(FPX, ξ) = 0, for any ξ ∈ Γ(Rad(TM)). Using (2.12), (2.13) and (3.1), we have
ḡ(FPX, ξ) = ḡ(ϕPX − TPX, ξ) = ḡ(ϕPX, ξ) = −ḡ(PX, ϕξ) = 0, for any X ∈ Γ(Dθ)
and hence the result follows. �

Thus using the Lemma 3.2 with (2.14), it follows that F (S(TM)) is a subspace of
S(TM⊥). Therefore there exists an invariant subspace µ of S(TM⊥) such that

(3.2) S(TM⊥) = F (S(TM))⊥µ,

hence TpM̄ = S(TpM)⊥{Rad(TpM)⊕ ltr(TpM)}⊥{F (S(TpM))⊥µp}.
Differentiating (3.1) and using (2.5) to (2.7), for any X,Y ∈ Γ(TM), we have

(∇XT )PY = AFPY X +AFQY X +Bhl(X,Y ) +Bhs(X,Y )− g(X,Y )V + η(Y )X,

(3.3) (∇XF )PY = Chs(X,Y )− hs(X,TPY )−Ds(X,FQY ),

(3.4) (∇XF )QY = −hl(X,TPY )−Dl(X,FPY ),

where (∇XT )PY = ∇XTPY − TP∇XY , (∇XF )PY = ∇s
XFPY − FP∇XY , and

(∇XF )QY = ∇l
XFQY − FQ∇XY .
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Theorem 3.3. Let M be a q-lightlike submanifold of an indefinite Sasakian manifold
M̄ of index q. Then M is a hemi-slant lightlike submanifold if and only if ϕ(ltr(TM))
is a distribution on M and for any vector field X tangent to M, there exists a constant
λ ∈ [−1, 0] such that (TP )2X = λPX, where λ = − cos2 θ.

Proof. Assume that M is a hemi-slant lightlike submanifold of an indefinite Sasakian
manifold M̄ . Then ϕ(Rad(TM)) = ltr(TM), that is, ϕ(ltr(TM)) = Rad(TM), which
proves (a). In order to prove (b), let X ∈ Γ(TM) which is linearly independent of the
characteristic vector field V and PX ∈ Γ(Dθ) then using (2.12) and (2.13), we have

(3.5) cosθ(PX) =
ḡ(ϕPX, TPX)

|ϕPX||TPX|
= − ḡ(PX, ϕTPX)

|PX||TPX|
= − ḡ(PX, TPTPX)

|PX||TPX|
.

On the other hand, cosθ(PX) = |TPX|
|ϕPX| =

|TPX|
|PX| , combining this with (3.5), we obtain

cos2θ(PX) = − ḡ(PX,(TP )2X)
|PX|2 . Taking into account that θ(PX) is constant on Γ(Dθ),

from above equation, we infer that (TP )2X = λPX, where λ ∈ [−1, 0]. Converse part
follows directly from (a) and (b). �

Corollary 3.4. Let M be a hemi-slant lightlike submanifold of an indefinite Sasakian
manifold M̄ of index q. Then for any X,Y ∈ Γ(TM), we have

(3.6) g(TPX, TPY ) = cos2 θ{g(PX,PY )− η(PX)η(PY )},

(3.7) ḡ(FPX,FPY ) = sin2 θ{g(PX,PY )− η(PX)η(PY )}.

4 Totally contact umbilical lightlike submanifolds

Definition 4.1. If the second fundamental form h of a submanifold, tangent to
characteristic vector field V , of an indefinite Sasakian manifold M̄ is of the form

h(X,Y ) = {g(X,Y )− η(X)η(Y )}H + η(X)h(Y, V ) + η(Y )h(X,V ),(4.1)

for any X,Y ∈ Γ(TM), where H is a vector field transversal to M , then M is called
a totally contact umbilical submanifold and moreover if H = 0 then submanifold
is called a totally contact geodesic. The above definition also holds for a lightlike
submanifold M . For a totally contact umbilical lightlike submanifold M , we have

hl(X,Y ) = {g(X,Y )− η(X)η(Y )}H l + η(X)hl(Y, V ) + η(Y )hl(X,V ),(4.2)

hs(X,Y ) = {g(X,Y )− η(X)η(Y )}Hs + η(X)hs(Y, V ) + η(Y )hs(X,V ),(4.3)

where H l ∈ Γ(ltr(TM)) and Hs ∈ Γ(S(TM⊥)).
From now on, we denote M̄ as an indefinite Sasakian manifold unless otherwise

stated.

Lemma 4.1. Let M be a totally contact umbilical proper hemi-slant lightlike subman-
ifold of M̄ then ∇XX ∈ Γ(S(TM)), for any X ∈ Γ(Dθ).
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Proof. Let X ∈ Γ(Dθ) and N ∈ Γ(ltr(TM)) such that ϕN = ξ then using (2.13)
and (2.14), we obtain ḡ(∇XX,N) = ḡ(hl(X,TX), ξ) + ḡ(Dl(X,FX), ξ). Further
using (2.8), (4.2) and (4.3), we obtain ḡ(∇XX,N) = g(X,TX)g(H l, ξ). Now using
(2.12) and (2.13), we have g(X,TX) = g(X,ϕX) = 0, for any X ∈ Γ(Dθ) and hence
ḡ(∇XX,N) = 0. Thus using (2.3), the assertion follows. �

Theorem 4.2. Every totally contact umbilical proper hemi-slant lightlike submanifold
M of an indefinite Sasakian manifold M̄ is totally contact geodesic.

Proof. Let X,Y ∈ Γ(Dθ) then FQX = FQY = 0, on adding (3.3) and (3.4), we
have ∇s

XFPY − FP∇XY − FQ∇XY = Chs(X,Y ) − hs(X,TPY ) − hl(X,TPY ) −
Dl(X,FPY ). Replace X by TX and Y by X, we get FP∇TXX + FQ∇TXX −
∇s

TXFPX = −Chs(TX,X)+hs(TX, TPX)+hl(TX, TPX)+Dl(TX,FPX). Since
M is a totally contact umbilical hemi-slant lightlike submanifold then using (3.6), (4.3)
and the fact that hs(TX,X) = ḡ(ϕX,X)Hs = 0 and η(X) = 0, for any X ∈ Γ(Dθ),
we get FP∇TXX + FQ∇TXX −∇s

TXFPX = cos2θg(PX,PX)H +Dl(TX,FPX).
Now, on taking scalar product both sides with respect to FPX ∈ (S(TM⊥)), we
get cos2θg(X,X)ḡ(Hs, FPX) = ḡ(FP∇TXX,FPX) − ḡ(∇s

TXFPX,FPX), further
using (3.7), we get

(4.4) cos2θg(X,X)ḡ(Hs, FPX) = sin2θḡ(P∇TXX,PX)− ḡ(∇s
TXFPX,FPX).

Let X ∈ Γ(Dθ) then on taking covariant derivative of (3.7) with respect to ∇̄TX ,
we get ḡ(∇s

TXFPX,FPX) = sin2θg(∇TXPX,PX) and then using this in (4.4),
we obtain cos2θg(X,X)ḡ(Hs, FPX) = 0. Since M is a proper hemi-slant lightlike
submanifold and g is a Riemannian metric on S(TM) then we have ḡ(Hs, FPX) = 0
and further using the Lemma 3.2 with (3.2), we obtain

(4.5) Hs ∈ Γ(µ).

Let X,Y ∈ Γ(Dθ) then using (2.14), we have ∇̄XϕY = ϕ∇̄XY − g(X,Y )V then
using (2.5), (2.7) and (4.1), we have ∇XTPY +g(X,TPY )H−AFPY X+∇s

XFPY +
Dl(X,FPY ) = T∇XY +F∇XY +g(X,Y )ϕH−g(X,Y )V . On taking scalar product
both sides with respect to ϕHs and then using the invariant property of µ with (2.13)
and (4.5), we obtain

(4.6) ḡ(∇s
XFPY, ϕHs) = g(X,Y )ḡ(Hs, Hs).

Since µ is an invariant subspace therefore using the Sasakian character of M̄ , that
is, using (2.14) for any Hs ∈ Γ(µ), we get −AϕHsX + ∇s

XϕHs + Dl(X,ϕHs) =
−TAHsX −FAHsX +B∇s

XHs +C∇s
XHs +ϕDl(X,Hs). Taking the scalar product

both sides with respect to FPY , we get

(4.7) ḡ(∇s
XϕHs, FPY ) = −ḡ(FAHsX,FPY ) + ḡ(C∇s

XHs, FPY ).

We know that for any U ∈ Γ(tr(TM)), BU and CU are tangential and transversal
components of ϕU , respectively. Therefore if U ∈ Γ(ltr(TM)) then ϕU = BU ∈
Γ(Rad(TM)) and CU = 0. Moreover S(TM⊥) = F (S(TM))⊥µ, implies that for any
U ∈ Γ(S(TM⊥)), BU ∈ Γ(S(TM)) and CU ∈ Γ(µ). Since ∇s

XαS ∈ Γ(S(TM⊥))
therefore C∇s

XαS ∈ Γ(µ). Hence from (4.7) and then using (3.7), we have

(4.8) ḡ(∇s
XϕHs, FPY ) = −ḡ(FAHsX,FPY ) = −sin2θg(AHsX,PY ).
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Since ∇̄ is a metric connection therefore (∇̄Xg)(FPY, ϕHs) = 0, this further implies
that ḡ(∇s

XFPY, ϕHs) = ḡ(∇s
XϕHs, FPY ), therefore using (4.8), we obtain

(4.9) ḡ(∇s
XFPY, ϕHs) = −sin2θg(AHsX,PY ).

From (4.6) and (4.9), we have g(X,Y )g(Hs,Hs) = −sin2θg(AHsX,PY ), using (2.8),
we get g(X,Y )g(Hs,Hs) = −sin2θḡ(hs(X,PY ),Hs) = −sin2θg(X,Y )g(Hs,Hs).
This implies that (1 + sin2θ)g(X,Y )g(Hs,Hs) = 0. Since M is a proper hemi-slant
lightlike submanifold and g is a Riemannian metric on Dθ then g(Hs,Hs) = 0, using
the fact that S(TM⊥) is non-degenerate, we obtain

(4.10) Hs = 0.

Furthermore, again using the Sasakian character of M̄ for any X ∈ Γ(Dθ), we have
∇XTX+h(X,TX)−AFXX+∇s

XFX+Dl(X,FX) = T∇XX+F∇XX+Bh(X,X)+
Chs(X,X) − g(X,X)V . Since M is a totally contact umbilical hemi-slant lightlike
submanifold therefore using h(X,TX) = 0, for any X ∈ Γ(Dθ) and then comparing
the tangential components, we obtain ∇XTX − AFXX = T∇XX + Bh(X,X) −
g(X,X)V . Taking the scalar product both sides with respect to N ∈ Γ(ltr(TM))
such that ϕN = ξ ∈ Γ(Rad(TM)) and using the Lemma 4.1, we get

(4.11) ḡ(AFXX,N) = −ḡ(ϕhl(X,X), N) = ḡ(hl(X,X), ξ).

Now using (2.5), (2.7), (2.13), (2.14) and the Lemma 4.1, we have ḡ(AFXX,N) =
ḡ(∇̄XϕX,N) − ḡ(∇̄XTX,N) = −ḡ(∇̄XX, ξ) − ḡ(∇XTX,N) = −ḡ(hl(X,X), ξ), for
any X ∈ Γ(Dθ). Hence using this in (4.11), we have 2ḡ(hl(X,X), ξ) = 0, as M is
a totally contact umbilical proper hemi-slant lightlike submanifold therefore we have
g(X,X)ḡ(H l, ξ) = 0. Since g is a Riemannian metric on Dθ therefore ḡ(H l, ξ) = 0,
then using (2.3), we obtain that

(4.12) H l = 0.

Thus from (4.10) and (4.12), the proof is complete. �

Contrary to the classical theory of submanifolds, the induced connection ∇ on a
lightlike submanifold M of a semi-Riemannian manifold M̄ is not a metric connection.
So as a consequence of above Theorem, we have the following important result.

Theorem 4.3. Let M be a totally contact umbilical proper hemi-slant lightlike sub-
manifold of M̄ . Then the induced connection ∇ is a metric connection on M .

Proof. Since M is a totally contact umbilical proper hemi-slant lightlike submanifold
M̄ then using (4.2) and (4.12), we have

hl(X,Y ) = η(X)hl(Y, V ) + η(Y )hl(X,V ),(4.13)

for any X,Y ∈ Γ(TM). Let X,Y ∈ Γ(Dθ) and ξ ∈ Γ(Rad(TM)) then using η(X) =
η(Y ) = η(ξ) = 0 in (4.13), we have hl(X,Y ) = 0, hl(X, ξ) = 0, hl(ξ, ξ) = 0 and
moreover from (2.14), we have ∇̄V V = 0, implies that hl(V, V ) = 0. Put X = V and
Y = ξ in (2.9), we have ḡ(hl(V, ξ), ξ) = 0 and using (2.3) it leads to hl(V, ξ) = 0. Let
X ∈ Γ(Dθ) then second equation of (2.14) implies that ∇XV +hl(X,V )+hs(X,V ) =
TPX+FPX, using the Lemma 3.2 and then comparing the transversal components,
we get hl(X,V ) = 0. Hence hl vanishes identically on M and thus using Theorem 2.2
in [4], at page 159, the induced connection ∇ becomes a metric connection on M . �
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Denote by R̄ and R the curvature tensors of ∇̄ and∇ respectively then by straight-
forward calculations ([2]), we have

R̄(X,Y )Z = R(X,Y )Z +Ahl(X,Z)Y −Ahl(Y,Z)X +Ahs(X,Z)Y

−Ahs(Y,Z)X + (∇Xhl)(Y, Z)− (∇Y h
l)(X,Z)

+Dl(X,hs(Y, Z))−Dl(Y, hs(X,Z)) + (∇Xhs)(Y, Z)

−(∇Y h
s)(X,Z) +Ds(X,hl(Y, Z))−Ds(Y, hl(X,Z)).(4.14)

An indefinite contact space form is a connected indefinite Sasakian manifold of con-
stant ϕ-holomorphic sectional curvature c, denoted by M̄(c), whose curvature tensor
R̄, for X,Y, Z vector fields on M̄ , is given by (see [5])

R̄(X,Y )Z =
c+ 3

4
{ḡ(Y, Z)X − ḡ(X,Z)Y }+ c− 1

4
{η(X)η(Z)Y − η(Y )η(Z)X

+ḡ(X,Z)η(Y )V − ḡ(Y, Z)η(X)V + ḡ(ϕY,Z)ϕX − ḡ(ϕX,Z)ϕY

−2ḡ(ϕX, Y )ϕZ}.(4.15)

Theorem 4.4. There do not exist totally contact umbilical proper hemi-slant lightlike
submanifolds of an indefinite contact space form M̄(c) such that c ̸= 1.

Proof. Let M be a totally contact umbilical hemi-slant lightlike submanifold of M̄(c)
such that c ̸= 1. Then using (4.15), for X ∈ Γ(Dθ) and ξ, ξ′ ∈ Γ(Rad(TM)), we get

(4.16) ḡ(R̄(X,ϕX)ξ′, ξ) = −c− 1

2
g(X,X)g(ϕξ′, ξ).

On the other hand using (4.14), we get

(4.17) ḡ(R̄(X,ϕX)ξ′, ξ) = ḡ((∇Xhl)(ϕX, ξ′), ξ)− ḡ((∇ϕXhl)(X, ξ′), ξ).

On using (4.2), we get (∇Xhl)(ϕX, ξ′) = −g(∇XϕX, ξ′)H l − g(ϕX,∇Xξ′)H l =
ḡ(hl(X,TX), ξ′)H l = g(X,ϕX)ḡ(H l, ξ′) = 0 and similarly (∇ϕXhl)(X, ξ′) = 0. Thus
from (4.16) and (4.17), we obtain c−1

2 g(X,X)g(ϕξ′, ξ) = 0. Since g is a Riemannian
metric on Dθ and (2.3) implies that g(ϕξ′, ξ) ̸= 0, therefore c = 1. This contradiction
completes the proof. �

In [4], a minimal lightlike submanifold M is defined when M is a hypersurface of
a 4-dimensional Minkowski space. Then in [1], a general notion of minimal lightlike
submanifold of a semi-Riemannian manifold M̄ is introduced, which is as below.

Definition 4.2. A lightlike submanifold (M, g, S(TM)) isometrically immersed in a
semi-Riemannian manifold (M̄, ḡ) is minimal if hs = 0 on Rad(TM) and trace h = 0,
where trace is written with respect to g restricted to S(TM).

Theorem 4.5. Let M be a totally contact umbilical proper hemi-slant lightlike sub-
manifold of M̄ . Then M is minimal.

Proof. From Theorem 4.2, we know H l = 0 = Hs and η(ξ) = 0, for any ξ ∈
Γ(Rad(TM)) then using (4.3), we have hs(ξ, ξ) = 0, that is, hs = 0 on Rad(TM).
From (2.14), we have ∇̄V V = 0, implies that h(V, V ) = 0. Let {e1, ....., ek} be an
orthonormal basis of Dθ then using the fact that η(ei) = 0, i ∈ {1, 2, ..., k} with (4.2)
and (4.3), we have h(ei, ei) = 0, hence trace h|S(TM) = 0. �
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A lightlike submanifold is called an irrotational submanifold, if and only if, ∇̄Xξ ∈
Γ(TM) for any X ∈ Γ(TM) and ξ ∈ Γ(Rad(TM)). This implies that if M is an
irrotational lightlike submanifold then ∇̄Xξ = ∇Xξ, hl(X, ξ) = 0 and hs(X, ξ) = 0,
for any X ∈ Γ(TM) and ξ ∈ Γ(Rad(TM)).

Theorem 4.6. Let M be an irrotational hemi-slant lightlike submanifold of M̄ . Then
M is minimal, if and only if, trace AWq

|S(TM) = 0, trace A∗
ξj
|S(TM) = 0, where

{Wq}lq=1 is a basis of S(TM⊥) and {ξj}rj=1 is a basis of Rad(TM).

Proof. Let M be an irrotational lightlike submanifold then hs(X, ξ) = 0 for X ∈
Γ(TM) and ξ ∈ Γ(Rad(TM)) implies that hs vanishes on Rad(TM) and ∇̄V V =
0, implies that h(V, V ) = 0. Hence M is minimal, if and only if, trace h = 0

on Dθ, that is, M is minimal if and only
∑k

i=1 h(ei, ei) = 0, where {ei}ki=1 be

an orthonormal basis of Dθ. Using (2.8) and (2.11) we obtain
∑k

i=1 h(ei, ei) =∑k
i=1{

1
r

∑r
j=1 g(A

∗
ξj
ei, ei)Nj +

1
l

∑l
q=1 g(AWqei, ei)Wq}, and the assertion follows. �

Theorem 4.7. Let M be a proper hemi-slant lightlike submanifold of M̄ . Then
M is minimal, if and only if, trace AWq |S(TM) = 0, trace A∗

ξj
|S(TM) = 0, and

ḡ(Dl(X,W ), Y ) = 0, for any X,Y ∈ Γ(Rad(TM)), where {Wq}lq=1 is a basis of

S(TM⊥) and {ξj}rj=1 is a basis of Rad(TM).

Proof. Let X,Y ∈ Γ(Rad(TM)) then using (2.8), it is clear that hs = 0 on Rad(TM),
if and only if, ḡ(Dl(X,W ), Y ) = 0 and ∇̄V V = 0, implies that h(V, V ) = 0. Therefore

M is minimal, if and only if,
∑k

i=1 h(ei, ei) = 0, where {ei}ki=1 be an orthonormal
basis of Dθ. Then following the proof of the Theorem 4.6, the assertion follows. �

Lemma 4.8. Let M be a proper hemi-slant lightlike submanifold of M̄ such that
dim(Dθ) = dim(S(TM⊥)). If {ei}ki=1 is a local orthonormal basis of Γ(Dθ) then
{cscθFei}ki=1 is a orthonormal basis of S(TM⊥).

Proof. Let {e1, ....., ek} be a local orthonormal basis of Γ(Dθ) then using the Lemma
3.2, Fei ∈ Γ(S(TM⊥)), for i ∈ {1, ...., k}. Since S(TM) and S(TM⊥) are Riemannian
therefore using (3.7), we obtain ḡ(cscθFei, cscθFej) = csc2θsin2θg(ei, ej) = δij , this
proves the assertion. �

Theorem 4.9. Let M be a proper hemi-slant lightlike submanifold of M̄ such that
dim(Dθ) = dim(S(TM⊥)). Then M is minimal, if and only if, traceAcscθFei |S(TM) =

0, traceA∗
ξj
|S(TM) = 0, and ḡ(Dl(X,Fei), Y ) = 0, for any X,Y ∈ Γ(Rad(TM)),

where {ei}ki=1 is a basis of Dθ.

Proof. Let {ei}ki=1 be a basis of Dθ then using the Lemma 4.8, {cscθFei}ki=1 is
a basis of S(TM⊥). Therefore hs(X,X) can be written as linear combination of

{cscθFei}ki=1, that is, we can write hs(X,X) =
∑k

i=1 λicscθFei, for any X ∈ Γ(Dθ)
and for some functions λi, i ∈ {1, ..., k}. Using (2.8), we have ḡ(hs(X,X), cscθFei) =
ḡ(AcscθFeiX,X), for any X ∈ Γ(Dθ), therefore using (3.7), it further leads to λi =

ḡ(AcscθFeiX,X) and hence we get hs(X,X) =
∑k

i=1 cscθḡ(AcscθFeiX,X)Fei, for any
X ∈ Γ(Dθ). Then the assertion comes from the Theorem 4.7. �
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