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Abstract. Recently, Gardner, Hug and Weil developed an Orlicz-Brunn-
Minkowski theory. Following this, in the paper we further consider the
Orlicz-Brunn-Minkowski theory. The fundamental notions of mixed quer-
massintegrals, mixed p-quermassintegrals and inequalities are extended to
an Orlicz setting. Inequalities of Orlicz Minkowski and Brunn-Minkowski
type for Orlicz mixed quermassintegrals are obtained. One of these has
connections with the conjectured log-Brunn-Minkowski inequality and we
prove a new log-Minkowski-type inequality. A new version of Orlicz
Minkowski’s inequality is proved. Finally, we show Simon’s characteri-
zation of relative spheres for the Orlicz mixed quermassintegrals.
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1 Introduction

One of the most important operations in geometry is vector addition. As an operation
between sets K and L, defined by

K + L = {x+ y | x ∈ K, y ∈ L},

it is usually called Minkowski addition and combine volume play an important role
in the Brunn-Minkowski theory. During the last few decades, the theory has been
extended to Lp-Brunn-Minkowski theory. The first, a set called as Lp addition, in-
troduced by Firey in [6] and [7]. Denoted by +p, for 1 ≤ p ≤ ∞, defined by

(1.1) h(K +p L, x)
p = h(K,x)p + h(L, x)p,

for all x ∈ Rn and compact convex sets K and L in Rn containing the origin. When
p = ∞, (1.1) is interpreted as h(K +∞ L, x) = max{h(K,x), h(L, x)}, as is custom-
ary. Here the functions are the support functions. If K is a nonempty closed (not
necessarily bounded) convex set in Rn, then

h(K,x) = max{x · y | y ∈ K},
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for x ∈ Rn, defines the support function h(K,x) of K. A nonempty closed convex
set is uniquely determined by its support function. Lp addition and inequalities are
the fundamental and core content in the Lp Brunn-Minkowski theory. For recent
important results and more information from this theory, we refer to [12], [13], [14],
[15], [20], [22], [23], [24], [25], [26], [27], [30], [31], [35], [36], [37] and the references
therein. In recent years, a new extension of Lp-Brunn-Minkowski theory is to Orlicz-
Brunn-Minkowski theory, initiated by Lutwak, Yang, and Zhang [28] and [29]. In
these papers the notions of Lp-centroid body and Lp-projection body were extended
to an Orlicz setting. The Orlicz centroid inequality for star bodies was introduced in
[39] which is an extension from convex to star bodies. The other articles advance the
theory can be found in literatures [11], [17], [18] and [32]. Very recently, Gardner,
Hug and Weil ([9]) constructed a general framework for the Orlicz-Brunn-Minkowski
theory, and made clear for the first time the relation to Orlicz spaces and norms.
They introduced the Orlicz addition K +φ L of compact convex sets K and L in Rn

containing the origin, implicitly, by

(1.2) φ

(
h(K,x)

h(K +φ L, x)
,

h(L, x)

h(K +φ L, x)

)
= 1,

for x ∈ Rn, if h(K,x)+h(L, x) > 0, and by h(K+φL, x) = 0, if h(K,x) = h(L, x) = 0.
Here φ ∈ Φ2, the set of convex functions φ : [0,∞)2 → [0,∞) that are increasing in
each variable and satisfy φ(0, 0) = 0 and φ(1, 0) = φ(0, 1) = 1.

Unlike the Lp case, an Orlicz scalar multiplication cannot generally be consid-
ered separately. The particular instance of interest corresponds to using (1.2) with
φ(x1, x2) = φ1(x1) + εφ2(x2) for ε > 0 and some φ1, φ2 ∈ Φ, in which case we write
K +φ,ε L instead of K +φ L, where the sets of convex function φi : [0,∞) → (0,∞)
that are increasing and satisfy φi(1) = 1 and φi(0) = 0, where i = 1, 2. Orlicz addi-
tion reduces to Lp addition, 1 ≤ p < ∞, when φ(x1, x2) = xp

1 + xp
2, or L∞ addition,

when φ(x1, x2) = max{x1, x2}. Moreover, Gardner, Hug and Weil ([9]) introduced
the Orlicz mixed volume, obtaining the equation

(1.3)
(φ1)

′
l(1)

n
lim

ε→0+

V (K +φ,ε L)− V (K)

ε
=

1

n

∫
Sn−1

φ2

(
h(L, u)

h(K,u)

)
h(K,u)dS(K,u),

where S(K,u) is the mixed surface area measure of K and φ ∈ Φ2, φ1, φ2 ∈ Φ.
Here K is a convex body containing the origin in its interior and L is a compact
convex set containing the origin, assumptions we shall retain for the remainder of this
introduction.

Denoting by Vφ(K,L), for any φ ∈ Φ, the integral on the right side of (1.3) with
φ2 replaced by φ, we see that either side of the equation (1.3) is equal to Vφ2(K,L)
and therefore this new Orlicz mixed volume plays the same role as Vp(K,L) in the
Lp-Brunn-Minkowski theory. In [9], Gardner, Hug and Weil obtained the Orlicz-
Minkowksi inequality.

(1.4) Vφ(K,L) ≥ V (K) · φ

((
V (L)

V (K)

)1/n
)
,

for φ ∈ Φ. If φ is strictly convex, equality holds if and only if K and L are dilates or
L = {o}.
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In Section 3, we compute the Orlicz first variation of quermassintegrals, call as
Orlicz mixed quermassintegrals, obtaining the equation
(1.5)
(φ1)

′
l(1)

n− i
lim

ε→0+

Wi(K +φ,ε L)−Wi(K)

ε
=

1

n

∫
Sn−1

φ2

(
h(L, u)

h(K,u)

)
h(K,u)dSi(K,u).

for φ ∈ Φ2, φ1, φ2 ∈ Φ and 1 ≤ i ≤ n, and Wi denotes the usual quermassintegrals,
and Si(K,u) is the i-th mixed surface area measure of K. Denoting by Wφ,i(K,L),
for any φ ∈ Φ, the integral on the right side of (1.5) with φ2 replaced by φ, we see that
either side of the equation (1.5) is equal to Wφ2,i(K,L) and therefore this new Orlicz
mixed volume (Orlicz mixed quermassintegrals) plays the same role as Wp,i(K,L) in
the Lp-Brunn-Minkowski theory. Note that when i = 0, (1.5) becomes (1.3). Hence
we have the following definition of Orlicz mixed quermassintegrals.

(1.6) Wφ,i(K,L) =
1

n

∫
Sn−1

φ

(
h(L, u)

h(K,u)

)
h(K,u)dSi(K,u).

In Section 4, we establish Orlicz-Minkowksi inequality for the Orlicz mixed quermass-
integrals.

(1.7) Wφ,i(K,L) ≥ Wi(K) · φ

((
Wi(L)

Wi(K)

)1/(n−i)
)
,

for φ ∈ Φ and 0 ≤ i < n. If φ is strictly convex, equality holds if and only if K and L
are dilates or L = {o}. Note that when i = 0, (1.7) becomes to (1.4). In particularly,
putting φ(t) = tp, 1 ≤ p < ∞ in (1.7), (1.7) reduces to the following Lp-Minkowski
inequality for mixed p-quermassintegrals established by Lutwak [21].

(1.8) Wp,i(K,L)n−i ≥ Wi(K)n−i−pWi(L)
p,

for p > 1 and 0 ≤ i ≤ n, with equality if and only if K and L are dilates or L = {o}.
Putting i = 0, φ(t) = tp and 1 ≤ p < ∞ in (1.7), (1.7) reduces to the well-known
Lp-Minkowski inequality established by Firey [7]. For p > 1,

(1.9) Vp(K,L) ≥ V (K)(n−p)/nV (L)p/n,

with equality if and only if K and L are dilates or L = {o}.
In Section 5, we establish the following Orlicz-Brunn-Minkowksi inequality for

quermassintegrals of Orlicz addition.

(1.10) 1 ≥ φ

((
Wi(K)

Wi(K +φ L)

)1/(n−i)

,

(
Wi(L)

Wi(K +φ L)

)1/(n−i)
)
,

for φ ∈ Φ2 and 0 ≤ i < n. If φ is strictly convex, equality holds if and only if K and
L are dilates or L = {o}. Note that when φ(x1, x2) = xp

1 + xp
2, 1 ≤ p < ∞ in (1.11),

(1.11) reduces to the following Lp-Brunn-Minkowski inequality for quermassintegrals
established by Lutwak [21]. If

(1.11) Wi(K +p L)
p/(n−i) ≥ Wi(K)p/(n−i) +Wi(L)

p/(n−i),
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with equality if and only if K and L are dilates or L = {o}, and where p ≥ 1 and
0 ≤ i < n. Putting i = 0, φ(x1, x2) = xp

1+xp
2 and 1 ≤ p < ∞ in (1.11), (1.11) reduces

to the well-known Lp-Brunn-Minkowski inequality established by Firey [7].

(1.12) V (K +p L)
p/n ≥ V (K)p/n + V (L)p/n,

with equality if and only if K and L are dilates or L = {o}, and where p > 1. A
special case of (1.10) was recently established by Gardner, Hug and Weil [9].

(1.13) 1 ≥ φ

((
V (K)

V (K +φ,ε L)

)1/n

,

(
V (L)

V (K +φ L)

)1/n
)
,

for φ ∈ Φ2. If φ is strictly convex, equality holds if and only if K and L are dilates
or L = {o}. When i = 0, (1.10) becomes to (1.12). Moreover, We prove also the
Orlicz Minkowski inequality (1.4) and the Orlicz Brunn-Minkowski inequality (1.12)
are equivalent, and (1.7) and (1.10) also are equivalent.

When we were about to submit our paper, we were informed that G. Xiong and
D. Zou [38] had also obtained Orlicz Minowski and Brunn-Mingkowski inequalities
for Orlicz mixed quermassintegrals. Please note that we use a completely different
approach, although the two inequalities coincide with theirs.

In 2012, Böröczky, Lutwak, Yang, and Zhang [2] conjecture a log-Minkowski in-
equality for origin-symmetric convex bodies K and L in Rn.

(1.14)

∫
Sn−1

log

(
h(L, u)

h(K,u)

)
h(K,u)dS(K,u) ≥ V (K) log

(
V (L)

V (K)

)
.

In [2], (1.14) is proved by them only when n = 2. Very recently, Gardner, Hug and
Weil [9] proved a new version of (1.14) for convex bodies, not origin-symmetric convex
bodies.

(1.15)

∫
Sn−1

log

(
1− h(L, u)

h(K,u)

)
h(K,u)dS(K,u) ≤ V (K) log

(
1− V (L)1/n

V (K)1/n

)n

,

with equality if and only ifK and L are dilates or L = {o}, and where L ⊂ intK. They
also shown that combining (1.14) and (1.15) may get the classical Brunn-Minkowski
inequality. In Section 6, we give a new log-Minkowski-type inequality

(1.16)

∫
Sn−1

log

(
1− h(L, u)

h(K,u)

)
h(K,u)dSi(K,u) ≤ Wi(K) log

(
1− Wi(L)

1/(n−i)

Wi(K)1/(n−i)

)n

,

with equality if and only if K and L are dilates or L = {o}. When i = 0, (1.16)
becomes (1.15). We also point out a conjecture which is an extension of the log
Minkowski inequality as follows.

(1.17)
1

n

∫
Sn−1

log

(
h(L, u)

h(K,u)

)
h(K,u)dSi(K,u) ≥ log

(
Wi(L)

Wi(K)

)1/(n−i)

.

When i = 0, (1.17) becomes the log-Minkowski inequality (1.14). Combining (1.16)
and (1.17) together split the following classical Brunn-Minkowski inequality for quer-
massintegrals (see Section 6).

Wi(K + L)1/(n−i) ≥ Wi(K)1/(n−i) +Wi(L)
1/(n−i),
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with equality if and only if K and L are dilates or L = {o}.
In 2010, the Orlicz projection body Πφ of K (K is a convex body containing the

origin in its interior) defined by Lutwak, Yang and Zhang [28]

(1.18) h(Πφ, u) = inf

{
λ > 0 | 1

nV (K)

∫
Sn−1

φ

(
|u · υ|

λh(K, υ)

)
h(K, υ)dS(K, υ) ≤ 1

}
,

for φ ∈ Φ and u ∈ Sn−1. A different Orlicz version of Minkowski’s inequality (1.8)
is presented in Section 7. This results from replacing the left side of (1.8) by the
quantity
(1.19)

Ŵφ,i(K,L) = inf

{
λ > 0 | 1

nWi(K)

∫
Sn−1

φ

(
h(L, u)

λh(K,u)

)
h(K,u)dSi(K,u) ≤ 1

}
,

for φ ∈ Φ and 0 ≤ i < n.We prove the following new Orlicz Minkowski type inequality.

(1.20) Ŵφ,i(K,L) ≥
(
Wi(L)

Wi(K)

)1/(n−i)

,

where φ ∈ Φ and 1 ≤ i < n. If φ is strictly convex and Wi(L) > 0, equality holds if
and only if K and L are dilates. A special version of (1.20) was recently established
by Gardner, Hug and Weil [9].

V̂φ(K,L) ≥
(
V (L)

V (K)

)1/n

,

If φ is strictly convex and V (L) > 0, then equality holds if and only if K and L are
dilates and where

V̂φ(K,L) = inf

{
λ > 0 | 1

nV (K)

∫
Sn−1

φ

(
h(L, u)

λh(K,u)

)
h(K,u)dS(K,u) ≤ 1

}
,

for φ ∈ Φ.

Finally, in Section 8, we show Simon’s characterization of relative spheres for the
Orlicz mixed quermassintegrals.

2 Notations and preliminaries

The setting for this paper is n-dimensional Euclidean space Rn. Let Kn be the class
of nonempty compact convex subsets of Rn, let Kn

o be the class of members of Kn

containing the origin, and let Kn
oo be those sets in Kn containing the origin in their

interiors. A set K ∈ Kn is called a convex body if its interior is nonempty. We reserve
the letter u ∈ Sn−1 for unit vectors, and the letter B for the unit ball centered at
the origin. The surface of B is Sn−1. For a compact set K, we write V (K) for the
(n-dimensional) Lebesgue measure of K and call this the volume of K. If K is a
nonempty closed (not necessarily bounded) convex set, then

h(K,x) = sup{x · y | y ∈ K},
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for x ∈ Rn, defines the support function of K, where x · y denotes the usual inner
product x and y in Rn. A nonempty closed convex set is uniquely determined by its
support function. Support function is homogeneous of degree 1, that is,

h(K, rx) = rh(K,x),

for all x ∈ Rn and r ≥ 0. Let d denote the Hausdorff metric on Kn, i.e., for K,L ∈ Kn,
d(K,L) = |h(K,u) − h(L, u)|∞, where | · |∞ denotes the sup-norm on the space of
continuous functions C(Sn−1).

Throughout the paper, the standard orthonormal basis for Rn will be {e1, . . . , en}.
Let Φn, n ∈ N, denote the set of convex functions φ : [0,∞)n → [0,∞) that are strictly
increasing in each variable and satisfy φ(0) = 0 and φ(ej) = 1 > 0, j = 1, . . . , n.
When n = 1, we shall write Φ instead of Φ1. The left derivative and right derivative
of a real-valued function f are denoted by (f)′l and (f)′r, respectively.

2.1 Mixed quermassintegrals

If Ki ∈ Kn (i = 1, 2, . . . , r) and λi (i = 1, 2, . . . , r) are nonnegative real num-
bers, then of fundamental importance is the fact that the volume of

∑r
i=1 λiKi is a

homogeneous polynomial in λi given by (see e.g. [3])

(2.1) V (λ1K1 + · · ·+ λnKn) =
∑

i1,...,in

λi1 . . . λinVi1...in ,

where the sum is taken over all n-tuples (i1, . . . , in) of positive integers not exceeding
r. The coefficient Vi1...in depends only on the bodies Ki1 , . . . ,Kin and is uniquely
determined by (2.1), it is called the mixed volume of Ki, . . . ,Kin , and is written as
V (Ki1 , . . . ,Kin). Let K1 = . . . = Kn−i = K and Kn−i+1 = . . . = Kn = L, then the
mixed volume V (K1, . . . ,Kn) is written as V (K[n−i], L[i]). If K1 = · · · = Kn−i = K,
Kn−i+1 = · · · = Kn = B The mixed volumes Vi(K[n−i], B[i]) is written asWi(K) and
call as quermassintegrals (or i-th mixed quermassintegrals) of K. We write Wi(K,L)
for the mixed volume V (K[n− i− 1], B[i], L[1]) and call as mixed quermassintegrals.
Aleksandrov [1] and Fenchel and Jessen [5] (also see Busemann [4] and Schneider [33])
have shown that for K ∈ Kn

oo, and i = 0, 1, . . . , n − 1, there exists a regular Borel
measure Si(K, ·) on Sn−1, such that the mixed quermassintegrals Wi(K,L) has the
following representation:

(2.2) Wi(K,L) =
1

n− i
lim

ε→0+

Wi(K + εL)−Wi(K)

ε
=

1

n

∫
Sn−1

h(L, u)dSi(K,u).

Associated with K1, . . . ,Kn ∈ Kn is a Borel measure S(K1, . . . ,Kn−1, ·) on Sn−1,
called the mixed surface area measure of K1, . . . ,Kn−1, which has the property that
for each K ∈ Kn (see e.g. [8], p.353),

(2.3) V (K1, . . . ,Kn−1,K) =
1

n

∫
Sn−1

h(K,u)dS(K1, . . . ,Kn−1, u).

In fact, the measure S(K1, . . . ,Kn−1, ·) can be defined by the propter that (2.3) holds
for all K ∈ Kn. Let K1 = . . . = Kn−i−1 = K and Kn−i = . . . = Kn−1 = L, then
the mixed surface area measure S(K1, . . . ,Kn−1, ·) is written as S(K[n − i], L[i], ·).
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When L = B, S(K[n− i], L[i], ·) is written as Si(K, ·) and called as i-th mixed surface
area measure. A fundamental inequality for mixed quermassintegrals stats that: For
K,L ∈ Kn and 0 ≤ i < n− 1,

(2.4) Wi(K,L)n−i ≥ Wi(K)n−i−1Wi(L),

with equality if and only if K and L are homothetic and L = {o}. Good general
references for this material are [4] and [19].

2.2 Mixed p-quermassintegrals

Mixed quermassintegrals are, of course, the first variation of the ordinary quer-
massintegrals, with respect to Minkowski addition. The mixed quermassintegrals
Wp,0(K,L),Wp,1(K,L), . . . ,Wp,n−1(K,L), as the first variation of the ordinary quer-
massintegrals, with respect to Firey addition: For K,L ∈ Kn

oo, and real p ≥ 1, defined
by (see e.g. [21])

(2.5) Wp,i(K,L) =
p

n− i
lim

ε→0+

Wi(K +p ε · L)−Wi(K)

ε
.

The mixed p-quermassintegrals Wp,i(K,L), for all K,L ∈ Kn
oo, has the following

integral representation:

(2.6) Wp,i(K,L) =
1

n

∫
Sn−1

h(L, u)pdSp,i(K,u),

where Sp,i(K, ·) denotes the Boel measure on Sn−1. The measure Sp,i(K, ·) is abso-
lutely continuous with respect to Si(K, ·), and has Radon-Nikodym derivative

(2.7)
dSp,i(K, ·)
dSi(K, ·)

= h(K, ·)1−p,

where Si(K, ·) is a regular Boel measure on Sn−1. The measure Sn−1(K, ·) is inde-
pendent of the body K, and is just ordinary Lebesgue measure, S, on Sn−1. Si(B, ·)
denotes the i-th surface area measure of the unit ball in Rn. In fact, Si(B, ·) = S for all
i. The surface area measure S0(K, ·) just is S(K, ·). When i = 0, Sp,i(K, ·) is written
as Sp(K, ·) (see [25], [26]). A fundamental inequality for mixed p-quermassintegrals
stats that: For K,L ∈ Kn

oo, p > 1 and 0 ≤ i < n− 1,

(2.8) Wp,i(K,L)n−i ≥ Wi(K)n−i−pWi(L)
p,

with equality if and only if K and L are homothetic. Lp-Brunn-Minkowski inequality
for quermassintegrals established by Lutwak [21]. If K ∈ Kn

oo, L ∈ Kn
o and p ≥ 1 and

0 ≤ i ≤ n, then

(2.9) Wi(K +p L)
p/(n−i) ≥ Wi(K)p/(n−i) +Wi(L)

p/(n−i),

with equality if and only if K and L are dilates or L = {o}. Obviously, putting i = 0
in (2.6), the mixed p-quermassintegrals Wp,i(K,L) become the well-known Lp-mixed
volume Vp(K,L), defined by (see e.g. [25])

(2.10) Vp(K,L) =
1

n

∫
Sn−1

h(L, u)pdSp(K,u).
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2.3 The Orlicz mixed volume

For φ ∈ Φ, K ∈ Kn
oo and L ∈ Kn

o , Gardner, Hug and Weil [9] defined the Orlicz
mixed volumes, Vφ(K,L) by

(2.11) Vφ(K,L) =
1

n

∫
Sn−1

φ

(
h(L, u)

h(K,u)

)
h(K,u)dS(K,u).

They obtained the Orlicz-Minkowksi inequality.

(2.12) Vφ(K,L) ≥ V (K) · φ

((
V (L)

V (K)

)1/n
)
,

for all K ∈ Kn
oo, L ∈ Kn

o and φ ∈ Φ. If φ is strictly convex, equality holds if and only
if K and L are dilates or L = {o}.

Orlicz mixed quermassintegrals is defined in Section 3, by

(2.13) Wφ,i(K,L) =:
1

n

∫
Sn−1

φ

(
h(L, u)

h(K,u)

)
h(K,u)dSi(K,u),

for all K ∈ Kn
oo, L ∈ Kn

o , φ ∈ Φ and 0 ≤ i < n. Obviously, when φ(t) = tp and p ≥ 1,
Orlicz mixed quermassintegrals reduces to the mixed p-quermassintegrals Wp,i(K,L)
defined in (2.6). When i = 0, (2.13) reduces to (2.11).

2.4 Orlicz addition

Let m ≥ 2, φ ∈ Φm, Kj ∈ Kn
0 and j = 1, . . . ,m, we define the Orlicz addition of

K1, . . . ,Km, denoted by +φ(K1, . . . ,Km), is defined by

(2.14) h(+φ(K1, . . . ,Km), x) = inf

{
λ > 0 | φ

(
h(K1, x)

λ
, . . . ,

h(Km, x)

λ

)
≤ 1

}
,

for x ∈ Rn. Equivalently, the Orlicz addition +φ(K1, . . . ,Km) can be defined implic-
itly (and uniquely) by

(2.15) φ

(
h(K1, x)

h(+φ(K1, . . . ,Km), x)
, . . . ,

h(Km, x)

h(+φ(K1, . . . ,Km), x)

)
= 1,

for all x ∈ Rn. An important special case is obtained when

φ(x1, . . . , xm) =

m∑
j=1

φj(xj),

for some fixed φj ∈ Φ such that φ1(1) = · · · = φm(1) = 1. We then write
+φ(K1, . . . ,Km) = K1 +φ · · · +φ Km. This means that K1 +φ · · · +φ Km is defined
either by

(2.16) h(K1 +φ · · ·+φ Km, u) = sup

λ > 0 |
m∑
j=1

φj

(
h(Kj , x)

λ

)
≤ 1

 ,
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for all x ∈ Rn, or by the corresponding special case of (2.15).
For real p ≥ 1, K,L ∈ Kn

oo and α, β ≥ 0 (not both zero), the Firey linear combi-
nation α ·K +p β · L ∈ Kn

o can be defined by (see [6] and [7])

h(α ·K +p β · L, ·)p = αh(K, ·)p + βh(L, ·)p.

Obviously, Firey and Minkowski scalar multiplications are related by α ·K = α1/pK.
In [9], Gardner, Hug and Weil define the Orlicz linear combination +φ(K,L, α, β) for
K,L ∈ Kn

o and α, β ≥ 0, defined by

(2.17) αφ1

(
h(K,x)

h(+φ(K,L, α, β), x)

)
+ βφ2

(
h(L, x)

h(+φ(K,L, α, β), x)

)
= 1,

if αh(K,x)+βh(L, x) > 0, and by h(+φ(K,L, α, β), x) = 0 if αh(K,x)+βh(L, x) = 0,
for all x ∈ Rn. It is easy to verify that when φ1(t) = φ2(t) = tp, p ≥ 1, the Orlicz linear
combination +φ(K,L, α, β) equals the Firey combination α ·K +p β · L. Henceforth
we shall write K +φ,ε L instead of +φ(K,L, 1, ε), for ε ≥ 0, and assume throughout
that this is defined by (2.17), where α = 1, β = ε, and φ1, φ2 ∈ Φ.

3 Orlicz mixed quermassintegrals

In order to define a new concept: Orlicz mixed quermassintegrals, we need Lemmas
3.1-3.4 and Theorem 3.5.

Lemma 3.1. ([9]) If φ ∈ Φm, then Orlicz addition +φ : (Kn
0 )

m → Kn
0 is continuous,

GL(n) covariant, monotonic, projection covariant and has the identity property.

Lemma 3.2. ([9]) If K,L ∈ Kn
o , then

(3.1) K +φ,ε L → K,

in the Hausdorff metric as ε → 0+.

Lemma 3.3. If K,L ∈ Kn
o and 0 ≤ i < n, Then

(3.2)

lim
ε→0+

Wi(K +φ,ε L)−Wi(K)

ε
=

n− i

n

∫
Sn−1

lim
ε→0+

h(K +φ,ε L, u)− h(K,u)

ε
dSi(K,u),

where, limε→0+
h(K+φ,εL,u)−h(K,u)

ε uniformly for u ∈ Sn−1.

Proof. For brevity, we temporarily write Kε = K +φ,ε L. Starting with the decom-
position

Wi(Kε)−Wi(K)

ε
=

n−i−1∑
j=0

Wi(Kε[j + 1],K[n− i− j − 1])−Wi(Kε[j],K[n− i− j])

ε
.

Notice that

(3.3)
Wi(Kε[j + 1],K[n− i− j − 1])−Wi(Kε[j],K[n− i− j])

ε
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=
1

n

∫
Sn−1

h(Kε, u)− h(K,u)

ε
dSi(Kε[j],K[n− i− j − 1], u)

=
1

n

∫
Sn−1

(
h(Kε, u)− h(K,u)

ε
− lim

ε→0+

h(K +φ,ε L, u)− h(K,u)

ε

)
×

×dSi(Kε[j],K[n− i− j − 1], u)

+
1

n

∫
Sn−1

lim
ε→0+

h(K +φ,ε L, u)− h(K,u)

ε
dSi(Kε[j],K[n− i− j − 1], u).

By assumption, the integrand in (3.3) converges uniformly to zero for u ∈ Sn−1.
Since Kε → K as ε → 0+, by Lemma 3.2, and the i-th mixed surface area measures
Si(Kε[j],K[n− i−j−1]) are uniformly bounded for ε ∈ (0, 1], the first integral in the
previous sum converges to zero. Noting that Si(Kε[j],K[n − i − j − 1]) → Si(K,u)
weakly as ε → 0+. Hence

lim
ε→0+

Wi(K +φ,ε L)−Wi(K)

ε
= lim

ε→0+

n−i−1∑
j=0

1

n

∫
Sn−1

lim
ε→0+

h(K +φ,ε L, u)− h(K,u)

ε
×

× dSi(Kε[j],K[n− i− j − 1], u)

=
n− i

n

∫
Sn−1

lim
ε→0+

h(K +φ,ε L, u)− h(K,u)

ε
dSi(K,u).

�

Lemma 3.4. For ε > 0 and u ∈ Sn−1, let hε = h(K +φ,ε L, u). If K ∈ Kn
oo and

L ∈ Kn
o , then

(3.4)
dhε

dε
=

h(K,u)
dφ−1

1 (y)
dy

φ2

(
h(L, u)

hε

)
(
φ1

−1

(
1− εφ2

(
h(L, u)

hε

)))2

+ ε · h(L, u)h(Ln, u)

h2
ε

dφ−1
1 (y)

dy

dφ2(z)

dz

,

where

y = 1− εφ2

(
h(L, u)

hε

)
,

and

z =
h(L, u)

hε
.

Proof. Suppose ε > 0, L ∈ Kn
o ,K ∈ Kn

oo and u ∈ Sn−1, and notice that

hε = h(K +φ,ε L, u),

we have
h(K,u)

hε
= φ−1

1

(
1− εφ2

(
h(L, u)

hε

))
.
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On the other hand

dhε

dε
=

d

dε

 h(K,u)

φ1
−1

(
1− εφ2

(
h(L, u)

hε

))


=

h(K,u)
dφ−1

1 (y)
dy

[
φ2

(
h(L, u)

hε

)
− ε · dφ2(z)

dz
h(L, u)

h2
ε

dhε
dε

]
(
φ1

−1

(
1− εφ2

(
h(L, u)

hε

)))2 .

where

y = 1− εφ2

(
h(L, u)

hε

)
,

and

z =
h(L, u)

hε
.

By simplifying the equation from above, (3.4) easily follows. �

Theorem 3.5. Let φ ∈ Φ2, and φ1, φ2 ∈ Φ. If K ∈ Kn
oo, L ∈ Kn

o and 1 ≤ i ≤ n,
then

(3.5)
(φ1)

′
l(1)

n− i
lim

ε→0+

Wi(K +φ,ε L)−Wi(K)

ε
=

1

n

∫
Sn−1

φ2

(
h(L, u)

h(K,u)

)
h(K,u)dSi(K,u).

Proof. From Lemma 3.3, we obtain

lim
ε→0+

Wi(K +φ,ε L)−Wi(K)

ε
=

n− i

n

∫
Sn−1

lim
ε→0+

h(K +φ,ε L, u)− h(K,u)

ε
dSi(K,u)

=
n− i

n
lim

ε→0+

∫
Sn−1

dhε

dε
dSi(K;u).

From Lemmas 3.1-3.2 and Lemma 3.4, and noting that y → 1− as ε → 0+, we have

dφ−1
1 (y)

dε
= lim

y→1−

φ1
−1(y)− φ1

−1(1)

y − 1
=

1

(φ1)
′
l(1)

,

the equation (3.5) easily follows. �

The theorem plays a central role in our deriving new concept of the Orlicz mixed
quermassintegrals. Here, we give the another proof.

Proof. From the hypotheses, we have for ε > 0

h(K +φ,ε L, u) =
h(K,u)

φ−1
1

(
1− εφ2

(
h(L, u)

h(K +φ,ε L, u)

)) .
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Hence

(3.6) lim
ε→0+

h(K +φ,ε L, u)− h(K,u)

ε

= lim
ε→0+

h(K,u)

φ−1
1

(
1− εφ2

(
h(L, u)

h(K +φ,ε L, u)

)) − h(K,u)

ε

= lim
ε→0+

h(K,u)φ2

(
h(L, u)

h(K +φ,ε L, u)

)
(
φ−1
1

(
1− εφ2

(
h(L, u)

h(K +φ,ε L, u)

)))2 lim
y→1−

φ−1
1 (y)− φ−1

1 (1)

y − 1
,

where

y = 1− εφ2

(
h(L, u)

h(K +φ,ε L, u)

)
,

and note that y → 1− as ε → o+. Notice that

lim
y→1−

φ−1
1 (y)− φ−1

1 (1)

y − 1
=

1

(φ1)
′
l(1)

,

and from (2.2),(3.6) and Lemmas 3.1-3.2, (3.5) easy follows. �

Denoting by Wφ,i(K,L), for any φ ∈ Φ and 1 ≤ i < n, the integral on the right-
hand side of (3.5) with φ2 replaced by φ, we see that either side of the equation
(3.5) is equal to Wφ2,i(K,L) and therefore this new Orlicz mixed volume Wφ,i(K,L)
( Orlicz mixed quermassintegrals) has been born.

Definition 3.1. (Orlicz mixed quermassintegrals) For φ ∈ Φ, Orlicz mixed quer-
massintegrals, Wφ,i(K,L), for 0 ≤ i < n, defined by

(3.7) Wφ,i(K,L) =:
1

n

∫
Sn−1

φ

(
h(L, u)

h(K,u)

)
h(K,u)dSi(K,u),

for all K ∈ Kn
oo, L ∈ Kn

o .

Remark 3.2. Let φ1(t) = φ2(t) = tp, p ≥ 1 in (3.5), the Orlicz sum K+φ,εL reduces
to the Lp addition K +p ε · L, and the Orlicz mixed quermassintegrals Wφ,i(K,L)
become the well-known mixed p-quermassintegralsWp,i(K,L). Obviously, when i = 0,
Wφ,i(K,L) reduces to Orlicz mixed volumes Vφ(K,L) defined by Gardner, Hug and
Weil [9].

Theorem 3.6. If φ1, φ2 ∈ Φ, φ ∈ Φ2 and K ∈ Kn
o , L ∈ Kn

oo, and 0 ≤ i < n, then

(3.8) Wφ2,i(K,L) =
(φ1)

′
l(1)

n− i
lim

ε→0+

Wi(K +φ,ε L)−Wi(K)

ε
.

Proof. This follows immediately from Theorem 3.5 and (3.7). �
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4 Orlicz-Minkowski type inequality

In the Section, we need define a Borel measure in Sn−1, W̄n,i(K, υ), called as i-th
normalized cone measure.

Definition 4.1. If K ∈ Kn
oo, i-th normalized cone measure, W̄n,i(K, υ), defined by

(4.1) dW̄n,i(K, υ) =
h(K, υ)

nWi(K)
dSi(K, υ).

When i = 0, W̄n,i(K, υ) becomes to the well-known normalized cone measure V̄n(K, υ),
by

(4.2) dV̄n(K, υ) =
h(K, υ)

nV (K)
dS(K, υ).

This was defined in [2] and [9].

In the following, we start with two auxiliary results (Lemmas 4.1 and 4.2), which
will be the base of our further study. The Orlicz-Minkowski inequality for Orlicz
mixed quermassintegrals is established in Theorem 4.3.

Lemma 4.1. (Jensen’s inequality) Suppose that µ is a probability measure on a space
X and g : X → I ⊂ R is a µ-integrable function, where I is a possibly infinite interval.
If φ : I → R is a convex function, then

(4.3)

∫
X

φ(g(x))dµ(x) ≥ φ

(∫
X

g(x)dµ(x)

)
.

If φ is strictly convex, equality holds if and only if g(x) is constant for µ-almost all
x ∈ X (see [16]).

Lemma 4.2. Let 0 < a ≤ ∞ be an extended real number, and let I = [0, a) be a
possibly infinite interval. Suppose that φ : I → [0,∞) is convex with φ(0) = 0. If
K ∈ Kn

oo and L ∈ Kn
o are such that L ⊂ int(aK), then

(4.4)
1

nWi(K)

∫
Sn−1

φ

(
h(L, u)

h(K,u)

)
h(K,u)dSi(K,u) ≥ φ

((
Wi(L)

Wi(K)

)1/(n−i)
)
.

If φ is strictly convex, equality holds if and only if K and L are dilates or L = {o}.

Proof. In view of L ⊂ int(aK), so 0 ≤ h(L,u)
h(K,u) < a for all u ∈ Sn−1. By (4.1) and

note that (2.2) with K = L, it follows the i-th normalized cone measure W̄n,i(K,u)
is a probability measure on Sn−1. Hence by using Jensen’s inequality (4.3), the
Minkowski’s inequality (2.4), and the fact that φ is increasing, to obtain

1

nWi(K)

∫
Sn−1

φ

(
h(L, u)

h(K,u)

)
h(K,u)dSi(K,u) =

∫
Sn−1

φ

(
h(L, u)

h(K,u)

)
dW̄n,i(K,u)

≥ φ

(
Wi(K,L)

Wi(K)

)
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(4.5) ≥ φ

((
Wi(L)

Wi(K)

)1/(n−i)
)
.

In the following, we discuss the equal condition of (4.4). Suppose the equality holds in
(4.4) and φ is strictly convex, so that φ > 0 on (0, a). Moreover, notice the injectivity
of φ, we have equality in Minkowski inequality (2.4), so there are r ≥ 0 and x ∈ Rn

such that L = rK + x and hence

h(L, u) = rh(K,u) + x · u

for all u ∈ Sn−1. Since equality must hold in Jensen’s inequality (4.3) as well, when φ
is strictly convex we can conclude from the equality condition for Jensen’s inequality
that

(4.6)
1

nWi(K)

∫
Sn−1

h(L, u)

h(K,u)
h(K,u)dSi(K,u) =

h(L, v)

h(K, v)
,

for Si(K, ·)-almost all v ∈ Sn−1. Hence

1

nWi(K)

∫
Sn−1

(
r +

x · u
h(K,u)

)
h(K,u)dSi(K,u) = r +

x · v
h(K, v)

,

for Si(K, ·)-almost all v ∈ Sn−1. From this and the fact that the centroid of Si(K, ·)
is at the origin, we get

0 = x ·
(

1

nWi(K)

∫
Sn−1

udSi(K,u)

)
=

1

nWi(K)

∫
Sn−1

x · udSi(K,u) =
x · v

h(K, v)
,

that is, x · v = 0, for Si(K, ·)-almost all v ∈ Sn−1. Hence x = o, namely L = rK. �

Theorem 4.3. Let φ ∈ Φ. If K ∈ Kn
oo, L ∈ Kn

o and 0 ≤ i < n, then

(4.7) Wφ,i(K,L) ≥ Wi(K) · φ

((
Wi(L)

Wi(K)

)1/(n−i)
)
.

If φ is strictly convex, equality holds if and only if K and L are dilates or L = {o}.

Proof. This follows immediately from (3.7) and Lemma 4.2, with a = ∞. �

Corollary 4.4. ([21]) If K ∈ Kn
oo and L ∈ Kn

o , and p > 1 and 0 ≤ i ≤ n, then

Wp,i(K,L)n−i ≥ Wi(K)n−i−pWi(L)
p,

with equality if and only if K and L are dilates or L = {o}.

Proof. This follows immediately from (4.7) with φ(t) = tp and p > 1. �

Remark 4.2. When a = ∞, putting φ(t) = et − 1 in (4.4), we obtain

(4.8) log

∫
Sn−1

exp

(
h(L, u)

h(K,u)

)
dW̄n,i(K,u) ≥

(
Wi(L)

Wi(K)

)1/(n−i)

.
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Similarly, Lp-Minkowski inequality (1.8) can be written as

(4.9)

(∫
Sn−1

(
h(L, u)

h(K,u)

)p

dW̄n,i(K,u)

)1/p

≥
(
Wi(L)

Wi(K)

)1/(n−i)

.

When p = 1, (4.9) becomes to a new form of the Minkowski inequality (2.4). The
left side of (4.9) is just the pth mean of the function h(L, u)/h(K,u) with respect to
W̄n,i(K, ·). Notice that pth means increase with p > 1, so we find that the Minkowski
inequality (2.4) implies Lp-Minkowski inequality (2.8).

5 Orlicz-Brunn-Minkowski type inequality

In this section, we establish the Orlicz Brunn-Minkowski inequality for Orlicz mixed
quermassintegrals.

Theorem 5.1. Let φ ∈ Φ2. If K ∈ Kn
oo, L ∈ Kn

o and 1 ≤ i < n, then

(5.1) 1 ≥ φ

(
Wi(K)1/(n−i)

Wi(K +φ L)1/(n−i)
,

Wi(L)
1/(n−i)

Wi(K +φ L)1/(n−i)

)
.

If φ is strictly convex, equality holds if and only if K and L are dilates or L = {o}.

Proof. From the hypotheses and Theorem 4.3, we obtain

(5.2) Wi(K +φ L)

=
1

n

∫
Sn−1

φ

(
h(K,u)

h(K +φ L, u)
,

h(L, u)

h(K +φ L, u)

)
h(K +φ L, u)dSi(K +φ L, u)

=
1

n

∫
Sn−1

(
φ1

(
h(K,u)

h(K +φ L, u)

)
+ φ2

(
h(L, u)

h(K +φ L, u)

))
h(K+φL, u)dSi(K+φL, u)

= Wφ1,i(K +φ L,K) +Wφ2,i(K +φ L,L)

≥ Wi(K +φ L)φ

(
Wi(K)1/(n−i)

Wi(K +φ L)1/(n−i)
,

Wi(L)
1/(n−i)

Wi(K +φ L)1/(n−i)

)
.

This is just (5.1).
If equality holds in (5.2), then in (5.2), with K, L and φ replaced by K +φ L, K

and φ1 (and by K +φ L, L and φ2), respectively. So if φ is strictly convex, then φ1

and φ2 are also, so both K and L are multiples of K +φ L, and hence are dilates of
each other or L = {o}. �

Corollary 5.2. ([21]) If p > 1, K ∈ Kn
oo, L ∈ Kn

o , while 0 ≤ i < n, then

(5.3) Wi(K +p L)
p/(n−i) ≥ Wi(K)p/(n−i) +Wi(L)

p/(n−i),

with equality if and only if K and L are dilates or L = {o}.

Proof. The result follows immediately from Theorem 5.1 with φ(x1, x2) = xp
1 + xp

2

and p > 1. �
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Theorem 5.3. Orlicz Brunn-Minkowski inequality for Orlicz mixed quermassinte-
grals implies Orlicz Minkowski inequality for Orlicz mixed quermassintegrals.

Proof. Since φ1 is increasing, so φ−1
1 is also increasing and hence from (5.1), we obtain

for ε > 0

Wi(K +φ,ε L) ≥
Wi(K)(

φ−1
1

(
1− εφ2

((
Wi(L)

Wi(K +φ,ε L)

)1/(n−i)
)))n−i

.

From Theorem 3.6, we obtain

Wφ2,i(K,L) ≥ (φ1)
′
l(1)

n− i

× lim
ε→0+

Wi(K)(
φ−1
1

(
1− εφ2

((
Wi(L)

Wi(K +φ,ε L)

)1/(n−i)
)))n−i −Wi(K)

ε

= (φ1)
′
l(1) lim

ε→0+

Wi(K)(
φ−1
1

(
1− εφ2

((
Wi(L)

Wi(K +φ,ε L)

)1/(n−i)
)))2(n−i)

×

(
φ−1
1

(
1− εφ2

((
Wi(L)

Wi(K +φ,ε L)

)1/(n−i)
)))n−i−1

×φ2

((
Wi(L)

Wi(K +φ,ε L)

)1/(n−i)
)

lim
z→1−

φ−1
1 (z)− φ−1

1 (1)

z − 1
,

where

z = 1− εφ2

((
Wi(L)

Wi(K +φ,ε L)

)1/(n−i)
)
,

and note that z → 1− as ε → o+. On the other hand, in view of

lim
z→0+

φ−1
1 (z)− φ−1

1 (1)

z − 1
=

1

(φ1)′l(1)
,

and from Lemma 3.2. Hence

(5.4) Wφ2,i(K,L) ≥ Wi(K)φ2

((
Wi(L)

Wi(K)

)1/(n−i)
)
.

Replace φ2 by φ, this yields the Orlicz Minkowski inequality in (4.7). The equality
condition follows immediately from the equality of Orlicz Brunn-Minkowski inequality
for Orlicz mixed quermassintegrals. �
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From the proof of Theorem 5.1, we may see that Orlicz Minkowski inequality for
Orlicz mixed quermassintegrals implies also Orlicz Brunn-Minkowski inequality for
Orlicz mixed quermassintegrals, and this combines Theorem 5.3, we found that

Theorem 5.4. Orlicz Brunn-Minkowski inequality for Orlicz mixed quermassinte-
grals is equivalent to Orlicz Minkowski inequality for Orlicz mixed quermassintegrals.
Namely: Let φ2 ∈ Φ and φ ∈ Φ2. If K ∈ Kn

oo, L ∈ Kn
o and 1 ≤ i < n, then

(5.5) Wφ2,i(K,L) ≥ Wi(K)φ2

((
Wi(L)

Wi(K)

)1/(n−i)
)

⇔ 1 ≥ φ

(
Wi(K)1/(n−i)

Wi(K +φ L)1/(n−i)
,

Wi(L)
1/(n−i)

Wi(K +φ L)1/(n−i)

)
.

If φ is strictly convex, equality holds if and only if K and L are dilates or L = {o}.

Corollary 5.5. Orlicz dual Brunn-Minkowski inequality is equivalent to Orlicz dual
Minkowski inequality. Namely: Let φ2 ∈ Φ and φ ∈ Φ2. If K ∈ Kn

oo and L ∈ Kn
o ,

then
(5.6)

Vφ2(K,L) ≥ V (K)φ2

((
V (L)

V (K)

)1/n
)

⇔ 1 ≥ φ

(
V (K)1/n

V (K +φ L)1/n
,

V (L)1/n

V (K +φ L)1/n

)
.

If φ is strictly convex, equality holds if and only if K and L are dilates or L = {o}.

Proof. The result follows immediately from Theorem 5.4 with i = 0. �

6 The log-Minkowski type inequality

Assume that K,L ∈ Kn
oo, then the log Minkowski combination, (1 − λ) ·K +o λ · L,

is defined by

(1− λ) ·K +o λ · L =
∩

u∈Sn−1

{x ∈ Rn | x · u ≤ h(K,u)1−λh(L, u)λ},

for all real λ ∈ [0, 1]. Böröczky, Lutwak, Yang, and Zhang [2] conjecture that for
origin-symmetric convex bodies K and L in Rn and 0 ≤ λ ≤ 1,

(6.1) V ((1− λ) ·K +o λ · L) ≥ V (K)1−λV (L)λ.

In [2], they proved (6.1) only when n = 2 and K,L are origin-symmetric convex
bodies, and note that while it is not true for general convex bodies. Moreover, they
also shown that (6.1), for all n, is equivalent to the following log-Minkowski inequality

(6.2)

∫
Sn−1

log

(
h(L, u)

h(K,u)

)
dV̄n(K, υ) ≥ 1

n
log

(
V (L)

V (K)

)
,

where V̄n(K, ·) is the normalized cone measure for K. In fact, replacing K and L by
K + L and K, respectively, (6.2) becomes to the following

(6.3)

∫
Sn−1

log

(
h(K,u)

h(K + L, u)

)
dV̄n(K + L, u) ≥ log

((
V (K)

V (K + L)

))1/n

.
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In [9], Gardner, Hug and Weil gave a new version of (6.3) for the nonempty compact
convex subsets K and L, not origin-symmetric convex bodies, as follows. If K ∈ Kn

oo

and L ∈ Kn
o , then

(6.4)

∫
Sn−1

log

(
h(K,u)

h(K + L, u)

)
dV̄n(K + L, u) ≤ log

(
V (K + L)1/n − V (L)1/n

V (K + L)1/n

)
,

with equality if and only if K and L are dilates or L = {o}. They also shown that
combining (6.3) and (6.4), may get the classical Brunn-Minkowski inequality.

V (K + L)1/n − V (L)1/n ≥ V (K)1/n,

whenever K ∈ Kn
oo and L ∈ Kn

o and (6.2) holds with K and L replaced by K +L and
K, respectively. In particular, if (6.2) holds (as it does, for origin-symmetric convex
bodies when n = 2), then (6.2) and (6.4) together split the classical Brunn-Minkowski
inequality. In the following, we give a new version of (6.4).

Lemma 6.1. If K ∈ Kn
oo and L ∈ Kn

o are such that L ⊂ intK and 1 ≤ i < n, then
(6.5)

log

(
Wi(K)1/(n−i) −Wi(L)

1/(n−i)

Wi(K)1/(n−i)

)
≥
∫
Sn−1

log

(
h(K,u)− h(L, u)

h(K,u)

)
dW̄n,i(K,u),

with equality if and only if K and L are dilates or L = {o}.

Proof. Since K ∈ Kn
oo and L ∈ Kn

o are such that L ⊂ intK. Let φ(t) = − log(1− t),
and notice that φ(0) = 0 and φ is strictly increasing and strictly convex on [0, 1) with
φ(t) → ∞ as t → 1−. Hence the inequality (6.5) is a direct consequence of Lemma
4.3 with this choice of φ and a = 1. �

Theorem 6.2. If K ∈ Kn
oo, L ∈ Kn

o and 1 ≤ i < n, then
(6.6)

log

(
Wi(K + L)1/(n−i) −Wi(L)

1/(n−i)

Wi(K + L)1/(n−i)

)
≥
∫
Sn−1

log

(
h(K,u)

h(K + L, u)

)
dW̄n,i(K+L, u),

with equality if and only if K and L are dilates or L = {o}.

Proof. If K ∈ Kn
oo and L ∈ Kn

o , then K + L ∈ Kn
oo. In view of L ⊂ int(K + L) and

from Lemma 6.1 with K replaced by K + L, (6.6) easy follows. �

Putting i = 0 in (6.6), (6.6) reduces to (6.4). Here, we point out a new conjecture
which is an extension of the log Minkowski inequality (6.2): Conjecture If K ∈ Kn

oo,
L ∈ Kn

o and 1 ≤ i < n, then

(6.7)

∫
Sn−1

log

(
h(L, u)

h(K,u)

)
dW̄n,i(K,u) ≥ 1

n− i
log

(
Wi(L)

Wi(K)

)
.

Corollary 6.3. If K ∈ Kn
oo, L ∈ Kn

o and 1 ≤ i < n, then

(6.8)

∫
Sn−1

log

(
h(K,u)

h(K + L, u)

)
dW̄n,i(K + L, u) ≥ 1

n− i
log

(
Wi(K)

Wi(K + L)

)
.
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Proof. The result follows immediately from (6.7) with replacing K and L by K + L
and K, respectively. �

It is easy that combine (6.6) and (6.8) together split the following classical Brunn-
Minkowski inequality for quermassintegrals. If K ∈ Kn

oo, L ∈ Kn
o and 0 ≤ i ≤ n,

then

Wi(K + L)1/(n−i) ≥ Wi(K)1/(n−i) +Wi(L)
1/(n−i),

with equality if and only if K and L are dilates or L = {o}.

7 A new version of Orlicz Minkowski’s inequality

In 2010, the Orlicz projection body Πφ of K defined by Lutwak, Yang and Zhang
[28]

(7.1) h(Πφ, u) = inf

{
λ > 0 |

∫
Sn−1

φ

(
|u · υ|

λh(K, υ)

)
dV̄n(K, υ) ≤ 1

}
,

for K ∈ Kn
oo, u ∈ Sn−1, where V̄n(K, ·) is the normalized cone measure for K. Here,

we define the i-th Orlicz mixed projection body.

Definition 7.1. Let K ∈ Kn
oo, L ∈ Kn

o , φ ∈ Φ and 0 ≤ i < n, the i-th Orlicz mixed
projection body, Πφ,i, define by

(7.2) h(Πφ,i, u) = inf

{
λ > 0 |

∫
Sn−1

φ

(
|u · υ|

λh(K, υ)

)
dW̄n,i(K, υ) ≤ 1

}
,

for u ∈ Sn−1, where W̄n,i(K, ·) is the i-th normalized cone measure for K defined in
(4.1).

Obviously, when i = 0, (7.2) becomes (7.1). In the Section, definition 7.1 of the
i-th Orlicz projection body suggests defining, by analogy,

(7.3) Ŵφ,i(K,L) = inf

{
λ > 0 |

∫
Sn−1

φ

(
h(L, u)

λh(K,u)

)
dW̄n,i(K,u) ≤ 1

}
,

and call as Ŵφ,i(K,L) Orlicz type quermassintegrals.

Theorem 7.1. If φ ∈ Φ and K ∈ Kn
oo, L ∈ Kn

o and 1 ≤ i < n, then

(7.4) Ŵφ,i(K,L) ≥
(
Wi(L)

Wi(K)

)1/(n−i)

.

If φ is strictly convex and Wi(L) > 0, equality holds if and only if K and L are dilates.

Proof. Replacing K by λK, λ > 0 in (4.4) with a = ∞, we have

(7.5)

∫
Sn−1

φ

(
h(L, u)

λh(K,u)

)
dW̄n,i(K,u) ≥ φ

(
1

λ

(
Wi(L)

Wi(K)

)1/(n−i)
)
.
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Let ∫
Sn−1

φ

(
h(L, u)

λh(K,u)

)
dW̄n,i(K,u) ≤ 1.

Hence

φ

(
1

λ

(
Wi(L)

Wi(K)

)1/(n−i)
)

≤ 1.

In view of φ is strictly increasing, we obtain

(7.6)

(
Wi(L)

Wi(K)

)1/(n−i)

≤ λ.

From (7.3) and (7.6), (7.4) easy follows.
In the following, we discuss the equality condition of (7.4). Suppose that equality

holds, φ is strictly convex and Wi(L) > 0. From (7.3), the exist µ = Ŵφ,i(K,L) > 0
satisfies ∫

Sn−1

φ

(
h(L, u)

µh(K,u)

)
dW̄n,i(K, υ) = 1.

Hence

µ =

(
Wi(L)

Wi(K)

)1/(n−i)

;

namely:

φ

(
1

µ

(
Wi(L)

Wi(K)

)1/(n−i)
)

= 1.

Therefore the equality in (7.5) holds for λ = µ. From the equality condition of (4.4),
it follows µK and L are dilates. �

When φ(t) = tp and p ≥ 1 in (7.3), it easy follows that

Ŵφ,i(K,L) =

(
Wp,i(K,L)

Wi(K)

)1/p

.

Putting φ(t) = tp and p ≥ 1 in (7.4), (7.4) reduces to the classical Lp-Minkowski
inequality (1.8) for mixed p-quermassintegrals.

There is no direct relationship between the Orlicz-Minkowski inequalities (4.7)
and (7.4). Indeed, when φ > 0 on (0,∞), these can be written in the forms

Wφ,i(K,L)

Wi(K)
≥ φ

((
Wi(L)

Wi(K)

)1/(n−i)
)
, (7.7)

and

(7.7) φ
(
Ŵφ,i(K,L)

)
≥ φ

((
Wi(L)

Wi(K)

)1/(n−i)
)
.

respectively, and each of the two quantities on the left-hand sides can be larger than
the other. This is very interesting.



118 C. J. Zhao

8 Simon’s characterization of relative spheres

Theorem 8.1. Suppose K ∈ Kn
oo, L ∈ Kn

o , and S ⊂ Kn
o is a class of bodies such that

K,L ∈ S. If 0 ≤ i < n− 1 and φ ∈ Φ, and

(8.1) Wφ,i(Q,K) = Wφ,i(Q,L), for all Q ∈ S,

then K = L.

Proof. To see this take Q = K, and from (3.10) and Theorem 4.4, we have

Wi(K) = Wφ,i(K,K) = Wφ,i(K,L) ≥ Wi(K)φ

((
Wi(L)

Wi(K)

)1/(n−i)
)
.

If φ is strictly convex, equality holds if and only if K and L are dilates or L = {o}.
Hence

φ

((
Wi(L)

Wi(K)

)1/(n−i)
)

≤ 1.

If φ is strictly convex, equality holds if and only if K and L are dilates or L = {o}.
Note that φ is increasing, we obtain

Wi(L) ≤ Wi(K).

Take Q = L, we have

Wi(L) = Wφ,i(L,L) = Wφ,i(L,K) ≥ Wi(L)φ

((
Wi(K)

Wi(L)

)1/(n−i)
)
.

If φ is strictly convex, equality holds if and only if K and L are dilates or L = {o}.
Hence

φ

((
Wi(K)

Wi(L)

)1/(n−i)
)

≤ 1.

If φ is strictly convex, equality holds if and only if K and L are dilates or L = {o}.
Hence

Wi(K) ≤ Wi(L).

This yields Wi(K) = Wi(L). Hence K = L. �

Corollary 8.2. Suppose K ∈ Kn
oo, L ∈ Kn

o , and S ⊂ Kn
o is a class of bodies such

that K,L ∈ S. If φ ∈ Φ, and

(8.2) Vφ(Q,K) = Vφ(Q,L), for all Q ∈ S,

then K = L.

Proof. The result follows immediately from Theorem 8.1 with i = 0. �

Putting φ(t) = tp and p > 1 in Theorem 8.1, we obtain the following result which
was proved by Lutwak [21].
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Corollary 8.3. Suppose K ∈ Kn
oo, L ∈ Kn

o , and S ⊂ Kn
o is a class of bodies such

that K,L ∈ S. If p > 1, 0 ≤ i < n− 1, and

(8.3) Wp,i(Q,K) = Wp,i(Q,L), for all Q ∈ S,

then K = L.

Theorem 8.4. Suppose 0 ≤ i < n and φ ∈ Φ. For K ∈ Kn
oo, the following statements

are equivalent:
(i) The body K is centered,
(ii) The measure W̄n,i(K, ·) is even.
(iii) Wφ,i(K,Q) = Wφ,i(K,−Q), for all Q ∈ Kn

oo.
(iv) Wφ,i(K,Q) = Wφ,i(K,−Q), for Q = K.

Proof. To see that (i) implies (ii), recall that if K is centered, then h(K, ·) is an even
function, and Si(K) is an even measure. The implication is now a consequence of the
fact that dW̄n,i(K, ·) = 1

nWi(K)h(K, ·)dSi(K, ·).
That (ii) yields (iii) is a consequence of the following integra representation

Wφ,i(K,Q) = Wi(K)

∫
Sn−1

φ

(
h(Q, u)

h(K,u)

)
dW̄n,i(K,u),

and the fact that, in general, h(−Q,u) = h(Q,−u), for all u ∈ Sn−1. Obviously, (iv)
follows directly from (iii).

To see that (iv) implies (i), notice that (iv), for Q = K, gives

Wi(K) = Wφ,i(K,−K).

The desired result follows from the fact that Wi(−K) = Wi(K) and the equality
conditions of the Orlicz-Minkoski inequality (4.7). �

Corollary 8.5. Suppose φ ∈ Φ. For K ∈ Kn
oo, the following statements are equiva-

lent:
(i) The body K is centered,
(ii) The measure V̄n(K, ·) is even.
(iii) Vφ(K,Q) = Vφ(K,−Q), for all Q ∈ Kn

oo.
(iv) Vφ(K,Q) = Vφ,i(K,−Q), for Q = K.

Proof. The results follow immediately from Theorem 8.5 with i = 0. �

Corollary 8.6. Suppose 0 ≤ i < n and p > 1. For K ∈ Kn
oo, the following statements

are equivalent:
(i) The body K is centered,
(ii) The measure Sp,i(K, ·) is even.
(iii) Wp,i(K,Q) = Wp,i(K,−Q), for all Q ∈ Kn

oo.
(iv) Wp,i(K,Q) = Wp,i(K,−Q), for Q = K.

Proof. The results follow immediately from Theorem 8.5 with φ(t) = tp and p > 1.�

This was proved by Lutwak [21]. That (iii) implies that K is centrally symmetric,
for the case p = 1 and i = 0, was shown (using other methods) by Goodey [10].
Acknowledgements. This research was supported by the National Natural Sciences
Foundation of China (11371334).
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