On the Orlicz-Brunn-Minkowski theory

C. J. Zhao

Abstract

Recently, Gardner, Hug and Weil developed an Orlicz-BrunnMinkowski theory. Following this, in the paper we further consider the Orlicz-Brunn-Minkowski theory. The fundamental notions of mixed quermassintegrals, mixed p-quermassintegrals and inequalities are extended to an Orlicz setting. Inequalities of Orlicz Minkowski and Brunn-Minkowski type for Orlicz mixed quermassintegrals are obtained. One of these has connections with the conjectured log-Brunn-Minkowski inequality and we prove a new log-Minkowski-type inequality. A new version of Orlicz Minkowski's inequality is proved. Finally, we show Simon's characterization of relative spheres for the Orlicz mixed quermassintegrals.

M.S.C. 2010: 52A20, 52A30.

Key words: L_{p} addition; Orlicz addition; Orlicz mixed volume; mixed quermassintegrals; mixed p-quermassintegrals; Orlicz mixed quermassintegrals; Orlicz-Minkowski inequality; Orlicz-Brunn-Minkowski inequality.

1 Introduction

One of the most important operations in geometry is vector addition. As an operation between sets K and L, defined by

$$
K+L=\{x+y \mid x \in K, y \in L\},
$$

it is usually called Minkowski addition and combine volume play an important role in the Brunn-Minkowski theory. During the last few decades, the theory has been extended to L_{p}-Brunn-Minkowski theory. The first, a set called as L_{p} addition, introduced by Firey in [6] and [7]. Denoted by $+_{p}$, for $1 \leq p \leq \infty$, defined by

$$
\begin{equation*}
h\left(K+{ }_{p} L, x\right)^{p}=h(K, x)^{p}+h(L, x)^{p}, \tag{1.1}
\end{equation*}
$$

for all $x \in \mathbb{R}^{n}$ and compact convex sets K and L in \mathbb{R}^{n} containing the origin. When $p=\infty,(1.1)$ is interpreted as $h(K+\infty L, x)=\max \{h(K, x), h(L, x)\}$, as is customary. Here the functions are the support functions. If K is a nonempty closed (not necessarily bounded) convex set in \mathbb{R}^{n}, then

$$
h(K, x)=\max \{x \cdot y \mid y \in K\}
$$

for $x \in \mathbb{R}^{n}$, defines the support function $h(K, x)$ of K. A nonempty closed convex set is uniquely determined by its support function. L_{p} addition and inequalities are the fundamental and core content in the L_{p} Brunn-Minkowski theory. For recent important results and more information from this theory, we refer to [12], [13], [14], [15], [20], [22], [23], [24], [25], [26], [27], [30], [31], [35], [36], [37] and the references therein. In recent years, a new extension of L_{p}-Brunn-Minkowski theory is to Orlicz-Brunn-Minkowski theory, initiated by Lutwak, Yang, and Zhang [28] and [29]. In these papers the notions of L_{p}-centroid body and L_{p}-projection body were extended to an Orlicz setting. The Orlicz centroid inequality for star bodies was introduced in [39] which is an extension from convex to star bodies. The other articles advance the theory can be found in literatures [11], [17], [18] and [32]. Very recently, Gardner, Hug and Weil ([9]) constructed a general framework for the Orlicz-Brunn-Minkowski theory, and made clear for the first time the relation to Orlicz spaces and norms. They introduced the Orlicz addition $K+{ }_{\varphi} L$ of compact convex sets K and L in \mathbb{R}^{n} containing the origin, implicitly, by

$$
\begin{equation*}
\varphi\left(\frac{h(K, x)}{h\left(K+{ }_{\varphi} L, x\right)}, \frac{h(L, x)}{h\left(K+{ }_{\varphi} L, x\right)}\right)=1 \tag{1.2}
\end{equation*}
$$

for $x \in \mathbb{R}^{n}$, if $h(K, x)+h(L, x)>0$, and by $h\left(K+{ }_{\varphi} L, x\right)=0$, if $h(K, x)=h(L, x)=0$. Here $\varphi \in \Phi_{2}$, the set of convex functions $\varphi:[0, \infty)^{2} \rightarrow[0, \infty)$ that are increasing in each variable and satisfy $\varphi(0,0)=0$ and $\varphi(1,0)=\varphi(0,1)=1$.

Unlike the L_{p} case, an Orlicz scalar multiplication cannot generally be considered separately. The particular instance of interest corresponds to using (1.2) with $\varphi\left(x_{1}, x_{2}\right)=\varphi_{1}\left(x_{1}\right)+\varepsilon \varphi_{2}\left(x_{2}\right)$ for $\varepsilon>0$ and some $\varphi_{1}, \varphi_{2} \in \Phi$, in which case we write $K+{ }_{\varphi, \varepsilon} L$ instead of $K+\varphi L$, where the sets of convex function $\varphi_{i}:[0, \infty) \rightarrow(0, \infty)$ that are increasing and satisfy $\varphi_{i}(1)=1$ and $\varphi_{i}(0)=0$, where $i=1,2$. Orlicz addition reduces to L_{p} addition, $1 \leq p<\infty$, when $\varphi\left(x_{1}, x_{2}\right)=x_{1}^{p}+x_{2}^{p}$, or L_{∞} addition, when $\varphi\left(x_{1}, x_{2}\right)=\max \left\{x_{1}, x_{2}\right\}$. Moreover, Gardner, Hug and Weil ([9]) introduced the Orlicz mixed volume, obtaining the equation

$$
\begin{equation*}
\left.\frac{\left(\varphi_{1}\right)_{l}^{\prime}(1)}{n} \lim _{\varepsilon \rightarrow 0^{+}} \frac{V(K+\varphi, \varepsilon}{} L\right)-V(K), \frac{1}{n} \int_{S^{n-1}} \varphi_{2}\left(\frac{h(L, u)}{h(K, u)}\right) h(K, u) d S(K, u), \tag{1.3}
\end{equation*}
$$

where $S(K, u)$ is the mixed surface area measure of K and $\varphi \in \Phi_{2}, \varphi_{1}, \varphi_{2} \in \Phi$. Here K is a convex body containing the origin in its interior and L is a compact convex set containing the origin, assumptions we shall retain for the remainder of this introduction.

Denoting by $V_{\varphi}(K, L)$, for any $\varphi \in \Phi$, the integral on the right side of (1.3) with φ_{2} replaced by φ, we see that either side of the equation (1.3) is equal to $V_{\varphi_{2}}(K, L)$ and therefore this new Orlicz mixed volume plays the same role as $V_{p}(K, L)$ in the L_{p}-Brunn-Minkowski theory. In [9], Gardner, Hug and Weil obtained the OrliczMinkowksi inequality.

$$
\begin{equation*}
V_{\varphi}(K, L) \geq V(K) \cdot \varphi\left(\left(\frac{V(L)}{V(K)}\right)^{1 / n}\right) \tag{1.4}
\end{equation*}
$$

for $\varphi \in \Phi$. If φ is strictly convex, equality holds if and only if K and L are dilates or $L=\{o\}$.

In Section 3, we compute the Orlicz first variation of quermassintegrals, call as Orlicz mixed quermassintegrals, obtaining the equation (1.5)

$$
\frac{\left(\varphi_{1}\right)_{l}^{\prime}(1)}{n-i} \lim _{\varepsilon \rightarrow 0^{+}} \frac{W_{i}\left(K+{ }_{\varphi, \varepsilon} L\right)-W_{i}(K)}{\varepsilon}=\frac{1}{n} \int_{S^{n-1}} \varphi_{2}\left(\frac{h(L, u)}{h(K, u)}\right) h(K, u) d S_{i}(K, u)
$$

for $\varphi \in \Phi_{2}, \varphi_{1}, \varphi_{2} \in \Phi$ and $1 \leq i \leq n$, and W_{i} denotes the usual quermassintegrals, and $S_{i}(K, u)$ is the i-th mixed surface area measure of K. Denoting by $W_{\varphi, i}(K, L)$, for any $\varphi \in \Phi$, the integral on the right side of (1.5) with φ_{2} replaced by φ, we see that either side of the equation (1.5) is equal to $W_{\varphi_{2}, i}(K, L)$ and therefore this new Orlicz mixed volume (Orlicz mixed quermassintegrals) plays the same role as $W_{p, i}(K, L)$ in the L_{p}-Brunn-Minkowski theory. Note that when $i=0$, (1.5) becomes (1.3). Hence we have the following definition of Orlicz mixed quermassintegrals.

$$
\begin{equation*}
W_{\varphi, i}(K, L)=\frac{1}{n} \int_{S^{n-1}} \varphi\left(\frac{h(L, u)}{h(K, u)}\right) h(K, u) d S_{i}(K, u) . \tag{1.6}
\end{equation*}
$$

In Section 4, we establish Orlicz-Minkowksi inequality for the Orlicz mixed quermassintegrals.

$$
\begin{equation*}
W_{\varphi, i}(K, L) \geq W_{i}(K) \cdot \varphi\left(\left(\frac{W_{i}(L)}{W_{i}(K)}\right)^{1 /(n-i)}\right) \tag{1.7}
\end{equation*}
$$

for $\varphi \in \Phi$ and $0 \leq i<n$. If φ is strictly convex, equality holds if and only if K and L are dilates or $L=\{o\}$. Note that when $i=0,(1.7)$ becomes to (1.4). In particularly, putting $\varphi(t)=t^{p}, 1 \leq p<\infty$ in (1.7), (1.7) reduces to the following L_{p}-Minkowski inequality for mixed p-quermassintegrals established by Lutwak [21].

$$
\begin{equation*}
W_{p, i}(K, L)^{n-i} \geq W_{i}(K)^{n-i-p} W_{i}(L)^{p} \tag{1.8}
\end{equation*}
$$

for $p>1$ and $0 \leq i \leq n$, with equality if and only if K and L are dilates or $L=\{o\}$. Putting $i=0, \varphi(t)=t^{p}$ and $1 \leq p<\infty$ in (1.7), (1.7) reduces to the well-known L_{p}-Minkowski inequality established by Firey [7]. For $p>1$,

$$
\begin{equation*}
V_{p}(K, L) \geq V(K)^{(n-p) / n} V(L)^{p / n} \tag{1.9}
\end{equation*}
$$

with equality if and only if K and L are dilates or $L=\{o\}$.
In Section 5, we establish the following Orlicz-Brunn-Minkowksi inequality for quermassintegrals of Orlicz addition.

$$
\begin{equation*}
1 \geq \varphi\left(\left(\frac{W_{i}(K)}{W_{i}\left(K+_{\varphi} L\right)}\right)^{1 /(n-i)},\left(\frac{W_{i}(L)}{W_{i}\left(K+{ }_{\varphi} L\right)}\right)^{1 /(n-i)}\right) \tag{1.10}
\end{equation*}
$$

for $\varphi \in \Phi_{2}$ and $0 \leq i<n$. If φ is strictly convex, equality holds if and only if K and L are dilates or $L=\{o\}$. Note that when $\varphi\left(x_{1}, x_{2}\right)=x_{1}^{p}+x_{2}^{p}, 1 \leq p<\infty$ in (1.11), (1.11) reduces to the following L_{p}-Brunn-Minkowski inequality for quermassintegrals established by Lutwak [21]. If

$$
\begin{equation*}
W_{i}\left(K+{ }_{p} L\right)^{p /(n-i)} \geq W_{i}(K)^{p /(n-i)}+W_{i}(L)^{p /(n-i)} \tag{1.11}
\end{equation*}
$$

with equality if and only if K and L are dilates or $L=\{o\}$, and where $p \geq 1$ and $0 \leq i<n$. Putting $i=0, \varphi\left(x_{1}, x_{2}\right)=x_{1}^{p}+x_{2}^{p}$ and $1 \leq p<\infty$ in (1.11), (1.11) reduces to the well-known L_{p}-Brunn-Minkowski inequality established by Firey [7].

$$
\begin{equation*}
V\left(K+{ }_{p} L\right)^{p / n} \geq V(K)^{p / n}+V(L)^{p / n} \tag{1.12}
\end{equation*}
$$

with equality if and only if K and L are dilates or $L=\{o\}$, and where $p>1$. A special case of (1.10) was recently established by Gardner, Hug and Weil [9].

$$
\begin{equation*}
1 \geq \varphi\left(\left(\frac{V(K)}{V\left(K++_{\varphi} L\right)}\right)^{1 / n},\left(\frac{V(L)}{V(K+\varphi L)}\right)^{1 / n}\right) \tag{1.13}
\end{equation*}
$$

for $\varphi \in \Phi_{2}$. If φ is strictly convex, equality holds if and only if K and L are dilates or $L=\{o\}$. When $i=0$, (1.10) becomes to (1.12). Moreover, We prove also the Orlicz Minkowski inequality (1.4) and the Orlicz Brunn-Minkowski inequality (1.12) are equivalent, and (1.7) and (1.10) also are equivalent.

When we were about to submit our paper, we were informed that G. Xiong and D. Zou [38] had also obtained Orlicz Minowski and Brunn-Mingkowski inequalities for Orlicz mixed quermassintegrals. Please note that we use a completely different approach, although the two inequalities coincide with theirs.

In 2012, Böröczky, Lutwak, Yang, and Zhang [2] conjecture a log-Minkowski inequality for origin-symmetric convex bodies K and L in \mathbb{R}^{n}.

$$
\begin{equation*}
\int_{S^{n-1}} \log \left(\frac{h(L, u)}{h(K, u)}\right) h(K, u) d S(K, u) \geq V(K) \log \left(\frac{V(L)}{V(K)}\right) . \tag{1.14}
\end{equation*}
$$

In [2], (1.14) is proved by them only when $n=2$. Very recently, Gardner, Hug and Weil [9] proved a new version of (1.14) for convex bodies, not origin-symmetric convex bodies.

$$
\begin{equation*}
\int_{S^{n-1}} \log \left(1-\frac{h(L, u)}{h(K, u)}\right) h(K, u) d S(K, u) \leq V(K) \log \left(1-\frac{V(L)^{1 / n}}{V(K)^{1 / n}}\right)^{n} \tag{1.15}
\end{equation*}
$$

with equality if and only if K and L are dilates or $L=\{o\}$, and where $L \subset \operatorname{int} K$. They also shown that combining (1.14) and (1.15) may get the classical Brunn-Minkowski inequality. In Section 6, we give a new log-Minkowski-type inequality

$$
\begin{equation*}
\int_{S^{n-1}} \log \left(1-\frac{h(L, u)}{h(K, u)}\right) h(K, u) d S_{i}(K, u) \leq W_{i}(K) \log \left(1-\frac{W_{i}(L)^{1 /(n-i)}}{W_{i}(K)^{1 /(n-i)}}\right)^{n}, \tag{1.16}
\end{equation*}
$$

with equality if and only if K and L are dilates or $L=\{o\}$. When $i=0$, (1.16) becomes (1.15). We also point out a conjecture which is an extension of the log Minkowski inequality as follows.

$$
\begin{equation*}
\frac{1}{n} \int_{S^{n-1}} \log \left(\frac{h(L, u)}{h(K, u)}\right) h(K, u) d S_{i}(K, u) \geq \log \left(\frac{W_{i}(L)}{W_{i}(K)}\right)^{1 /(n-i)} \tag{1.17}
\end{equation*}
$$

When $i=0,(1.17)$ becomes the log-Minkowski inequality (1.14). Combining (1.16) and (1.17) together split the following classical Brunn-Minkowski inequality for quermassintegrals (see Section 6).

$$
W_{i}(K+L)^{1 /(n-i)} \geq W_{i}(K)^{1 /(n-i)}+W_{i}(L)^{1 /(n-i)}
$$

with equality if and only if K and L are dilates or $L=\{o\}$.
In 2010, the Orlicz projection body $\boldsymbol{\Pi}_{\varphi}$ of K (K is a convex body containing the origin in its interior) defined by Lutwak, Yang and Zhang [28]

$$
\begin{equation*}
h\left(\boldsymbol{\Pi}_{\varphi}, u\right)=\inf \left\{\lambda>0 \left\lvert\, \frac{1}{n V(K)} \int_{S^{n-1}} \varphi\left(\frac{|u \cdot v|}{\lambda h(K, v)}\right) h(K, v) d S(K, v) \leq 1\right.\right\} \tag{1.18}
\end{equation*}
$$

for $\varphi \in \Phi$ and $u \in S^{n-1}$. A different Orlicz version of Minkowski's inequality (1.8) is presented in Section 7. This results from replacing the left side of (1.8) by the quantity

$$
\begin{equation*}
\widehat{W}_{\varphi, i}(K, L)=\inf \left\{\lambda>0 \left\lvert\, \frac{1}{n W_{i}(K)} \int_{S^{n-1}} \varphi\left(\frac{h(L, u)}{\lambda h(K, u)}\right) h(K, u) d S_{i}(K, u) \leq 1\right.\right\} \tag{1.19}
\end{equation*}
$$

for $\varphi \in \Phi$ and $0 \leq i<n$. We prove the following new Orlicz Minkowski type inequality.

$$
\begin{equation*}
\widehat{W}_{\varphi, i}(K, L) \geq\left(\frac{W_{i}(L)}{W_{i}(K)}\right)^{1 /(n-i)} \tag{1.20}
\end{equation*}
$$

where $\varphi \in \Phi$ and $1 \leq i<n$. If φ is strictly convex and $W_{i}(L)>0$, equality holds if and only if K and L are dilates. A special version of (1.20) was recently established by Gardner, Hug and Weil [9].

$$
\widehat{V}_{\varphi}(K, L) \geq\left(\frac{V(L)}{V(K)}\right)^{1 / n}
$$

If φ is strictly convex and $V(L)>0$, then equality holds if and only if K and L are dilates and where

$$
\widehat{V}_{\varphi}(K, L)=\inf \left\{\lambda>0 \left\lvert\, \frac{1}{n V(K)} \int_{S^{n-1}} \varphi\left(\frac{h(L, u)}{\lambda h(K, u)}\right) h(K, u) d S(K, u) \leq 1\right.\right\}
$$

for $\varphi \in \Phi$.
Finally, in Section 8, we show Simon's characterization of relative spheres for the Orlicz mixed quermassintegrals.

2 Notations and preliminaries

The setting for this paper is n-dimensional Euclidean space \mathbb{R}^{n}. Let \mathcal{K}^{n} be the class of nonempty compact convex subsets of \mathbb{R}^{n}, let \mathcal{K}_{o}^{n} be the class of members of \mathcal{K}^{n} containing the origin, and let $\mathcal{K}_{o o}^{n}$ be those sets in \mathcal{K}^{n} containing the origin in their interiors. A set $K \in \mathcal{K}^{n}$ is called a convex body if its interior is nonempty. We reserve the letter $u \in S^{n-1}$ for unit vectors, and the letter B for the unit ball centered at the origin. The surface of B is S^{n-1}. For a compact set K, we write $V(K)$ for the (n-dimensional) Lebesgue measure of K and call this the volume of K. If K is a nonempty closed (not necessarily bounded) convex set, then

$$
h(K, x)=\sup \{x \cdot y \mid y \in K\}
$$

for $x \in \mathbb{R}^{n}$, defines the support function of K, where $x \cdot y$ denotes the usual inner product x and y in \mathbb{R}^{n}. A nonempty closed convex set is uniquely determined by its support function. Support function is homogeneous of degree 1, that is,

$$
h(K, r x)=r h(K, x)
$$

for all $x \in \mathbb{R}^{n}$ and $r \geq 0$. Let d denote the Hausdorff metric on \mathcal{K}^{n}, i.e., for $K, L \in \mathcal{K}^{n}$, $d(K, L)=|h(K, u)-h(L, u)|_{\infty}$, where $|\cdot|_{\infty}$ denotes the sup-norm on the space of continuous functions $C\left(S^{n-1}\right)$.

Throughout the paper, the standard orthonormal basis for \mathbb{R}^{n} will be $\left\{e_{1}, \ldots, e_{n}\right\}$. Let $\Phi_{n}, n \in \mathbb{N}$, denote the set of convex functions $\varphi:[0, \infty)^{n} \rightarrow[0, \infty)$ that are strictly increasing in each variable and satisfy $\varphi(0)=0$ and $\varphi\left(e_{j}\right)=1>0, j=1, \ldots, n$. When $n=1$, we shall write Φ instead of Φ_{1}. The left derivative and right derivative of a real-valued function f are denoted by $(f)_{l}^{\prime}$ and $(f)_{r}^{\prime}$, respectively.

2.1 Mixed quermassintegrals

If $K_{i} \in \mathcal{K}^{n}(i=1,2, \ldots, r)$ and $\lambda_{i}(i=1,2, \ldots, r)$ are nonnegative real numbers, then of fundamental importance is the fact that the volume of $\sum_{i=1}^{r} \lambda_{i} K_{i}$ is a homogeneous polynomial in λ_{i} given by (see e.g. [3])

$$
\begin{equation*}
V\left(\lambda_{1} K_{1}+\cdots+\lambda_{n} K_{n}\right)=\sum_{i_{1}, \ldots, i_{n}} \lambda_{i_{1}} \ldots \lambda_{i_{n}} V_{i_{1} \ldots i_{n}}, \tag{2.1}
\end{equation*}
$$

where the sum is taken over all n-tuples $\left(i_{1}, \ldots, i_{n}\right)$ of positive integers not exceeding r. The coefficient $V_{i_{1} \ldots i_{n}}$ depends only on the bodies $K_{i_{1}}, \ldots, K_{i_{n}}$ and is uniquely determined by (2.1), it is called the mixed volume of $K_{i}, \ldots, K_{i_{n}}$, and is written as $V\left(K_{i_{1}}, \ldots, K_{i_{n}}\right)$. Let $K_{1}=\ldots=K_{n-i}=K$ and $K_{n-i+1}=\ldots=K_{n}=L$, then the mixed volume $V\left(K_{1}, \ldots, K_{n}\right)$ is written as $V(K[n-i], L[i])$. If $K_{1}=\cdots=K_{n-i}=K$, $K_{n-i+1}=\cdots=K_{n}=B$ The mixed volumes $V_{i}(K[n-i], B[i])$ is written as $W_{i}(K)$ and call as quermassintegrals (or i-th mixed quermassintegrals) of K. We write $W_{i}(K, L)$ for the mixed volume $V(K[n-i-1], B[i], L[1])$ and call as mixed quermassintegrals. Aleksandrov [1] and Fenchel and Jessen [5] (also see Busemann [4] and Schneider [33]) have shown that for $K \in \mathcal{K}_{o o}^{n}$, and $i=0,1, \ldots, n-1$, there exists a regular Borel measure $S_{i}(K, \cdot)$ on S^{n-1}, such that the mixed quermassintegrals $W_{i}(K, L)$ has the following representation:

$$
\begin{equation*}
W_{i}(K, L)=\frac{1}{n-i} \lim _{\varepsilon \rightarrow 0^{+}} \frac{W_{i}(K+\varepsilon L)-W_{i}(K)}{\varepsilon}=\frac{1}{n} \int_{S^{n-1}} h(L, u) d S_{i}(K, u) . \tag{2.2}
\end{equation*}
$$

Associated with $K_{1}, \ldots, K_{n} \in \mathcal{K}^{n}$ is a Borel measure $S\left(K_{1}, \ldots, K_{n-1}, \cdot\right)$ on S^{n-1}, called the mixed surface area measure of K_{1}, \ldots, K_{n-1}, which has the property that for each $K \in \mathcal{K}^{n}$ (see e.g. [8], p.353),

$$
\begin{equation*}
V\left(K_{1}, \ldots, K_{n-1}, K\right)=\frac{1}{n} \int_{S^{n-1}} h(K, u) d S\left(K_{1}, \ldots, K_{n-1}, u\right) . \tag{2.3}
\end{equation*}
$$

In fact, the measure $S\left(K_{1}, \ldots, K_{n-1}, \cdot\right)$ can be defined by the propter that (2.3) holds for all $K \in \mathcal{K}^{n}$. Let $K_{1}=\ldots=K_{n-i-1}=K$ and $K_{n-i}=\ldots=K_{n-1}=L$, then the mixed surface area measure $S\left(K_{1}, \ldots, K_{n-1}, \cdot\right)$ is written as $S(K[n-i], L[i], \cdot)$.

When $L=B, S(K[n-i], L[i], \cdot)$ is written as $S_{i}(K, \cdot)$ and called as i-th mixed surface area measure. A fundamental inequality for mixed quermassintegrals stats that: For $K, L \in \mathcal{K}^{n}$ and $0 \leq i<n-1$,

$$
\begin{equation*}
W_{i}(K, L)^{n-i} \geq W_{i}(K)^{n-i-1} W_{i}(L) \tag{2.4}
\end{equation*}
$$

with equality if and only if K and L are homothetic and $L=\{o\}$. Good general references for this material are [4] and [19].

2.2 Mixed p-quermassintegrals

Mixed quermassintegrals are, of course, the first variation of the ordinary quermassintegrals, with respect to Minkowski addition. The mixed quermassintegrals $W_{p, 0}(K, L), W_{p, 1}(K, L), \ldots, W_{p, n-1}(K, L)$, as the first variation of the ordinary quermassintegrals, with respect to Firey addition: For $K, L \in \mathcal{K}_{o o}^{n}$, and real $p \geq 1$, defined by (see e.g. [21])

$$
\begin{equation*}
W_{p, i}(K, L)=\frac{p}{n-i} \lim _{\varepsilon \rightarrow_{0^{+}}} \frac{W_{i}\left(K+{ }_{p} \varepsilon \cdot L\right)-W_{i}(K)}{\varepsilon} \tag{2.5}
\end{equation*}
$$

The mixed p-quermassintegrals $W_{p, i}(K, L)$, for all $K, L \in \mathcal{K}_{o o}^{n}$, has the following integral representation:

$$
\begin{equation*}
W_{p, i}(K, L)=\frac{1}{n} \int_{S^{n-1}} h(L, u)^{p} d S_{p, i}(K, u) \tag{2.6}
\end{equation*}
$$

where $S_{p, i}(K, \cdot)$ denotes the Boel measure on S^{n-1}. The measure $S_{p, i}(K, \cdot)$ is absolutely continuous with respect to $S_{i}(K, \cdot)$, and has Radon-Nikodym derivative

$$
\begin{equation*}
\frac{d S_{p, i}(K, \cdot)}{d S_{i}(K, \cdot)}=h(K, \cdot)^{1-p} \tag{2.7}
\end{equation*}
$$

where $S_{i}(K, \cdot)$ is a regular Boel measure on S^{n-1}. The measure $S^{n-1}(K, \cdot)$ is independent of the body K, and is just ordinary Lebesgue measure, S, on $S^{n-1} . S_{i}(B, \cdot)$ denotes the i-th surface area measure of the unit ball in \mathbb{R}^{n}. In fact, $S_{i}(B, \cdot)=S$ for all i. The surface area measure $S_{0}(K, \cdot)$ just is $S(K, \cdot)$. When $i=0, S_{p, i}(K, \cdot)$ is written as $S_{p}(K, \cdot)$ (see [25], [26]). A fundamental inequality for mixed p-quermassintegrals stats that: For $K, L \in \mathcal{K}_{o o}^{n}, p>1$ and $0 \leq i<n-1$,

$$
\begin{equation*}
W_{p, i}(K, L)^{n-i} \geq W_{i}(K)^{n-i-p} W_{i}(L)^{p} \tag{2.8}
\end{equation*}
$$

with equality if and only if K and L are homothetic. L_{p}-Brunn-Minkowski inequality for quermassintegrals established by Lutwak [21]. If $K \in \mathcal{K}_{o o}^{n}, L \in \mathcal{K}_{o}^{n}$ and $p \geq 1$ and $0 \leq i \leq n$, then

$$
\begin{equation*}
W_{i}\left(K+{ }_{p} L\right)^{p /(n-i)} \geq W_{i}(K)^{p /(n-i)}+W_{i}(L)^{p /(n-i)} \tag{2.9}
\end{equation*}
$$

with equality if and only if K and L are dilates or $L=\{o\}$. Obviously, putting $i=0$ in (2.6), the mixed p-quermassintegrals $W_{p, i}(K, L)$ become the well-known L_{p}-mixed volume $V_{p}(K, L)$, defined by (see e.g. [25])

$$
\begin{equation*}
V_{p}(K, L)=\frac{1}{n} \int_{S^{n-1}} h(L, u)^{p} d S_{p}(K, u) \tag{2.10}
\end{equation*}
$$

2.3 The Orlicz mixed volume

For $\varphi \in \Phi, K \in \mathcal{K}_{o o}^{n}$ and $L \in \mathcal{K}_{o}^{n}$, Gardner, Hug and Weil [9] defined the Orlicz mixed volumes, $V_{\varphi}(K, L)$ by

$$
\begin{equation*}
V_{\varphi}(K, L)=\frac{1}{n} \int_{S^{n-1}} \varphi\left(\frac{h(L, u)}{h(K, u)}\right) h(K, u) d S(K, u) \tag{2.11}
\end{equation*}
$$

They obtained the Orlicz-Minkowksi inequality.

$$
\begin{equation*}
V_{\varphi}(K, L) \geq V(K) \cdot \varphi\left(\left(\frac{V(L)}{V(K)}\right)^{1 / n}\right) \tag{2.12}
\end{equation*}
$$

for all $K \in \mathcal{K}_{o o}^{n}, L \in \mathcal{K}_{o}^{n}$ and $\varphi \in \Phi$. If φ is strictly convex, equality holds if and only if K and L are dilates or $L=\{o\}$.

Orlicz mixed quermassintegrals is defined in Section 3, by

$$
\begin{equation*}
W_{\varphi, i}(K, L)=: \frac{1}{n} \int_{S^{n-1}} \varphi\left(\frac{h(L, u)}{h(K, u)}\right) h(K, u) d S_{i}(K, u) \tag{2.13}
\end{equation*}
$$

for all $K \in \mathcal{K}_{o o}^{n}, L \in \mathcal{K}_{o}^{n}, \varphi \in \Phi$ and $0 \leq i<n$. Obviously, when $\varphi(t)=t^{p}$ and $p \geq 1$, Orlicz mixed quermassintegrals reduces to the mixed p-quermassintegrals $W_{p, i}(K, L)$ defined in (2.6). When $i=0,(2.13)$ reduces to (2.11).

2.4 Orlicz addition

Let $m \geq 2, \varphi \in \Phi_{m}, K_{j} \in \mathcal{K}_{0}^{n}$ and $j=1, \ldots, m$, we define the Orlicz addition of K_{1}, \ldots, K_{m}, denoted by ${ }_{\varphi}\left(K_{1}, \ldots, K_{m}\right)$, is defined by

$$
\begin{equation*}
h\left(+_{\varphi}\left(K_{1}, \ldots, K_{m}\right), x\right)=\inf \left\{\lambda>0 \left\lvert\, \varphi\left(\frac{h\left(K_{1}, x\right)}{\lambda}, \ldots, \frac{h\left(K_{m}, x\right)}{\lambda}\right) \leq 1\right.\right\} \tag{2.14}
\end{equation*}
$$

for $x \in \mathbb{R}^{n}$. Equivalently, the Orlicz addition $+_{\varphi}\left(K_{1}, \ldots, K_{m}\right)$ can be defined implicitly (and uniquely) by

$$
\begin{equation*}
\varphi\left(\frac{h\left(K_{1}, x\right)}{h\left(+_{\varphi}\left(K_{1}, \ldots, K_{m}\right), x\right)}, \ldots, \frac{h\left(K_{m}, x\right)}{h\left(+_{\varphi}\left(K_{1}, \ldots, K_{m}\right), x\right)}\right)=1 \tag{2.15}
\end{equation*}
$$

for all $x \in \mathbb{R}^{n}$. An important special case is obtained when

$$
\varphi\left(x_{1}, \ldots, x_{m}\right)=\sum_{j=1}^{m} \varphi_{j}\left(x_{j}\right)
$$

for some fixed $\varphi_{j} \in \Phi$ such that $\varphi_{1}(1)=\cdots=\varphi_{m}(1)=1$. We then write $+_{\varphi}\left(K_{1}, \ldots, K_{m}\right)=K_{1}+{ }_{\varphi} \cdots+{ }_{\varphi} K_{m}$. This means that $K_{1}+{ }_{\varphi} \cdots+{ }_{\varphi} K_{m}$ is defined either by

$$
\begin{equation*}
h\left(K_{1}+{ }_{\varphi} \cdots+{ }_{\varphi} K_{m}, u\right)=\sup \left\{\lambda>0 \left\lvert\, \sum_{j=1}^{m} \varphi_{j}\left(\frac{h\left(K_{j}, x\right)}{\lambda}\right) \leq 1\right.\right\} \tag{2.16}
\end{equation*}
$$

for all $x \in \mathbb{R}^{n}$, or by the corresponding special case of (2.15).
For real $p \geq 1, K, L \in \mathcal{K}_{o o}^{n}$ and $\alpha, \beta \geq 0$ (not both zero), the Firey linear combination $\alpha \cdot K+{ }_{p} \beta \cdot L \in \mathcal{K}_{o}^{n}$ can be defined by (see [6] and [7])

$$
h\left(\alpha \cdot K+{ }_{p} \beta \cdot L, \cdot\right)^{p}=\alpha h(K, \cdot)^{p}+\beta h(L, \cdot)^{p} .
$$

Obviously, Firey and Minkowski scalar multiplications are related by $\alpha \cdot K=\alpha^{1 / p} K$. In [9], Gardner, Hug and Weil define the Orlicz linear combination $+_{\varphi}(K, L, \alpha, \beta)$ for $K, L \in \mathcal{K}_{o}^{n}$ and $\alpha, \beta \geq 0$, defined by

$$
\begin{equation*}
\alpha \varphi_{1}\left(\frac{h(K, x)}{h\left(+_{\varphi}(K, L, \alpha, \beta), x\right)}\right)+\beta \varphi_{2}\left(\frac{h(L, x)}{h\left(+_{\varphi}(K, L, \alpha, \beta), x\right)}\right)=1 \tag{2.17}
\end{equation*}
$$

if $\alpha h(K, x)+\beta h(L, x)>0$, and by $h\left(+_{\varphi}(K, L, \alpha, \beta), x\right)=0$ if $\alpha h(K, x)+\beta h(L, x)=0$, for all $x \in \mathbb{R}^{n}$. It is easy to verify that when $\varphi_{1}(t)=\varphi_{2}(t)=t^{p}, p \geq 1$, the Orlicz linear combination $+_{\varphi}(K, L, \alpha, \beta)$ equals the Firey combination $\alpha \cdot K+_{p} \beta \cdot L$. Henceforth we shall write $K+{ }_{\varphi, \varepsilon} L$ instead of $+_{\varphi}(K, L, 1, \varepsilon)$, for $\varepsilon \geq 0$, and assume throughout that this is defined by (2.17), where $\alpha=1, \beta=\varepsilon$, and $\varphi_{1}, \varphi_{2} \in \Phi$.

3 Orlicz mixed quermassintegrals

In order to define a new concept: Orlicz mixed quermassintegrals, we need Lemmas 3.1-3.4 and Theorem 3.5.

Lemma 3.1. ([9]) If $\varphi \in \Phi_{m}$, then Orlicz addition $+_{\varphi}:\left(\mathcal{K}_{0}^{n}\right)^{m} \rightarrow \mathcal{K}_{0}^{n}$ is continuous, $G L(n)$ covariant, monotonic, projection covariant and has the identity property.
Lemma 3.2. ([9]) If $K, L \in \mathcal{K}_{o}^{n}$, then

$$
\begin{equation*}
K+_{\varphi, \varepsilon} L \rightarrow K \tag{3.1}
\end{equation*}
$$

in the Hausdorff metric as $\varepsilon \rightarrow 0^{+}$.
Lemma 3.3. If $K, L \in \mathcal{K}_{o}^{n}$ and $0 \leq i<n$, Then
$\lim _{\varepsilon \rightarrow 0^{+}} \frac{W_{i}\left(K++_{\varphi, \varepsilon} L\right)-W_{i}(K)}{\varepsilon}=\frac{n-i}{n} \int_{S^{n-1}} \lim _{\varepsilon \rightarrow 0^{+}} \frac{h\left(K++_{\varphi, \varepsilon} L, u\right)-h(K, u)}{\varepsilon} d S_{i}(K, u)$,
where, $\left.\lim _{\varepsilon \rightarrow 0^{+}} \frac{h(K+\varphi, \varepsilon}{} L, u\right)-h(K, u)$ uniformly for $u \in S^{n-1}$.
Proof. For brevity, we temporarily write $K_{\varepsilon}=K+_{\varphi, \varepsilon} L$. Starting with the decomposition
$\frac{W_{i}\left(K_{\varepsilon}\right)-W_{i}(K)}{\varepsilon}=\sum_{j=0}^{n-i-1} \frac{W_{i}\left(K_{\varepsilon}[j+1], K[n-i-j-1]\right)-W_{i}\left(K_{\varepsilon}[j], K[n-i-j]\right)}{\varepsilon}$.
Notice that

$$
\begin{equation*}
\frac{W_{i}\left(K_{\varepsilon}[j+1], K[n-i-j-1]\right)-W_{i}\left(K_{\varepsilon}[j], K[n-i-j]\right)}{\varepsilon} \tag{3.3}
\end{equation*}
$$

$$
\left.\begin{array}{rl}
= & \frac{1}{n} \int_{S^{n-1}} \frac{h\left(K_{\varepsilon}, u\right)-h(K, u)}{\varepsilon} d S_{i}\left(K_{\varepsilon}[j], K[n-i-j-1], u\right) \\
= & \frac{1}{n} \int_{S^{n-1}}\left(\frac{h\left(K_{\varepsilon}, u\right)-h(K, u)}{\varepsilon}-\lim _{\varepsilon \rightarrow 0^{+}} \frac{h(K+\varphi, \varepsilon}{} L, u\right)-h(K, u) \\
\varepsilon
\end{array}\right) \times 1 \text {. } \begin{aligned}
& \times d S_{i}\left(K_{\varepsilon}[j], K[n-i-j-1], u\right) \\
& \left.+\frac{1}{n} \int_{S^{n-1}} \lim _{\varepsilon \rightarrow 0^{+}} \frac{h(K+\varphi, \varepsilon}{} L, u\right)-h(K, u) \\
\varepsilon & S_{i}\left(K_{\varepsilon}[j], K[n-i-j-1], u\right)
\end{aligned}
$$

By assumption, the integrand in (3.3) converges uniformly to zero for $u \in S^{n-1}$. Since $K_{\varepsilon} \rightarrow K$ as $\varepsilon \rightarrow 0^{+}$, by Lemma 3.2, and the i-th mixed surface area measures $S_{i}\left(K_{\varepsilon}[j], K[n-i-j-1]\right)$ are uniformly bounded for $\varepsilon \in(0,1]$, the first integral in the previous sum converges to zero. Noting that $S_{i}\left(K_{\varepsilon}[j], K[n-i-j-1]\right) \rightarrow S_{i}(K, u)$ weakly as $\varepsilon \rightarrow 0^{+}$. Hence

$$
\begin{aligned}
& \lim _{\varepsilon \rightarrow 0^{+}} \frac{W_{i}\left(K+{ }_{\varphi, \varepsilon} L\right)-W_{i}(K)}{\varepsilon}=\left.\lim _{\varepsilon \rightarrow 0^{+}} \sum_{j=0}^{n-i-1} \frac{1}{n} \int_{S^{n-1}} \lim _{\varepsilon \rightarrow 0^{+}} \frac{h(K+\varphi, \varepsilon}{} L, u\right)-h(K, u) \\
& \varepsilon \\
& \times d S_{i}\left(K_{\varepsilon}[j], K[n-i-j-1], u\right) \\
&=\left.\frac{n-i}{n} \int_{S^{n-1}} \lim _{\varepsilon \rightarrow 0^{+}} \frac{h\left(K+{ }_{\varphi}, \varepsilon\right.}{} L, u\right)-h(K, u) \\
& \varepsilon d S_{i}(K, u) .
\end{aligned}
$$

Lemma 3.4. For $\varepsilon>0$ and $u \in S^{n-1}$, let $h_{\varepsilon}=h\left(K+_{\varphi, \varepsilon} L, u\right)$. If $K \in \mathcal{K}_{o o}^{n}$ and $L \in \mathcal{K}_{o}^{n}$, then
(3.4) $\frac{d h_{\varepsilon}}{d \varepsilon}=\frac{h(K, u) \frac{d \varphi_{1}^{-1}(y)}{d y} \varphi_{2}\left(\frac{h(L, u)}{h_{\varepsilon}}\right)}{\left(\varphi_{1}^{-1}\left(1-\varepsilon \varphi_{2}\left(\frac{h(L, u)}{h_{\varepsilon}}\right)\right)\right)^{2}+\varepsilon \cdot \frac{h(L, u) h\left(L_{n}, u\right)}{h_{\varepsilon}^{2}} \frac{d \varphi_{1}^{-1}(y)}{d y} \frac{d \varphi_{2}(z)}{d z}}$,
where

$$
y=1-\varepsilon \varphi_{2}\left(\frac{h(L, u)}{h_{\varepsilon}}\right)
$$

and

$$
z=\frac{h(L, u)}{h_{\varepsilon}}
$$

Proof. Suppose $\varepsilon>0, L \in \mathcal{K}_{o}^{n}, K \in \mathcal{K}_{o o}^{n}$ and $u \in S^{n-1}$, and notice that

$$
h_{\varepsilon}=h\left(K+_{\varphi, \varepsilon} L, u\right),
$$

we have

$$
\frac{h(K, u)}{h_{\varepsilon}}=\varphi_{1}^{-1}\left(1-\varepsilon \varphi_{2}\left(\frac{h(L, u)}{h_{\varepsilon}}\right)\right)
$$

On the other hand

$$
\begin{aligned}
\frac{d h_{\varepsilon}}{d \varepsilon} & =\frac{d}{d \varepsilon}\left(\frac{h(K, u)}{\varphi_{1}^{-1}\left(1-\varepsilon \varphi_{2}\left(\frac{h(L, u)}{h_{\varepsilon}}\right)\right)}\right) \\
& =\frac{h(K, u) \frac{d \varphi_{1}^{-1}(y)}{d y}\left[\varphi_{2}\left(\frac{h(L, u)}{h_{\varepsilon}}\right)-\varepsilon \cdot \frac{d \varphi_{2}(z)}{d z} \frac{h(L, u)}{h_{\varepsilon}^{2}} \frac{d h_{\varepsilon}}{d \varepsilon}\right]}{\left(\varphi_{1}^{-1}\left(1-\varepsilon \varphi_{2}\left(\frac{h(L, u)}{h_{\varepsilon}}\right)\right)\right)^{2}}
\end{aligned}
$$

where

$$
y=1-\varepsilon \varphi_{2}\left(\frac{h(L, u)}{h_{\varepsilon}}\right)
$$

and

$$
z=\frac{h(L, u)}{h_{\varepsilon}} .
$$

By simplifying the equation from above, (3.4) easily follows.

Theorem 3.5. Let $\varphi \in \Phi_{2}$, and $\varphi_{1}, \varphi_{2} \in \Phi$. If $K \in \mathcal{K}_{o o}^{n}, L \in \mathcal{K}_{o}^{n}$ and $1 \leq i \leq n$, then
(3.5) $\left.\frac{\left(\varphi_{1}\right)_{l}^{\prime}(1)}{n-i} \lim _{\varepsilon \rightarrow 0^{+}} \frac{W_{i}(K+\varphi, \varepsilon}{} L\right)-W_{i}(K), \frac{1}{n} \int_{S^{n-1}} \varphi_{2}\left(\frac{h(L, u)}{h(K, u)}\right) h(K, u) d S_{i}(K, u)$.

Proof. From Lemma 3.3, we obtain

$$
\begin{aligned}
\lim _{\varepsilon \rightarrow 0^{+}} \frac{W_{i}\left(K+{ }_{\varphi, \varepsilon} L\right)-W_{i}(K)}{\varepsilon} & =\frac{n-i}{n} \int_{S^{n-1}} \lim _{\varepsilon \rightarrow 0^{+}} \frac{h\left(K+{ }_{\varphi, \varepsilon} L, u\right)-h(K, u)}{\varepsilon} d S_{i}(K, u) \\
& =\frac{n-i}{n} \lim _{\varepsilon \rightarrow 0^{+}} \int_{S^{n-1}} \frac{d h_{\varepsilon}}{d \varepsilon} d S_{i}(K ; u)
\end{aligned}
$$

From Lemmas 3.1-3.2 and Lemma 3.4, and noting that $y \rightarrow 1^{-}$as $\varepsilon \rightarrow 0^{+}$, we have

$$
\frac{d \varphi_{1}^{-1}(y)}{d \varepsilon}=\lim _{y \rightarrow 1^{-}} \frac{\varphi_{1}^{-1}(y)-\varphi_{1}^{-1}(1)}{y-1}=\frac{1}{\left(\varphi_{1}\right)_{l}^{\prime}(1)}
$$

the equation (3.5) easily follows.
The theorem plays a central role in our deriving new concept of the Orlicz mixed quermassintegrals. Here, we give the another proof.
Proof. From the hypotheses, we have for $\varepsilon>0$

$$
\left.\left.h\left(K+_{\varphi, \varepsilon} L, u\right)=\frac{h(K, u)}{\varphi_{1}^{-1}\left(1-\varepsilon \varphi_{2}\left(\frac{h(L, u)}{h(K+\varphi, \varepsilon} L, u\right)\right.}\right)\right) .
$$

Hence

$$
\begin{align*}
& \lim _{\varepsilon \rightarrow 0^{+}} \frac{h\left(K+{ }_{\varphi, \varepsilon} L, u\right)-h(K, u)}{\varepsilon} \tag{3.6}\\
= & \lim _{\varepsilon \rightarrow 0^{+}} \frac{\frac{h(K, u)}{\varphi_{1}^{-1}\left(1-\varepsilon \varphi_{2}\left(\frac{h(L, u)}{h\left(K+_{\varphi, \varepsilon} L, u\right)}\right)\right)}-h(K, u)}{\varepsilon} \\
= & \lim _{\varepsilon \rightarrow 0^{+}} \frac{h(K, u) \varphi_{2}\left(\frac{h(L, u)}{h(K+\varphi, \varepsilon L, u)}\right)}{\left(\varphi_{1}^{-1}\left(1-\varepsilon \varphi_{2}\left(\frac{h(L, u)}{h(K+\varphi, \varepsilon L, u)}\right)\right)\right)^{2}} \lim _{y \rightarrow 1^{-}} \frac{\varphi_{1}^{-1}(y)-\varphi_{1}^{-1}(1)}{y-1}
\end{align*}
$$

where

$$
\left.y=1-\varepsilon \varphi_{2}\left(\frac{h(L, u)}{h(K+\varphi, \varepsilon} L, u\right)\right)
$$

and note that $y \rightarrow 1^{-}$as $\varepsilon \rightarrow o^{+}$. Notice that

$$
\lim _{y \rightarrow 1^{-}} \frac{\varphi_{1}^{-1}(y)-\varphi_{1}^{-1}(1)}{y-1}=\frac{1}{\left(\varphi_{1}\right)_{l}^{\prime}(1)}
$$

and from (2.2),(3.6) and Lemmas 3.1-3.2, (3.5) easy follows.
Denoting by $W_{\varphi, i}(K, L)$, for any $\varphi \in \Phi$ and $1 \leq i<n$, the integral on the righthand side of (3.5) with φ_{2} replaced by φ, we see that either side of the equation (3.5) is equal to $W_{\varphi_{2}, i}(K, L)$ and therefore this new Orlicz mixed volume $W_{\varphi, i}(K, L)$ (Orlicz mixed quermassintegrals) has been born.

Definition 3.1. (Orlicz mixed quermassintegrals) For $\varphi \in \Phi$, Orlicz mixed quermassintegrals, $W_{\varphi, i}(K, L)$, for $0 \leq i<n$, defined by

$$
\begin{equation*}
W_{\varphi, i}(K, L)=: \frac{1}{n} \int_{S^{n-1}} \varphi\left(\frac{h(L, u)}{h(K, u)}\right) h(K, u) d S_{i}(K, u) \tag{3.7}
\end{equation*}
$$

for all $K \in \mathcal{K}_{o o}^{n}, L \in \mathcal{K}_{o}^{n}$.
Remark 3.2. Let $\varphi_{1}(t)=\varphi_{2}(t)=t^{p}, p \geq 1$ in (3.5), the Orlicz sum $K+{ }_{\varphi, \varepsilon} L$ reduces to the L_{p} addition $K+_{p} \varepsilon \cdot L$, and the Orlicz mixed quermassintegrals $W_{\varphi, i}(K, L)$ become the well-known mixed p-quermassintegrals $W_{p, i}(K, L)$. Obviously, when $i=0$, $W_{\varphi, i}(K, L)$ reduces to Orlicz mixed volumes $V_{\varphi}(K, L)$ defined by Gardner, Hug and Weil [9].

Theorem 3.6. If $\varphi_{1}, \varphi_{2} \in \Phi, \varphi \in \Phi_{2}$ and $K \in \mathcal{K}_{o}^{n}, L \in \mathcal{K}_{o o}^{n}$, and $0 \leq i<n$, then

$$
\begin{equation*}
W_{\varphi_{2}, i}(K, L)=\frac{\left(\varphi_{1}\right)_{l}^{\prime}(1)}{n-i} \lim _{\varepsilon \rightarrow 0^{+}} \frac{W_{i}\left(K+{ }_{\varphi, \varepsilon} L\right)-W_{i}(K)}{\varepsilon} . \tag{3.8}
\end{equation*}
$$

Proof. This follows immediately from Theorem 3.5 and (3.7).

4 Orlicz-Minkowski type inequality

In the Section, we need define a Borel measure in $S^{n-1}, \bar{W}_{n, i}(K, v)$, called as i-th normalized cone measure.

Definition 4.1. If $K \in \mathcal{K}_{o o}^{n}$, i-th normalized cone measure, $\bar{W}_{n, i}(K, v)$, defined by

$$
\begin{equation*}
d \bar{W}_{n, i}(K, v)=\frac{h(K, v)}{n W_{i}(K)} d S_{i}(K, v) \tag{4.1}
\end{equation*}
$$

When $i=0, \bar{W}_{n, i}(K, v)$ becomes to the well-known normalized cone measure $\bar{V}_{n}(K, v)$, by

$$
\begin{equation*}
d \bar{V}_{n}(K, v)=\frac{h(K, v)}{n V(K)} d S(K, v) \tag{4.2}
\end{equation*}
$$

This was defined in [2] and [9].
In the following, we start with two auxiliary results (Lemmas 4.1 and 4.2), which will be the base of our further study. The Orlicz-Minkowski inequality for Orlicz mixed quermassintegrals is established in Theorem 4.3.

Lemma 4.1. (Jensen's inequality) Suppose that μ is a probability measure on a space X and $g: X \rightarrow I \subset \mathbb{R}$ is a μ-integrable function, where I is a possibly infinite interval. If $\varphi: I \rightarrow \mathbb{R}$ is a convex function, then

$$
\begin{equation*}
\int_{X} \varphi(g(x)) d \mu(x) \geq \varphi\left(\int_{X} g(x) d \mu(x)\right) \tag{4.3}
\end{equation*}
$$

If φ is strictly convex, equality holds if and only if $g(x)$ is constant for μ-almost all $x \in X$ (see [16]).

Lemma 4.2. Let $0<a \leq \infty$ be an extended real number, and let $I=[0, a)$ be a possibly infinite interval. Suppose that $\varphi: I \rightarrow[0, \infty)$ is convex with $\varphi(0)=0$. If $K \in \mathcal{K}_{o o}^{n}$ and $L \in \mathcal{K}_{o}^{n}$ are such that $L \subset \operatorname{int}(a K)$, then

$$
\begin{equation*}
\frac{1}{n W_{i}(K)} \int_{S^{n-1}} \varphi\left(\frac{h(L, u)}{h(K, u)}\right) h(K, u) d S_{i}(K, u) \geq \varphi\left(\left(\frac{W_{i}(L)}{W_{i}(K)}\right)^{1 /(n-i)}\right) \tag{4.4}
\end{equation*}
$$

If φ is strictly convex, equality holds if and only if K and L are dilates or $L=\{o\}$.
Proof. In view of $L \subset \operatorname{int}(a K)$, so $0 \leq \frac{h(L, u)}{h(K, u)}<a$ for all $u \in S^{n-1}$. By (4.1) and note that (2.2) with $K=L$, it follows the i-th normalized cone measure $\bar{W}_{n, i}(K, u)$ is a probability measure on S^{n-1}. Hence by using Jensen's inequality (4.3), the Minkowski's inequality (2.4), and the fact that φ is increasing, to obtain

$$
\begin{aligned}
\frac{1}{n W_{i}(K)} \int_{S^{n-1}} \varphi\left(\frac{h(L, u)}{h(K, u)}\right) h(K, u) d S_{i}(K, u) & =\int_{S^{n-1}} \varphi\left(\frac{h(L, u)}{h(K, u)}\right) d \bar{W}_{n, i}(K, u) \\
& \geq \varphi\left(\frac{W_{i}(K, L)}{W_{i}(K)}\right)
\end{aligned}
$$

$$
\begin{equation*}
\geq \varphi\left(\left(\frac{W_{i}(L)}{W_{i}(K)}\right)^{1 /(n-i)}\right) \tag{4.5}
\end{equation*}
$$

In the following, we discuss the equal condition of (4.4). Suppose the equality holds in (4.4) and φ is strictly convex, so that $\varphi>0$ on $(0, a)$. Moreover, notice the injectivity of φ, we have equality in Minkowski inequality (2.4), so there are $r \geq 0$ and $x \in \mathbb{R}^{n}$ such that $L=r K+x$ and hence

$$
h(L, u)=r h(K, u)+x \cdot u
$$

for all $u \in S^{n-1}$. Since equality must hold in Jensen's inequality (4.3) as well, when φ is strictly convex we can conclude from the equality condition for Jensen's inequality that

$$
\begin{equation*}
\frac{1}{n W_{i}(K)} \int_{S^{n-1}} \frac{h(L, u)}{h(K, u)} h(K, u) d S_{i}(K, u)=\frac{h(L, v)}{h(K, v)} \tag{4.6}
\end{equation*}
$$

for $S_{i}(K, \cdot)$-almost all $v \in S^{n-1}$. Hence

$$
\frac{1}{n W_{i}(K)} \int_{S^{n-1}}\left(r+\frac{x \cdot u}{h(K, u)}\right) h(K, u) d S_{i}(K, u)=r+\frac{x \cdot v}{h(K, v)}
$$

for $S_{i}(K, \cdot)$-almost all $v \in S^{n-1}$. From this and the fact that the centroid of $S_{i}(K, \cdot)$ is at the origin, we get

$$
0=x \cdot\left(\frac{1}{n W_{i}(K)} \int_{S^{n-1}} u d S_{i}(K, u)\right)=\frac{1}{n W_{i}(K)} \int_{S^{n-1}} x \cdot u d S_{i}(K, u)=\frac{x \cdot v}{h(K, v)},
$$

that is, $x \cdot v=0$, for $S_{i}(K, \cdot)$-almost all $v \in S^{n-1}$. Hence $x=o$, namely $L=r K$.
Theorem 4.3. Let $\varphi \in \Phi$. If $K \in \mathcal{K}_{o o}^{n}, L \in \mathcal{K}_{o}^{n}$ and $0 \leq i<n$, then

$$
\begin{equation*}
W_{\varphi, i}(K, L) \geq W_{i}(K) \cdot \varphi\left(\left(\frac{W_{i}(L)}{W_{i}(K)}\right)^{1 /(n-i)}\right) \tag{4.7}
\end{equation*}
$$

If φ is strictly convex, equality holds if and only if K and L are dilates or $L=\{o\}$.
Proof. This follows immediately from (3.7) and Lemma 4.2, with $a=\infty$.
Corollary 4.4. ([21]) If $K \in \mathcal{K}_{o o}^{n}$ and $L \in \mathcal{K}_{o}^{n}$, and $p>1$ and $0 \leq i \leq n$, then

$$
W_{p, i}(K, L)^{n-i} \geq W_{i}(K)^{n-i-p} W_{i}(L)^{p}
$$

with equality if and only if K and L are dilates or $L=\{o\}$.
Proof. This follows immediately from (4.7) with $\varphi(t)=t^{p}$ and $p>1$.
Remark 4.2. When $a=\infty$, putting $\varphi(t)=e^{t}-1$ in (4.4), we obtain

$$
\begin{equation*}
\log \int_{S^{n-1}} \exp \left(\frac{h(L, u)}{h(K, u)}\right) d \bar{W}_{n, i}(K, u) \geq\left(\frac{W_{i}(L)}{W_{i}(K)}\right)^{1 /(n-i)} \tag{4.8}
\end{equation*}
$$

Similarly, L_{p}-Minkowski inequality (1.8) can be written as

$$
\begin{equation*}
\left(\int_{S^{n-1}}\left(\frac{h(L, u)}{h(K, u)}\right)^{p} d \bar{W}_{n, i}(K, u)\right)^{1 / p} \geq\left(\frac{W_{i}(L)}{W_{i}(K)}\right)^{1 /(n-i)} \tag{4.9}
\end{equation*}
$$

When $p=1$, (4.9) becomes to a new form of the Minkowski inequality (2.4). The left side of (4.9) is just the p th mean of the function $h(L, u) / h(K, u)$ with respect to $\bar{W}_{n, i}(K, \cdot)$. Notice that p th means increase with $p>1$, so we find that the Minkowski inequality (2.4) implies L_{p}-Minkowski inequality (2.8).

5 Orlicz-Brunn-Minkowski type inequality

In this section, we establish the Orlicz Brunn-Minkowski inequality for Orlicz mixed quermassintegrals.

Theorem 5.1. Let $\varphi \in \Phi_{2}$. If $K \in \mathcal{K}_{o o}^{n}, L \in \mathcal{K}_{o}^{n}$ and $1 \leq i<n$, then

$$
\begin{equation*}
1 \geq \varphi\left(\frac{W_{i}(K)^{1 /(n-i)}}{W_{i}\left(K+{ }_{\varphi} L\right)^{1 /(n-i)}}, \frac{W_{i}(L)^{1 /(n-i)}}{W_{i}(K+\varphi L)^{1 /(n-i)}}\right) \tag{5.1}
\end{equation*}
$$

If φ is strictly convex, equality holds if and only if K and L are dilates or $L=\{o\}$.
Proof. From the hypotheses and Theorem 4.3, we obtain

$$
\begin{equation*}
W_{i}\left(K+{ }_{\varphi} L\right) \tag{5.2}
\end{equation*}
$$

$=\frac{1}{n} \int_{S^{n-1}} \varphi\left(\frac{h(K, u)}{h\left(K+{ }_{\varphi} L, u\right)}, \frac{h(L, u)}{h\left(K+{ }_{\varphi} L, u\right)}\right) h\left(K+{ }_{\varphi} L, u\right) d S_{i}\left(K+{ }_{\varphi} L, u\right)$
$=\frac{1}{n} \int_{S^{n-1}}\left(\varphi_{1}\left(\frac{h(K, u)}{h\left(K+{ }_{\varphi} L, u\right)}\right)+\varphi_{2}\left(\frac{h(L, u)}{h\left(K+{ }_{\varphi} L, u\right)}\right)\right) h\left(K+{ }_{\varphi} L, u\right) d S_{i}\left(K+{ }_{\varphi} L, u\right)$
$=W_{\varphi_{1}, i}\left(K+{ }_{\varphi} L, K\right)+W_{\varphi_{2}, i}\left(K+{ }_{\varphi} L, L\right)$
$\geq W_{i}\left(K+{ }_{\varphi} L\right) \varphi\left(\frac{W_{i}(K)^{1 /(n-i)}}{W_{i}\left(K+{ }_{\varphi} L\right)^{1 /(n-i)}}, \frac{W_{i}(L)^{1 /(n-i)}}{W_{i}\left(K+{ }_{\varphi} L\right)^{1 /(n-i)}}\right)$.
This is just (5.1).
If equality holds in (5.2), then in (5.2), with K, L and φ replaced by $K+{ }_{\varphi} L, K$ and φ_{1} (and by $K+_{\varphi} L, L$ and φ_{2}), respectively. So if φ is strictly convex, then φ_{1} and φ_{2} are also, so both K and L are multiples of $K+{ }_{\varphi} L$, and hence are dilates of each other or $L=\{o\}$.

Corollary 5.2. ([21]) If $p>1, K \in \mathcal{K}_{o o}^{n}, L \in \mathcal{K}_{o}^{n}$, while $0 \leq i<n$, then

$$
\begin{equation*}
W_{i}\left(K+{ }_{p} L\right)^{p /(n-i)} \geq W_{i}(K)^{p /(n-i)}+W_{i}(L)^{p /(n-i)}, \tag{5.3}
\end{equation*}
$$

with equality if and only if K and L are dilates or $L=\{o\}$.
Proof. The result follows immediately from Theorem 5.1 with $\varphi\left(x_{1}, x_{2}\right)=x_{1}^{p}+x_{2}^{p}$ and $p>1$.

Theorem 5.3. Orlicz Brunn-Minkowski inequality for Orlicz mixed quermassintegrals implies Orlicz Minkowski inequality for Orlicz mixed quermassintegrals.

Proof. Since φ_{1} is increasing, so φ_{1}^{-1} is also increasing and hence from (5.1), we obtain for $\varepsilon>0$

$$
W_{i}\left(K++_{\varphi, \varepsilon} L\right) \geq \frac{W_{i}(K)}{\left(\varphi_{1}^{-1}\left(1-\varepsilon \varphi_{2}\left(\left(\frac{W_{i}(L)}{W_{i}(K+\varphi, \varepsilon}\right)^{1 /(n-i)}\right)\right)\right)^{n-i}}
$$

From Theorem 3.6, we obtain

$$
\begin{aligned}
& W_{\varphi_{2}, i}(K, L) \geq \frac{\left(\varphi_{1}\right)_{l}^{\prime}(1)}{n-i} \\
& \times \lim _{\varepsilon \rightarrow 0^{+}} \frac{W_{i}(K)}{\left(\varphi_{1}^{-1}\left(1-\varepsilon \varphi_{2}\left(\left(\frac{W_{i}(L)}{W_{i}(K+\varphi, \varepsilon)}\right)^{1 /(n-i)}\right)\right)\right)^{n-i}-W_{i}(K)} \\
& =\left(\varphi_{1}\right)_{l}^{\prime}(1) \lim _{\varepsilon \rightarrow 0^{+}} \frac{W_{i}(K)}{\left(\varphi_{1}^{-1}\left(1-\varepsilon \varphi_{2}\left(\left(\frac{W_{i}(L)}{W_{i}\left(K+\varphi_{\varphi, \varepsilon} L\right)}\right)^{1 /(n-i)}\right)\right)\right)^{2(n-i)}} \\
& \times\left(\varphi_{1}^{-1}\left(1-\varepsilon \varphi_{2}\left(\left(\frac{W_{i}(L)}{W_{i}(K+\varphi, \varepsilon}\right)^{1 /(n-i)}\right)\right)\right)^{n-i-1} \\
& \times \varphi_{2}\left(\left(\frac{W_{i}(L)}{W_{i}(K+\varphi, \varepsilon}\right)^{1 /(n-i)}\right) \lim _{z \rightarrow 1^{-}} \frac{\varphi_{1}^{-1}(z)-\varphi_{1}^{-1}(1)}{z-1}
\end{aligned}
$$

where

$$
z=1-\varepsilon \varphi_{2}\left(\left(\frac{W_{i}(L)}{W_{i}(K+\varphi, \varepsilon L)}\right)^{1 /(n-i)}\right)
$$

and note that $z \rightarrow 1^{-}$as $\varepsilon \rightarrow o^{+}$. On the other hand, in view of

$$
\lim _{z \rightarrow 0^{+}} \frac{\varphi_{1}^{-1}(z)-\varphi_{1}^{-1}(1)}{z-1}=\frac{1}{\left(\varphi_{1}\right)_{l}^{\prime}(1)}
$$

and from Lemma 3.2. Hence

$$
\begin{equation*}
W_{\varphi_{2}, i}(K, L) \geq W_{i}(K) \varphi_{2}\left(\left(\frac{W_{i}(L)}{W_{i}(K)}\right)^{1 /(n-i)}\right) \tag{5.4}
\end{equation*}
$$

Replace φ_{2} by φ, this yields the Orlicz Minkowski inequality in (4.7). The equality condition follows immediately from the equality of Orlicz Brunn-Minkowski inequality for Orlicz mixed quermassintegrals.

From the proof of Theorem 5.1, we may see that Orlicz Minkowski inequality for Orlicz mixed quermassintegrals implies also Orlicz Brunn-Minkowski inequality for Orlicz mixed quermassintegrals, and this combines Theorem 5.3, we found that
Theorem 5.4. Orlicz Brunn-Minkowski inequality for Orlicz mixed quermassintegrals is equivalent to Orlicz Minkowski inequality for Orlicz mixed quermassintegrals. Namely: Let $\varphi_{2} \in \Phi$ and $\varphi \in \Phi_{2}$. If $K \in \mathcal{K}_{o o}^{n}, L \in \mathcal{K}_{o}^{n}$ and $1 \leq i<n$, then

$$
\begin{align*}
& W_{\varphi_{2}, i}(K, L) \geq W_{i}(K) \varphi_{2}\left(\left(\frac{W_{i}(L)}{W_{i}(K)}\right)^{1 /(n-i)}\right) \tag{5.5}\\
& \quad \Leftrightarrow 1 \geq \varphi\left(\frac{W_{i}(K)^{1 /(n-i)}}{W_{i}\left(K+{ }_{\varphi} L\right)^{1 /(n-i)}}, \frac{W_{i}(L)^{1 /(n-i)}}{W_{i}\left(K+{ }_{\varphi} L\right)^{1 /(n-i)}}\right)
\end{align*}
$$

If φ is strictly convex, equality holds if and only if K and L are dilates or $L=\{o\}$.
Corollary 5.5. Orlicz dual Brunn-Minkowski inequality is equivalent to Orlicz dual Minkowski inequality. Namely: Let $\varphi_{2} \in \Phi$ and $\varphi \in \Phi_{2}$. If $K \in \mathcal{K}_{o o}^{n}$ and $L \in \mathcal{K}_{o}^{n}$, then

$$
\begin{equation*}
V_{\varphi_{2}}(K, L) \geq V(K) \varphi_{2}\left(\left(\frac{V(L)}{V(K)}\right)^{1 / n}\right) \Leftrightarrow 1 \geq \varphi\left(\frac{V(K)^{1 / n}}{V\left(K+_{\varphi} L\right)^{1 / n}}, \frac{V(L)^{1 / n}}{V\left(K+_{\varphi} L\right)^{1 / n}}\right) \tag{5.6}
\end{equation*}
$$

If φ is strictly convex, equality holds if and only if K and L are dilates or $L=\{o\}$.
Proof. The result follows immediately from Theorem 5.4 with $i=0$.

6 The log-Minkowski type inequality

Assume that $K, L \in \mathcal{K}_{o o}^{n}$, then the log Minkowski combination, $(1-\lambda) \cdot K+{ }_{o} \lambda \cdot L$, is defined by

$$
(1-\lambda) \cdot K+{ }_{o} \lambda \cdot L=\bigcap_{u \in S^{n-1}}\left\{x \in \mathbb{R}^{n} \mid x \cdot u \leq h(K, u)^{1-\lambda} h(L, u)^{\lambda}\right\}
$$

for all real $\lambda \in[0,1]$. Böröczky, Lutwak, Yang, and Zhang [2] conjecture that for origin-symmetric convex bodies K and L in \mathbb{R}^{n} and $0 \leq \lambda \leq 1$,

$$
\begin{equation*}
V\left((1-\lambda) \cdot K+_{o} \lambda \cdot L\right) \geq V(K)^{1-\lambda} V(L)^{\lambda} . \tag{6.1}
\end{equation*}
$$

In [2], they proved (6.1) only when $n=2$ and K, L are origin-symmetric convex bodies, and note that while it is not true for general convex bodies. Moreover, they also shown that (6.1), for all n, is equivalent to the following log-Minkowski inequality

$$
\begin{equation*}
\int_{S^{n-1}} \log \left(\frac{h(L, u)}{h(K, u)}\right) d \bar{V}_{n}(K, v) \geq \frac{1}{n} \log \left(\frac{V(L)}{V(K)}\right) \tag{6.2}
\end{equation*}
$$

where $\bar{V}_{n}(K, \cdot)$ is the normalized cone measure for K. In fact, replacing K and L by $K+L$ and K, respectively, (6.2) becomes to the following

$$
\begin{equation*}
\int_{S^{n-1}} \log \left(\frac{h(K, u)}{h(K+L, u)}\right) d \bar{V}_{n}(K+L, u) \geq \log \left(\left(\frac{V(K)}{V(K+L)}\right)\right)^{1 / n} \tag{6.3}
\end{equation*}
$$

In [9], Gardner, Hug and Weil gave a new version of (6.3) for the nonempty compact convex subsets K and L, not origin-symmetric convex bodies, as follows. If $K \in \mathcal{K}_{o o}^{n}$ and $L \in \mathcal{K}_{o}^{n}$, then

$$
\begin{equation*}
\int_{S^{n-1}} \log \left(\frac{h(K, u)}{h(K+L, u)}\right) d \bar{V}_{n}(K+L, u) \leq \log \left(\frac{V(K+L)^{1 / n}-V(L)^{1 / n}}{V(K+L)^{1 / n}}\right) \tag{6.4}
\end{equation*}
$$

with equality if and only if K and L are dilates or $L=\{o\}$. They also shown that combining (6.3) and (6.4), may get the classical Brunn-Minkowski inequality.

$$
V(K+L)^{1 / n}-V(L)^{1 / n} \geq V(K)^{1 / n}
$$

whenever $K \in \mathcal{K}_{o o}^{n}$ and $L \in \mathcal{K}_{o}^{n}$ and (6.2) holds with K and L replaced by $K+L$ and K, respectively. In particular, if (6.2) holds (as it does, for origin-symmetric convex bodies when $n=2$), then (6.2) and (6.4) together split the classical Brunn-Minkowski inequality. In the following, we give a new version of (6.4).

Lemma 6.1. If $K \in \mathcal{K}_{o o}^{n}$ and $L \in \mathcal{K}_{o}^{n}$ are such that $L \subset \operatorname{int} K$ and $1 \leq i<n$, then (6.5)

$$
\log \left(\frac{W_{i}(K)^{1 /(n-i)}-W_{i}(L)^{1 /(n-i)}}{W_{i}(K)^{1 /(n-i)}}\right) \geq \int_{S^{n-1}} \log \left(\frac{h(K, u)-h(L, u)}{h(K, u)}\right) d \bar{W}_{n, i}(K, u)
$$

with equality if and only if K and L are dilates or $L=\{o\}$.
Proof. Since $K \in \mathcal{K}_{o o}^{n}$ and $L \in \mathcal{K}_{o}^{n}$ are such that $L \subset \operatorname{int} K$. Let $\varphi(t)=-\log (1-t)$, and notice that $\varphi(0)=0$ and φ is strictly increasing and strictly convex on $[0,1)$ with $\varphi(t) \rightarrow \infty$ as $t \rightarrow 1^{-}$. Hence the inequality (6.5) is a direct consequence of Lemma 4.3 with this choice of φ and $a=1$.

Theorem 6.2. If $K \in \mathcal{K}_{o o}^{n}, L \in \mathcal{K}_{o}^{n}$ and $1 \leq i<n$, then (6.6)

$$
\log \left(\frac{W_{i}(K+L)^{1 /(n-i)}-W_{i}(L)^{1 /(n-i)}}{W_{i}(K+L)^{1 /(n-i)}}\right) \geq \int_{S^{n-1}} \log \left(\frac{h(K, u)}{h(K+L, u)}\right) d \bar{W}_{n, i}(K+L, u)
$$

with equality if and only if K and L are dilates or $L=\{o\}$.
Proof. If $K \in \mathcal{K}_{o o}^{n}$ and $L \in \mathcal{K}_{o}^{n}$, then $K+L \in \mathcal{K}_{o o}^{n}$. In view of $L \subset \operatorname{int}(K+L)$ and from Lemma 6.1 with K replaced by $K+L$, (6.6) easy follows.

Putting $i=0$ in (6.6), (6.6) reduces to (6.4). Here, we point out a new conjecture which is an extension of the \log Minkowski inequality (6.2): Conjecture If $K \in \mathcal{K}_{o o}^{n}$, $L \in \mathcal{K}_{o}^{n}$ and $1 \leq i<n$, then

$$
\begin{equation*}
\int_{S^{n-1}} \log \left(\frac{h(L, u)}{h(K, u)}\right) d \bar{W}_{n, i}(K, u) \geq \frac{1}{n-i} \log \left(\frac{W_{i}(L)}{W_{i}(K)}\right) \tag{6.7}
\end{equation*}
$$

Corollary 6.3. If $K \in \mathcal{K}_{o o}^{n}, L \in \mathcal{K}_{o}^{n}$ and $1 \leq i<n$, then

$$
\begin{equation*}
\int_{S^{n-1}} \log \left(\frac{h(K, u)}{h(K+L, u)}\right) d \bar{W}_{n, i}(K+L, u) \geq \frac{1}{n-i} \log \left(\frac{W_{i}(K)}{W_{i}(K+L)}\right) \tag{6.8}
\end{equation*}
$$

Proof. The result follows immediately from (6.7) with replacing K and L by $K+L$ and K, respectively.

It is easy that combine (6.6) and (6.8) together split the following classical BrunnMinkowski inequality for quermassintegrals. If $K \in \mathcal{K}_{o o}^{n}, L \in \mathcal{K}_{o}^{n}$ and $0 \leq i \leq n$, then

$$
W_{i}(K+L)^{1 /(n-i)} \geq W_{i}(K)^{1 /(n-i)}+W_{i}(L)^{1 /(n-i)}
$$

with equality if and only if K and L are dilates or $L=\{o\}$.

7 A new version of Orlicz Minkowski's inequality

In 2010, the Orlicz projection body $\boldsymbol{\Pi}_{\varphi}$ of K defined by Lutwak, Yang and Zhang [28]

$$
\begin{equation*}
h\left(\boldsymbol{\Pi}_{\varphi}, u\right)=\inf \left\{\lambda>0 \left\lvert\, \int_{S^{n-1}} \varphi\left(\frac{|u \cdot v|}{\lambda h(K, v)}\right) d \bar{V}_{n}(K, v) \leq 1\right.\right\} \tag{7.1}
\end{equation*}
$$

for $K \in \mathcal{K}_{o o}^{n}, u \in S^{n-1}$, where $\bar{V}_{n}(K, \cdot)$ is the normalized cone measure for K. Here, we define the i-th Orlicz mixed projection body.

Definition 7.1. Let $K \in \mathcal{K}_{o o}^{n}, L \in \mathcal{K}_{o}^{n}, \varphi \in \Phi$ and $0 \leq i<n$, the i-th Orlicz mixed projection body, $\boldsymbol{\Pi}_{\varphi, i}$, define by

$$
\begin{equation*}
h\left(\boldsymbol{\Pi}_{\varphi, i}, u\right)=\inf \left\{\lambda>0 \left\lvert\, \int_{S^{n-1}} \varphi\left(\frac{|u \cdot v|}{\lambda h(K, v)}\right) d \bar{W}_{n, i}(K, v) \leq 1\right.\right\} \tag{7.2}
\end{equation*}
$$

for $u \in S^{n-1}$, where $\bar{W}_{n, i}(K, \cdot)$ is the i-th normalized cone measure for K defined in (4.1).

Obviously, when $i=0$, (7.2) becomes (7.1). In the Section, definition 7.1 of the i-th Orlicz projection body suggests defining, by analogy,

$$
\begin{equation*}
\widehat{W}_{\varphi, i}(K, L)=\inf \left\{\lambda>0 \left\lvert\, \int_{S^{n-1}} \varphi\left(\frac{h(L, u)}{\lambda h(K, u)}\right) d \bar{W}_{n, i}(K, u) \leq 1\right.\right\} \tag{7.3}
\end{equation*}
$$

and call as $\widehat{W}_{\varphi, i}(K, L)$ Orlicz type quermassintegrals.
Theorem 7.1. If $\varphi \in \Phi$ and $K \in \mathcal{K}_{o o}^{n}, L \in \mathcal{K}_{o}^{n}$ and $1 \leq i<n$, then

$$
\begin{equation*}
\widehat{W}_{\varphi, i}(K, L) \geq\left(\frac{W_{i}(L)}{W_{i}(K)}\right)^{1 /(n-i)} \tag{7.4}
\end{equation*}
$$

If φ is strictly convex and $W_{i}(L)>0$, equality holds if and only if K and L are dilates.
Proof. Replacing K by $\lambda K, \lambda>0$ in (4.4) with $a=\infty$, we have

$$
\begin{equation*}
\int_{S^{n-1}} \varphi\left(\frac{h(L, u)}{\lambda h(K, u)}\right) d \bar{W}_{n, i}(K, u) \geq \varphi\left(\frac{1}{\lambda}\left(\frac{W_{i}(L)}{W_{i}(K)}\right)^{1 /(n-i)}\right) \tag{7.5}
\end{equation*}
$$

Let

$$
\int_{S^{n-1}} \varphi\left(\frac{h(L, u)}{\lambda h(K, u)}\right) d \bar{W}_{n, i}(K, u) \leq 1
$$

Hence

$$
\varphi\left(\frac{1}{\lambda}\left(\frac{W_{i}(L)}{W_{i}(K)}\right)^{1 /(n-i)}\right) \leq 1
$$

In view of φ is strictly increasing, we obtain

$$
\begin{equation*}
\left(\frac{W_{i}(L)}{W_{i}(K)}\right)^{1 /(n-i)} \leq \lambda \tag{7.6}
\end{equation*}
$$

From (7.3) and (7.6), (7.4) easy follows.
In the following, we discuss the equality condition of (7.4). Suppose that equality holds, φ is strictly convex and $W_{i}(L)>0$. From (7.3), the exist $\mu=\widehat{W}_{\varphi, i}(K, L)>0$ satisfies

$$
\int_{S^{n-1}} \varphi\left(\frac{h(L, u)}{\mu h(K, u)}\right) d \bar{W}_{n, i}(K, v)=1
$$

Hence

$$
\mu=\left(\frac{W_{i}(L)}{W_{i}(K)}\right)^{1 /(n-i)}
$$

namely:

$$
\varphi\left(\frac{1}{\mu}\left(\frac{W_{i}(L)}{W_{i}(K)}\right)^{1 /(n-i)}\right)=1
$$

Therefore the equality in (7.5) holds for $\lambda=\mu$. From the equality condition of (4.4), it follows μK and L are dilates.

When $\varphi(t)=t^{p}$ and $p \geq 1$ in (7.3), it easy follows that

$$
\widehat{W}_{\varphi, i}(K, L)=\left(\frac{W_{p, i}(K, L)}{W_{i}(K)}\right)^{1 / p}
$$

Putting $\varphi(t)=t^{p}$ and $p \geq 1$ in (7.4), (7.4) reduces to the classical L_{p}-Minkowski inequality (1.8) for mixed p-quermassintegrals.

There is no direct relationship between the Orlicz-Minkowski inequalities (4.7) and (7.4). Indeed, when $\varphi>0$ on $(0, \infty)$, these can be written in the forms

$$
\begin{equation*}
\frac{W_{\varphi, i}(K, L)}{W_{i}(K)} \geq \varphi\left(\left(\frac{W_{i}(L)}{W_{i}(K)}\right)^{1 /(n-i)}\right) \tag{7.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\varphi\left(\widehat{W}_{\varphi, i}(K, L)\right) \geq \varphi\left(\left(\frac{W_{i}(L)}{W_{i}(K)}\right)^{1 /(n-i)}\right) \tag{7.7}
\end{equation*}
$$

respectively, and each of the two quantities on the left-hand sides can be larger than the other. This is very interesting.

8 Simon's characterization of relative spheres

Theorem 8.1. Suppose $K \in \mathcal{K}_{o o}^{n}, L \in \mathcal{K}_{o}^{n}$, and $\mathcal{S} \subset \mathcal{K}_{o}^{n}$ is a class of bodies such that $K, L \in \mathcal{S}$. If $0 \leq i<n-1$ and $\varphi \in \Phi$, and

$$
\begin{equation*}
W_{\varphi, i}(Q, K)=W_{\varphi, i}(Q, L), \quad \text { for all } Q \in \mathcal{S} \tag{8.1}
\end{equation*}
$$

then $K=L$.
Proof. To see this take $Q=K$, and from (3.10) and Theorem 4.4, we have

$$
W_{i}(K)=W_{\varphi, i}(K, K)=W_{\varphi, i}(K, L) \geq W_{i}(K) \varphi\left(\left(\frac{W_{i}(L)}{W_{i}(K)}\right)^{1 /(n-i)}\right)
$$

If φ is strictly convex, equality holds if and only if K and L are dilates or $L=\{o\}$. Hence

$$
\varphi\left(\left(\frac{W_{i}(L)}{W_{i}(K)}\right)^{1 /(n-i)}\right) \leq 1
$$

If φ is strictly convex, equality holds if and only if K and L are dilates or $L=\{o\}$. Note that φ is increasing, we obtain

$$
W_{i}(L) \leq W_{i}(K)
$$

Take $Q=L$, we have

$$
W_{i}(L)=W_{\varphi, i}(L, L)=W_{\varphi, i}(L, K) \geq W_{i}(L) \varphi\left(\left(\frac{W_{i}(K)}{W_{i}(L)}\right)^{1 /(n-i)}\right)
$$

If φ is strictly convex, equality holds if and only if K and L are dilates or $L=\{o\}$. Hence

$$
\varphi\left(\left(\frac{W_{i}(K)}{W_{i}(L)}\right)^{1 /(n-i)}\right) \leq 1
$$

If φ is strictly convex, equality holds if and only if K and L are dilates or $L=\{o\}$. Hence

$$
W_{i}(K) \leq W_{i}(L)
$$

This yields $W_{i}(K)=W_{i}(L)$. Hence $K=L$.
Corollary 8.2. Suppose $K \in \mathcal{K}_{o o}^{n}, L \in \mathcal{K}_{o}^{n}$, and $\mathcal{S} \subset \mathcal{K}_{o}^{n}$ is a class of bodies such that $K, L \in \mathcal{S}$. If $\varphi \in \Phi$, and

$$
\begin{equation*}
V_{\varphi}(Q, K)=V_{\varphi}(Q, L), \quad \text { for all } Q \in \mathcal{S} \tag{8.2}
\end{equation*}
$$

then $K=L$.
Proof. The result follows immediately from Theorem 8.1 with $i=0$.
Putting $\varphi(t)=t^{p}$ and $p>1$ in Theorem 8.1, we obtain the following result which was proved by Lutwak [21].

Corollary 8.3. Suppose $K \in \mathcal{K}_{o o}^{n}, L \in \mathcal{K}_{o}^{n}$, and $\mathcal{S} \subset \mathcal{K}_{o}^{n}$ is a class of bodies such that $K, L \in \mathcal{S}$. If $p>1,0 \leq i<n-1$, and

$$
\begin{equation*}
W_{p, i}(Q, K)=W_{p, i}(Q, L), \quad \text { for all } Q \in \mathcal{S} \tag{8.3}
\end{equation*}
$$

then $K=L$.
Theorem 8.4. Suppose $0 \leq i<n$ and $\varphi \in \Phi$. For $K \in \mathcal{K}_{o o}^{n}$, the following statements are equivalent:
(i) The body K is centered,
(ii) The measure $\bar{W}_{n, i}(K, \cdot)$ is even.
(iii) $W_{\varphi, i}(K, Q)=W_{\varphi, i}(K,-Q)$, for all $Q \in \mathcal{K}_{o o}^{n}$.
(iv) $W_{\varphi, i}(K, Q)=W_{\varphi, i}(K,-Q)$, for $Q=K$.

Proof. To see that (i) implies (ii), recall that if K is centered, then $h(K, \cdot)$ is an even function, and $S_{i}(K)$ is an even measure. The implication is now a consequence of the fact that $d \bar{W}_{n, i}(K, \cdot)=\frac{1}{n W_{i}(K)} h(K, \cdot) d S_{i}(K, \cdot)$.

That (ii) yields (iii) is a consequence of the following integra representation

$$
W_{\varphi, i}(K, Q)=W_{i}(K) \int_{S^{n-1}} \varphi\left(\frac{h(Q, u)}{h(K, u)}\right) d \bar{W}_{n, i}(K, u)
$$

and the fact that, in general, $h(-Q, u)=h(Q,-u)$, for all $u \in S^{n-1}$. Obviously, (iv) follows directly from (iii).

To see that (iv) implies (i), notice that (iv), for $Q=K$, gives

$$
W_{i}(K)=W_{\varphi, i}(K,-K)
$$

The desired result follows from the fact that $W_{i}(-K)=W_{i}(K)$ and the equality conditions of the Orlicz-Minkoski inequality (4.7).

Corollary 8.5. Suppose $\varphi \in \Phi$. For $K \in \mathcal{K}_{o o}^{n}$, the following statements are equivalent:
(i) The body K is centered,
(ii) The measure $\bar{V}_{n}(K, \cdot)$ is even.
(iii) $V_{\varphi}(K, Q)=V_{\varphi}(K,-Q)$, for all $Q \in \mathcal{K}_{o o}^{n}$.
(iv) $V_{\varphi}(K, Q)=V_{\varphi, i}(K,-Q)$, for $Q=K$.

Proof. The results follow immediately from Theorem 8.5 with $i=0$.
Corollary 8.6. Suppose $0 \leq i<n$ and $p>1$. For $K \in \mathcal{K}_{o o}^{n}$, the following statements are equivalent:
(i) The body K is centered,
(ii) The measure $S_{p, i}(K, \cdot)$ is even.
(iii) $W_{p, i}(K, Q)=W_{p, i}(K,-Q)$, for all $Q \in \mathcal{K}_{o o}^{n}$.
(iv) $W_{p, i}(K, Q)=W_{p, i}(K,-Q)$, for $Q=K$.

Proof. The results follow immediately from Theorem 8.5 with $\varphi(t)=t^{p}$ and $p>1$.
This was proved by Lutwak [21]. That (iii) implies that K is centrally symmetric, for the case $p=1$ and $i=0$, was shown (using other methods) by Goodey [10]. Acknowledgements. This research was supported by the National Natural Sciences Foundation of China (11371334).

References

[1] A. D. Aleksandrov, On the theory of mixed volumes I. Extension of certain concepts in the theory of convex bodies, Mat. Sb. (N.S.) 2 (1937), 947-972.
[2] K. J. Böröczky, E. Lutwak, D. Yang, G. Zhang, The log-Brunn-Minkowski inequality, Adv. Math. 231 (2012), 1974-1997.
[3] Y. D. Burago, V. A. Zalgaller, Geometric Inequalities, Springer-Verlag, Berlin, 1988.
[4] H. Busemann, Convex surfaces,Interscience, New York, 1958.
[5] W. Fenchel, B. Jessen, Mengenfunktionen und konvexe Körper, Danske Vid. Selskab. Mat.-Fys. Medd., 16 (1938), 1-31.
[6] W. J. Firey, Polar means of convex bodies and a dual to the Brunn-Minkowski theorem, Canad. J. Math. 13 (1961), 444-453.
[7] W. J. Firey, p-means of convex bodies, Math. Scand. 10 (1962), 17-24.
[8] R. J. Gardner, Geometric Tomography, Cambridge University Press, second edition, New York, 2006.
[9] R. J. Gardner, D. Hug, W. Weil, The Orlicz-Brunn-Minkowski theory: a general framework, additions, and inequalities, J. Diff. Geom., 97(3) (2014), 427-476.
[10] P. R. Goodey, Centrally symmetric convex sets and mixed volumes, Mathematika, 24 (1977), 193-198.
[11] C. Haberl, E. Lutwak, D. Yang, G. Zhang, The even Orlicz Minkowski problem, Adv. Math. 224 (2010), 2485-2510.
[12] C. Haberl, L. Parapatits, The Centro-Affine Hadwiger Theorem, J. Amer. Math. Soc., in press.
[13] C. Haberl, F. E. Schuster, Asymmetric affine L_{p} Sobolev inequalities, J. Funct. Anal. 257 (2009), 641-658.
[14] C. Haberl, F. E. Schuster, General L_{p} affine isoperimetric inequalities, J. Diff. Geom. 83 (2009), 1-26.
[15] C. Haberl, F. E. Schuster, J. Xiao, An asymmetric affine Pólya-Szegö principle, Math. Ann. 352 (2012), 517-542.
[16] J. Hoffmann-Jørgensen, Probability With a View Toward Statistics, Vol. I, Chapman and Hall, New York, 1994, 165-243.
[17] Q. Huang, B. He, On the Orlicz Minkowski problem for polytopes, Discrete Comput. Geom. 48 (2012), 281-297.
[18] M. A. Krasnosel'skii, Y. B. Rutickii, Convex Functions and Orlicz Spaces, P. Noordhoff Ltd., Groningen, 1961.
[19] K. Leichtwei β, Konvexe Mengen, Springer, Berlin, 1980.
[20] M. Ludwig, M. Reitzner, A classification of $S L(n)$ invariant valuations, Ann. Math. 172 (2010), 1223-1271.
[21] E. Lutwak, The Brunn-Minkowski-Firey theory I. mixed volumes and the Minkowski problem. J. Diff. Goem. 38 (1993), 131-150.
[22] E. Lutwak, The Brunn-Minkowski-Firey theory. II. Affine and geominimal surface areas, Adv. Math. 118 (1996), 244-294.
[23] E. Lutwak, D. Yang, G. Zhang, On the L_{p}-Minkowski problem, Trans. Amer. Math. Soc. 356 (2004), 4359-4370.
[24] E. Lutwak, D. Yang, G. Zhang, L_{p} John ellipsoids, Proc. London Math. Soc. 90 (2005), 497-520.
[25] E. Lutwak, D. Yang, G. Zhang, L_{p} affine isoperimetric inequalities, J. Diff. Geom. 56 (2000), 111-132.
[26] E. Lutwak, D. Yang, G. Zhang, Sharp affine L_{p} Sobolev inequalities, J. Diff. Geom. 62 (2002), 17-38.
[27] E. Lutwak, D. Yang, G. Zhang, The Brunn-Minkowski-Firey inequality for nonconvex sets, Adv. Appl. Math. 48 (2012), 407-413.
[28] E. Lutwak, D. Yang, G. Zhang, Orlicz projection bodies, Adv. Math. 223 (2010), 220-242.
[29] E. Lutwak, D. Yang, G. Zhang, Orlicz centroid bodies, J. Diff. Geom. 84 (2010), 365-387.
[30] L. Parapatits, $S L(n)$-covariant L_{p}-Minkowski valuations, J. Lond. Math. Soc., in press.
[31] L. Parapatits, $S L(n)$-contravariant L_{p}-Minkowski valuations, Trans. Amer. Math. Soc., in press.
[32] M. M. Rao and Z. D. Ren, Theory of Orlicz Spaces, Marcel Dekker, New York, 1991.
[33] R. Schneider, Boundary structure and curvature of convex bodies, Contributions to Geometry, Birkhäuser, Basel, 1979, 13-59.
[34] R. Schneider, Convex Bodies: The Brunn-Minkowski Theory, Cambridge University Press, 1993.
[35] C. Schütt, E. Werner, Surface bodies and p-affine surface area, Adv. Math. 187 (2004), 98-145.
[36] E. M. Werner, Rényi divergence and L_{p}-affine surface area for convex bodies, Adv. Math. 230 (2012), 1040-1059.
[37] E. Werner, D. P. Ye, New L_{p} affine isoperimetric inequalities, Adv. Math. 218 (2008), 762-780.
[38] G. Xiong, D. Zou Orlicz mixed quermassintegrals, Sci. China. 57 (2014), 25492562.
[39] G. Zhu, The Orlicz centroid inequality for star bodies, Adv. Appl. Math. 48 (2012), 432-445.

Author's address:
Chang-Jian Zhao
Department of Mathematics, China Jiliang University,
Hangzhou, 310018, P. R. China.
E-mail: chjzhao@163.com, chjzhao@aliyun.com

