Locally maximal homoclinic classes for generic diffeomorphisms

Manseob Lee

Abstract. Let M be a closed smooth $d(\geq 2)$ dimensional Riemannian manifold and let $f: M \to M$ be a diffeomorphism. For C^1 generic f, a locally maximal homogeneous homoclinic class is hyperbolic.

M.S.C. 2010: 37C20; 37D20.

Key words: keywords; phrases; homoclinic class; locally maximal; hyperbolic; generic.

1 Introduction

Let M be a closed smooth $d(\geq 2)$ dimensional Riemannian manifold and let $f: M \to M$ be a diffeomorphism. Denote by $\mathrm{Diff}(M)$ the set of all diffeomorphisms of M endowed with the C^1 topology. Let Λ be a closed f invariant set. We say that Λ is hyperbolic if the tangent bundle $T_\Lambda M$ has a Df-invariant splitting $E^s \oplus E^u$ and there exist constants C > 0 and $0 < \lambda < 1$ such that

$$||D_x f^n|_{E_x^s}|| \le C\lambda^n$$
 and $||D_x f^{-n}|_{E_x^u}|| \le C\lambda^n$

for all $x \in \Lambda$ and $n \geq 0$. If $\Lambda = M$ then f is said to be *Anosov*. A point $p \in M$ is periodic if there is n > 0 such that $f^n(p) = p$. Denote by P(f) the set of all periodic points of f. It is well known that if p is a hyperbolic periodic point of f with period $\pi(p)$ then the sets

$$W^{s}(p) = \{x \in M : f^{\pi(p)n}(x) \to p \text{ as } n \to \infty\} \quad \text{and}$$

$$W^{u}(p) = \{x \in M : f^{-\pi(p)n}(x) \to p \text{ as } n \to \infty\}$$

are C^1 injectively immersed submanifolds of M. A point $x \in W^s(p) \cap W^u(p)$ is called a homoclinic point of f associated to p. The closure of the homoclinic points of f associated to p is called the homoclinic class of f associated to p, and it is denoted by $H_f(p)$. It is known that $H_f(p)$ is closed, transitive and f-invariant sets. Let p and q be hyperbolic periodic points. We write $p \sim q$ if $W^s(p) \cap W^u(q) \neq \emptyset$ and $W^u(p) \cap W^s(q) \neq \emptyset$. We say that $p, q \in P(f)$ are homoclinically related if $p \sim q$. It

Balkan Journal of Geometry and Its Applications, Vol.22, No.2, 2017, pp. 44-49.

[©] Balkan Society of Geometers, Geometry Balkan Press 2017.

is clear that if $q \sim p$ then $\operatorname{index}(p) = \operatorname{index}(q)$, where $\operatorname{index}(p) = \dim W^s(p)$. Note that a hyperbolic $p \in P(f)$, there are a C^1 neighborhood $\mathcal{U}(f)$ of f and a neighborhood U of p such that for any $g \in \mathcal{U}(f)$, $p_g = \bigcap_{n \in \mathbb{Z}} g^n(U)$, where p_g is said to be *continuation* of p.

We say that the homoclinic class $H_f(p)$ is homogeneous if index $(p) = \operatorname{index}(q)$, for any hyperbolic $q \in H_f(p) \cap P(f)$, We say that Λ is locally maximal if there is a neighborhood U of Λ such that $\Lambda = \bigcap_{n \in \mathbb{Z}} f^n(U)$. Here the neighborhood U is called locally maximal neighborhood of Λ .

We say that a subset $\mathcal{G} \subset \operatorname{Diff}(M)$ is residual if \mathcal{G} contains the intersection of a countable family of open and dense subsets of $\operatorname{Diff}(M)$. In this case \mathcal{G} is dense in $\operatorname{Diff}(M)$. A property "P" is said to be (C^1) generic if "P" holds for all diffeomorphisms which belong to some residual subset of $\operatorname{Diff}(M)$.

We say that Λ admits a dominated splitting if the tangent bundle $T_{\Lambda}M$ has a continuous Df-invariant splitting $E \oplus F$ and there exist constants C > 0 and $0 < \lambda < 1$ such that

$$||D_x f^n|_{E(x)}|| \cdot ||D_x f^{-n}|_{F(f^n(x))}|| \le C\lambda^n$$

for all $x \in \Lambda$ and $n \geq 0$. An invariant closed set Λ is called a *chain transitive* if for any $\delta > 0$ and $x, y \in \Lambda$, there is δ -pseudo orbit $\{x_i\}_{i=0}^n (n \geq 1) \subset \Lambda$ such that $x_0 = x$ and $x_n = y$. Abdenur et al [1] proved that C^1 generically, any chain-transitive set Λ of f, then either (a) there is a dominated splitting over Λ or (b) the set Λ is contained is the Hausdorff limit of a sequence of periodic sinks/sources of f. Recently, Lee [9] proved that C^1 generically, if a chain transitive set Λ is locally maximal then it admits a dominated splitting. We say that Λ is Lyapunov stable for f if for every neighborhood U of Λ there is another neighborhood V of Λ such that $f^n(V) \subset U$ for any $n \geq 1$. We say that Λ is bi-Lyapunov stable if it is Lyapunov stable for f and for f^{-1} . Potrie and Sambarino [12] proved that C^1 generic diffeomorphisms with a homoclinic class with non empty interior and in particular those admitting a codimension one dominated splitting. Potrie [13] proved that for C^1 generic $f \in Diff(M)$, a Lyapunov stable homolinic class $H_f(p)$ admits a dominated splitting. Wang [14] proved that for C^1 generic $f \in \text{Diff}(M)$, where M is connected, if a homoclinic class $H_f(p)$ is bi-Lyapunov stable, then we have: either $H_f(p)$ is hyperbolic, and so, $H_f(p) = M$ and f is Anosov, or f can be C^1 approximated by diffeomorphisms that have a heterodimensional cycle. From the results, we prove the following.

Theorem A For C^1 generic $f \in \text{Diff}(M)$, a locally maximal homogeneous homoclinic class $H_f(p)$ is hyperbolic, for some hyperbolic $p \in P(f)$.

From Theorem A, we directly obtained the previous results ([3, 7, 8]). Moredetail, C^1 generically, if a diffeomorphism f has the shadowing or limit shadowing property on a locally maximal $H_f(p)$ then $H_f(p)$ is homogeneous. Thus we can easily show that C^1 generically, if a diffeomorphism f has the shadowing property ([3, 7]), or the limit shadowing property ([8]) on a locally maximal homoclinic class then it is hyperbolic.

2 Proof of Theorem A

Let M be as before, and let $f \in \text{Diff}(M)$. For $\delta > 0$, a sequence of points $\{x_i\}_{i=0}^n (n \ge 1)$ in M is called a δ -pseudo orbit of f if $d(f(x_i), x_{i+1}) < \delta$ for $i = 0, \ldots, n$. For given $x, y \in M$, we write $x \leadsto y$ if for any $\delta > 0$, there is a δ -pseudo orbit $\{x_i\}_{i=0}^n (n \ge 1)$ of f such that $x_0 = x$ and $x_n = y$. The set $\{x \in M : x \leadsto x\}$ is called the *chain recurrent set* of f and is denoted by $\mathcal{CR}(f)$. The relation \iff induces an equivalence relation on $\mathcal{CR}(f)$ whose classes are called *chain recurrence classes* of f. For any hyperbolic periodic point p, denote by $C_f(p) = \{x \in M : x \leadsto p \text{ and } p \leadsto x\}$. The chain recurrent class $C_f(p)$ is a closed and invariant set. In general, the homoclinic class $H_f(p)$ contained in the chain recurrence class $C_f(p)$.

Lemma 2.1. There is a residual set $\mathcal{G}_1 \subset \text{Diff}(M)$ such that for any $f \in \mathcal{G}_1$,

- (a) f is Kupka-Smale, that is, any element of P(f) is hyperbolic, and its invariant manifolds intersect transversely (see [11]).
- (b) the chain recurrence class $C_f(p)$ is the homoclinic class $H_f(p)$, for some hyperbolic periodic point p (see [4]).
- (c) an isolated chain recurrence class $C_f(p)$ is robustly isolated, that is, there are a C^1 neighborhood $\mathcal{U}(f)$ of f and a neighborhood U of $C_f(p)$ such that for every $g \in \mathcal{U}(f)$, $\mathcal{CR}(g) \cap U = C_q(p_q)$ (see [5]).
- (d) if for any C^1 neighborhood $\mathcal{U}(f)$ of f there is $g \in \mathcal{U}(f)$ such that g has two periodic points p and q with $index(p) \neq index(q)$ then f has two periodic points p_f and q_f with $index(p_f) \neq index(q_f)$ (see [10]).

For any $\delta > 0$, we say that a hyperbolic $p \in P(f)$ has a δ weak eigenvalue if there is an eigenvalue λ of $D_p f^{\pi(p)}$ such that

$$(1-\delta)^{\pi(p)} < |\lambda| < (1+\delta)^{\pi(p)},$$

where $\pi(p)$ is the periodic of p. The following lemma was proved by Wang [14].

Lemma 2.2. There is a residual set $\mathcal{G}_2 \subset \text{Diff}(M)$ such that for any $f \in \mathcal{G}_2$, if a homoclinic class $H_f(p)$ is not hyperbolic then there is a hyperbolic periodic point $q \in H_f(p)$ with $q \sim p$ such that q has a Lyapunov exponent arbitrarily close to 0.

By Lemma 2.2, the hyperbolic periodic point $q \in H_f(p)$ is said to be a weak hyperbolic periodic point if the hyperbolic periodic point $q \in H_f(p)$ has a Lyapunov exponent arbitrarily close to 0. The notion of weak hyperbolic periodic point is a δ weak eigenvalue for the hyperbolic periodic point. We say that a periodic point p is said to be weak hyperbolic if p has a δ weak eigenvalue. We rewrite the result of Wang as the following.

Lemma 2.3. There is a residual set $\mathcal{G}_2 \subset \mathrm{Diff}(M)$ such that for any $f \in \mathcal{G}_2$, any hyperbolic periodic point p of f, if a homoclinic class $H_f(p)$ is not hyperbolic then there are $\delta > 0$, and a hyperbolic periodic point $q \in H_f(p)$ with $q \sim p$ such that q is a weak hyperbolic.

The following Franks' lemma [6] will play essential roles in our proofs.

Lemma 2.4. Let $\mathcal{U}(f)$ be any given C^1 neighborhood of f. Then there exist $\epsilon > 0$ and a C^1 neighborhood $\mathcal{V}(f) \subset \mathcal{U}(f)$ of f such that for given $g \in \mathcal{V}(f)$, a finite set $\{x_1, x_2, \cdots, x_k\}$, a neighborhood U of $\{x_1, x_2, \cdots, x_k\}$ and linear maps $L_i : T_{x_i}M \to T_{g(x_i)}M$ satisfying $||L_i - D_{x_i}g|| \le \epsilon$ for all $1 \le i \le k$, there exists $\widetilde{g} \in \mathcal{U}(f)$ such that $\widetilde{g}(x) = g(x)$ if $x \in \{x_1, x_2, \cdots, x_k\} \cup (M \setminus U)$ and $D_{x_i}\widetilde{g} = L_i$ for all $1 \le i \le k$.

Lemma 2.5. Let $\mathcal{U}(f)$ be a C^1 neighborhood of f and let U be a locally maximal neighborhood of $H_f(p)$. If a weak periodic point $q \in H_f(p)$ then there are $g \in \mathcal{U}(f)$ and $q_1 \in \Lambda_g(U) = \bigcap_{n \in \mathbb{Z}} g^n(U)$ such that $\operatorname{index}(q_1) \neq \operatorname{index}(p_g)$, where $\Lambda_g(U)$ is the continuation of $H_f(p)$.

Proof. Let $\mathcal{U}(f)$ be a C^1 neighborhood of f and let U be a locally maximal neighborhood of $H_f(p)$. Suppose that there is a periodic point $q \in H_f(p)$ with the period $\pi(q)$ such that q is a weak hyperbolic. For simplicity, we may assume that $f^{\pi(q)}(q) = f(q) = q$. Since $q \in H_f(p)$ is a weak hyperbolic periodic point, for any $\delta > 0$ there is an eigenvalue λ of $D_q f$ such that

$$(1-\delta) < |\lambda| < (1+\delta)$$
 and $q \sim p$.

By Lemma 2.4, there is g C^1 close to f such that g(p) = f(p) = p and $D_p g$ has an eigenvalue λ such that $|\lambda| = 1$. Note that by Lemma 2.4, there is g_1 C^1 close to f such that $D_p g_1$ has only one eigenvalue λ with $|\lambda| = 1$. Denote by E_p^c the eigenspace corresponding to λ . In the proof we consider two cases: (i) λ is real, and (ii) λ is complex.

First, we may assume that $\lambda \in \mathbb{R}$ (other case is similar). By Lemma 2.4, there are $\alpha > 0$, $B_{\alpha}(p) \subset U$ and h C^1 close to g $(h \in \mathcal{U}(f))$ such that

- $\cdot h(p) = g(p) = p,$
- $h(x) = \exp_p \circ D_p g \circ \exp_p^{-1}(x)$ for $x \in B_\alpha(p)$, and
- h(x) = g(x) for $x \notin B_{4\alpha}(p)$.

Let $\eta = \alpha/4$. Take a nonzero vector $v \in \exp_p(E_p^c(\alpha))$ which is corresponding to λ such that $||v|| = \eta$. Here $E_p^c(\alpha)$ is the α -ball in E_p^c with its center at $\overrightarrow{0_p}$. Then we have

$$h(\exp_p(v)) = \exp_p \circ D_p g \circ \exp_p^{-1}(\exp_p(v)) = \exp_p(v).$$

Put $\mathcal{J}_p = \exp_p(\{tv : -\eta/4 \le t \le \eta/4\})$. Then \mathcal{J}_p is center at p and $h(\mathcal{J}_p) = \mathcal{J}_p$. Since $B_{\alpha}(p) \subset U$ we know that $\mathcal{J}_p \subset \Lambda_h(U) = \bigcap_{n \in \mathbb{Z}} h^n(U)$. Since $h(\mathcal{J}_p) = \mathcal{J}_p$, take two end points q, r of \mathcal{J}_p . Then we know that

$$D_q h|_{E_p^c} = D_r h|_{E_p^c} = 1.$$

By Lemma 2.4, there is ϕ C^1 close to h ($\phi \in \mathcal{U}(f)$) such that $\operatorname{index}(q_{\phi}) \neq \operatorname{index}(r_{\phi})$, where q_{ϕ} and r_{ϕ} are hyperbolic points with respect to ϕ .

Finally, we consider $\lambda \in \mathbb{C}$. For simplicity, we assume that f(p) = p. As in the proof of the case of $\lambda \in \mathbb{R}$, by Lemma 2.4, there are $\alpha > 0$, $B_{\alpha}(p) \subset U$ and $g \in \mathcal{U}(f)$ such that

$$g(p) = f(p) = p$$
 and $g(x) = \exp_p \circ D_p g \circ \exp_p^{-1}(x)$

for $x \in B_{\alpha}(p)$. Since $\lambda = 1$, there is n > 0 such that $D_p g^n(v) = v$ for any $v \in \exp_p^{-1}(E_p^c(\alpha))$. Let $v \in \exp_p(E_p^c(\alpha))$ such that $||v|| = \alpha/4$. Then we have a small arc

$$\exp_p(\{tv: 0 \le t \le 1 + \alpha/4\}) = \mathcal{I}_p \subset \Lambda_g(U) = \bigcap_{n \in \mathbb{Z}} g^n(U)$$

such that

(i)
$$g^i(\mathcal{I}_p) \cap g^j(\mathcal{I}_p) = \emptyset$$
 if $0 \le i \ne j \le n-1$,

(ii)
$$g^n(\mathcal{I}_p) = \mathcal{I}_p$$
, and

(iii)
$$g_{|_{\mathcal{I}_n}}^n: \mathcal{I}_p \to \mathcal{I}_p$$
 is the identity map.

Then we take two point $q, r \in \mathcal{I}_p$ such that the points are the end points of \mathcal{I}_p . As in the previous arguments, there is g_1 C^1 close to g such that $\operatorname{index}(q_{g_1}) \neq \operatorname{index}(r_{g_1})$ where q_{g_1} and r_{g_1} are hyperbolic with respect to g_1 .

Proof of Theorem A. Let $f \in \mathcal{G} = \mathcal{G}_1 \cap \mathcal{G}_2$ and let p be a hyperbolic periodic point of f. Suppose, by contradiction, that a homogeneous homoclinic class $H_f(p)$ is not hyperbolic. Since $H_f(p)$ is homogeneous, we assume that $\operatorname{index}(p) = j$. Let U be a locally maximal neighborhood of $H_f(p)$. Since $H_f(p)$ is not hyperbolic, by Lemma 2.3 there is a periodic point $q \in H_f(p)$ with $q \sim p$ such that q is a weak hyperbolic point. Since $H_f(p)$ is locally maximal in U, by Lemma 2.5 there is $g \in C^1$ close to f such that g has two hyperbolic periodic points $r, s \in \Lambda_g(U) = \bigcap_{n \in \mathbb{Z}} g^n(U)$ with $\operatorname{index}(r) \neq \operatorname{index}(s)$. Since $f \in \mathcal{G}_1$, $H_f(p) = C_f(p)$ and it is robust isolated, we have that

(2.1)
$$\bigcap_{n\in\mathbb{Z}} g^n(\mathcal{CR}(g)\cap U) = \mathcal{CR}(g)\cap \Lambda_g(U) \subset \mathcal{CR}(g)\cap U = C_g(p_g) = H_g(p_g),$$

where p_q is the continuation of p.

Since $r, s \in \Lambda_g(U)$ as hyperbolic periodic points of g, we know that $r, s \in \mathcal{CR}(g) \cap U$. Then by (1) we have

$$r, s \in \mathcal{CR}(g) \cap \Lambda_a(U) \subset \mathcal{CR}(g) \cap U = H_a(p_a) = C_a(p_a).$$

Thus we have $r, s \in H_g(p_g)$ with $\operatorname{index}(s) \neq \operatorname{index}(r)$. By Lemma 2.1, we have two hyperbolic periodic points $r_f, s_f \in H_f(p)$ with $\operatorname{index}(r_f) \neq \operatorname{index}(s_f)$. Since $\operatorname{index}(p) = j$, we know that either $\operatorname{index}(r_f) \neq j$ or $\operatorname{index}(s_f) \neq j$. This is a contradiction since $H_f(p)$ is homogeneous.

Acknowledgements. This work is supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Science, ICT & Future Planning (No. 2017R1A2B4001892).

References

[1] F. Abdenur, C. Bonatti and S. Croviser, Global dominated splitting and the C¹ Newhouse phenomenon, Proc. Amer. Math. Soc., **134**(2006), 2229-2237.

- [2] F. Abdenur, C. Bonatti, S. Croviser, L. Diaz and L. Wen, *Peirodic points and homoclinic classes*, Ergodic Th. Dynam. Syst., **27** (2007), 1-22.
- [3] J. Ahn, K. Lee and M. Lee, *Homoclinic classes with shadowing*, J. Inequal. Appl. 2012:97(2012), 1-6.
- [4] C. Bonatti and S. Crovisier, Récurrence et généricité, Invent. Math. 158 (2004), 33-104.
- [5] C. Bonatti and L. J. Díaz, Robust heterodimensional cycles and C^1 generic dynamics, J. Inst. Math. Jessieu, 7(2008), 469-525.
- [6] J. Franks, Necessary conditions for stability of diffeomorphisms, Trans. Amer. Math. Soc., 158 (1971), 301-308.
- [7] K. Lee and X. Wen, Shadowable chain transitive sets of C¹-generic diffeomorphisms, Bull. Korea. Math. Soc. **49** (2012), 263-270.
- [8] M. Lee, Usual limit shadowable homoclinic classes of generic diffeomorphisms, Advan. Differ. Equat., 2012:91 (2012), 1-8.
- [9] M. Lee, Chain transitive sets and dominated splitting for generic diffeomorphisms, preprint.
- [10] M. Lee and S. Lee, Generic diffeomorphisms with robustly transitive sets, Commun. Korean Math. Soc., 28 2013, 581-587.
- [11] J. Palis and W. Melo, Geometry theory of dynamical systems, An introd. Springer-Verlag, Berlin, 1982.
- [12] R. Potrie and M. Sambarino, Codimension one generic homoclinic classes with interior, Bull Braz Math Soc, New Series 41 (2010), 125-138.
- [13] R. Potrie, Generic bi-Lyapunov stable homoclinic classes, Nonliearity, 23 (2010), 1631-1649.
- [14] X. Wang, Hyperbolicity versus weak periodic orbits inside homoclinic classes, to appear in Ergod. Th. Dyn. Syst.

Author's address:

Manseob Lee

Department of Mathematics,

Mokwon University, Daejeon, 302-729, Korea.

E-mail: lmsds@mokwon.ac.kr