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Abstract. The conditions of parallelizability and a group structure re-
lated to the conformal embedding of four-dimensional hypersurfaces in
ten dimensions are formulated for four-manifolds that describe quantum
fluctuations of the metric. The set of basic four-geometries which satisfy
the restrictions is given.
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1 Introduction

The class of manifolds that might arise in the path integral for quantum gravity may
be refined for its evaluation and consistency with symmetries that arise in the theory.
The absence of an algorithm for deciding the word problem for four-dimensional
manifolds introduces an ambiguity in its definition. The presentation of homotopy
groups generally does not establish the homeomorphism equivalence of different four-
manifolds. Classes of four-manifolds with solvable word problems, however, would
suffice to transform the path integral to a sum over homotopy classes. It has been
proven that the set of parallelizable four-manifolds satisfies this condition [7]. Since
orientable three-manifolds are parallelizable, this domain of the quantum path integral
extends the class, which is unrestricted with the exception of orientation, in three
dimensions. The Euler number must be set equal to zero, which restricts the range of
topological characteristics. It follows that a standard summation of simply connected
four manifolds over the Euler class and the Hirzebruch signature [21] is reduced to
half of the invariants under the condition of parallelilzability.

The measure for the path integral for quantum gravity can be deduced from the
prediction for the temperature of the cosmic microwave background radiation [8]. This
integral includes asymptotically flat black-hole spaces with positive-definite signature.
Conformally flat geometries occur in the vicinity of the horizons of extreme limits of
these spaces. Therefore, Euclidean parallelizable and conformally flat manifolds could
be included in the domain of the path integral. The word problem has not been solved
yet for this class. Nevertheless, the path integral over these spaces may be decomposed
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into an integral over the conformal factor and an integral over parallelizable manifolds.
The conformal factor Ω causes divergences since it can generate an arbitrarily large
negative gravitational action, which can be removed through a choice of the contour of
integration in the complex Ω plane [16]. The space-times with Lorentzian signature
are known to be parallelizable. The models of matter then would be a solvable
subsector of a gravitational theory. The space-times with Lorentzian signature are
known to be parallelizable. The parallelizability of the Euclidean section then must
be considered. An example is de Sitter space and the four-sphere. Since de Sitter
space is noncompact, the analytic continuation to positive-definite signature yields
the four-sphere metric and the manifold would be the sphere with antipodal points
removed. This manifold is parallelizable in contrast with the four-sphere. More
generally, the Euclidean section would be parallelizable because the a global frame of
four smooth, linearly independent vector fields on spaces with Lorentzian signature
can be continued to a set of smooth, nonvanishing vector fields and a complete metric
[7] on the Riemannian geometry. The complete metric similarly can be defined only on
the direct analytic continuation of the space and not necessarily on an entire compact
manifold. The path integral over manifolds with a Lorentz signature is defined over
a subset of the domain of the Euclidean path integral. It might be expanded to a set
of compact manifolds that represent extreme limits of black hole space-times. There
are extreme black hole space-times that have charges and masses of a special class
of elementary particles [5]. The extension to the class of conformally flat manifolds
then would provide a model of matter that is a solvable subsector of a Eucldiean path
integral. Then, the properties of Euclidean sections of black-hole space-times must
be determined to define the domain of the path integration.

The group symmetry for conformal embedding of hypersurfaces in higher dimen-
sions will contain the G2 invariance, required for the evolution of three-dimensional
spaces in four-manifolds [39]. The inclusion in this groups will be required of the
isometry groups of the basic four-geometries and may be achieved by considering the
classification of four-dimensional Lie algebras together with the identification of the
structure constants.

The condition of parallelizability is satisfied by a certain set of basic four-geometries,
and it shall be determined if these manifolds are sufficient to form a basis for settting
the boundary condition for the path integral. The minimum dimension for embed-
ding of these parallelizable geometries also will be found. The parallelizable basic
four-geometries will provide a method for summing over manifolds within the class
characterized by vanishing Euler number. It will be found that those compact models
of basic four-geometries that are not parallelizable admit conformally flat metrics.

2 Isometry groups of the Basic Four-Geometries

There are nineteen basic four-geometries [27]:

S4 CP2 S2 × S2(2.1)

S3 × E1 S2 × E2 S2 ×H2

E4 Nil3 × E1 Nil4 Sol4m,n Sol40 Sol41

H3 × E1 H2 × E2 S̃L× E1 H2 ×H2 H4 H2(C) F4.
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The basic four-geometries may be classified according to compact models, covering
spaces, the existence of solvable Lie groups for the fundamental group and aspherical
manifolds.

The generalization to four-dimensional hypersurfaces embedded in a manifold of
higher dimensions of the group structure would be determined by the symmetries of
the product of the tangent bundle and a normal vector. Since this space is nine-
dimensional, it would be the fundamental representation of SO(9). Furthermore, this
symmetry can be increased to an F4 group.

Nilmanifolds and solvmanifolds in four dimensions have been demonstrated to be
parallelizable. The product of the subbundle of the tangent bundle and the time
coordinate must admit a F4 structure. Since SO(4) ⊂ F4, the structure groups of the
tangent bundles of the four-dimensional infrasolvmanifolds might be examined.

The manifold Sol4m,n = R3 oθm,n R, where m and n are integers such that the

polynomial fm,n = X3 −mX2 + nX − 1 has distinct roots ea, eb and ec, a < b < c,
has the metric ds2 = e−2atdx2+e−2btdy2+e−2ctdz2+dt2 and θm,n = diag(eat, ebt, ect)
[23]. An isometry between the metrics exists if (a, b, c) = λ(a′, b′, c′).

Theorem 2.1. The spaces Solm,n and Solm′,n′ are diffeomorphic when the roots
of the algebraic equations are related by a rational power λ = r

s , where
r = 2t and t ≤ log2m.

Proof. Suppose that (a, b, c) = λ(a′, b′, c′). Then

e−2atdx2 + e−2btdy2 + e−2ctdz2 + dt2(2.2)

= e−2λa′tdx2 + e−2λb′tdy2 + e−2λc′tdz2 + dt2

=
1

λ2

[
e−2a′t′(dx′)2 + e−2b′t′(dy′)2 + e−2c′t′(dz′)2 + dt′2

]
,

where x′ = λx, y′ = λy, z′ = λz and t′ = λt. Since m, n, m′ and n′ are integers, ea,
eb, ec, ea

′
, eb

′
and ec

′
cannot be linear independent over the algebraic numbers, and

an algebraic relation between (a, b, c) and (a′, b′, c′) must exist.
It may be recalled that four exponentials conjecture states that one of the numbers

ex1y1 , ex1y2 , ex2y1 and ex2y2 must be transcendental if x1, x2 and y1, y2 are linearly
independent over Q. Setting

x1y1 = a(2.3)

x2y1 = a′

x1y2 = b

x2y2 = b′,

it follows that, since ea, eb, ea
′
and eb

′
are algebraic numbers, x2

x1
∈ Q or y2

y1
∈ Q

or both ratios are rational. If x1

x2
∈ Q and y1

y2
̸∈ Q, it would follows that eb is not

a rational power of ea. Consequently, eb would equal αβ where α is algebraic and
β is either an irrational algebraic or transcendental number. This number therefore
will be transcendental by a theorem on exponent of the denominator q for the upper
bound for the difference between αβ and a fraction with this denominator. The roots
of the algebraic equation defining Sol4m,n cannot be transcendental, and y1

y2
must be



Parallelizability of the Basic Four-Geometries 9

a rational number. Similarly, a contradiction occurs if x1

x2
̸∈ Q and y1

y2
∈ Q. It

follows that x1

x2
, y1

y2
∈ Q. Setting x1

x2
= λ and y1

y2
= λ′, the factor of λ defines the

proportionality constant in a = λa′ and b = λb′. A proof of the four exponentials
conjecture is given in a recent manuscript [6].

One of the numbers ex1y1 , ex1y2 , ex1y3 , ex2y1 , ex2y2 and ex3y3 must be transcen-
dental if (x1, x2) and (y1, y2, y3) are two sets of numbers linearly independent over Q
by the six exponentials theorem [31][37]. Suppose that

(2.4)
x1y1 = a x1y2 = b x1y3 = c

x2y1 = a′ x2y2 = b′ x2y3 = c′.

Then ea, eb, ec, ea
′
, eb

′
and ec

′
will be algebraic numbers if and only if x1

x2
∈ Q or

y1

y2
, y1

y3
∈ Q or each of these three ratios is a rational number. When y1

y2
̸∈ Q, eb is

an irrational power of ea. Again, a contradiction with the algebraicity of ea and eb.
Similarly, if y1

y3
̸∈ Q, one of the numbers ea or ec would have to be transcendental.

All of the ratios x1

x2
, y1

y2
and y1

y3
must be rational. It follows that a = λa′, b = λb′ and

c = λc′, where x1

x2
= λ.

The polynomial X3 −mX2 + nX − 1 can be factored as

(2.5) (X−ea)(X−eb)(X−ec) = X3−(ea+eb+ec)X2+(ea+b+ea+c+eb+c)X−ea+b+c

if

a+ b+ c = 0(2.6)

ea + eb + ec = m

ea+b + ea+c + eb+c = n

Similarly, X3 −m′X2 + n′X − 1 = (X − ea
′
)(X − eb

′
)(X − ec

′
) when

a′ + b′ + c′ = 0(2.7)

ea
′
+ eb

′
+ ec

′
= m′

ea
′+b′ + ea

′+c′ + eb
′+c′ = n′.

The first conditions in Eqs.(2.6) and (2.7) are equivalent since a+b+c = λ(a′+b′+c′).
The final conditions are

e−a + e−b + e−c = n(2.8)

e−a′
+ e−b′ + e−c′ = n′.

Setting η1 = ea, η2 = eb and η3 = ec,

(2.9) η1η2 =
1

η3
η1η3 =

1

η2
η2η3 =

1

η1

If η1, η2 and η3 are integers, η1η2, η1η3 and η2η3 are integers, while 1
η1
, 1

η2
and 1

η3

are fractions with magnitude less than one unless |η1| = |η2| = |η3| = 1. Selecting the
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integers m and n to be positive integers, the following values are derived:

ηi, ηj = 1, ηk = −1 i, j, k not equal m = 1, n = −1(2.10)

ηi, ηj = −1, ηk = 1 i, j, k not equal m = −1, n = −1

η1 = η2 = η3 = 1 m = 3, n = 3

η1 = η2 = η3 = −1 m = −3, n = 3.

The space Sol41,−1 would not be present given the condition m ≤ n. Therefore, with
the exception of Sol4−1,−1, Sol

4
3,3 and Sol4−3,3, the values of ηi, i = 1, 2, 3 must be

chosen to be not integral. Since

η1 + η2 + η3 = m(2.11)

ηλ1 + ηλ2 + ηλ3 = m′

η1η2 + η1η3 + η2η3 = n

(η1η2)
λ + (η1η3)

λ + (η2η3)
λ = n′,

(2.12) n =
m2 − (η21 + η22 + η23)

2

which is integer if η21 + η22 + η23 ∈ (1−(−1)m)
2 + 2Z. Then m′ also would be integer if

λ = 2, and

(2.13) n′ =
(η21 + η22 + η23)

2 − (η41 + η42 + η43)

2
=

(m′)2 − (η41 + η42 + η43)

2
.

The value of n′ is integer if η41+η42+η43 ∈ 1−(−1)m
′

2 +2Z. A sequence of powers λt = 2t

then yield integers which correspond to the coefficients in the algebraic equations
representing infrasolvmanifolds diffeomorphic to Solm,n. Given a value of m, the

minimum index mmin satisfies m2t

min ≈ m or mmin ≈ m
1
2t such that mmin is integer.

For a fixed value of n, the minimum index nmin ≈ n
1
2t , when it is integer.

An sth root of η1, η2 and η3 must be equal to a single radical extension of Q
to achieve the cancelation of the noninteger parts. It follows that ηi =

(
pi

qi

)s

ρ,

i = 1, 2, 3 and such that ηi ∈ Q(ρ
1
s ). Then λs,t may have the form 2t

s . Since the
equations are also conditions on ηi are satisfied for s = 1, the integer s would not
affect the minimum values mmin and nmin such that Solmmin,nmin ≃ Solm,n. �

The set of basic four-geometries which are compatible with the condition on the
tangent bundle compatible with a conformal evolution in a higher embedding space
may be established from the restriction of the isometry groups in SO(9).

Theorem 2.2. The basic Four-Geometries that are consistent with the confor-
mal evolution of a four-manifold embedded in higher dimensions with an
isometry group that is a subgroup of SO(9) have the compact models S4,
CP2, S2 × S2, S3 × S1 and S1 × S1 × S1 × S1.
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Proof. The isometry group of S4 is SO(5), which is a proper subgroup of SO(9)
and F4. Since CP2 ≃ S5/S1, and the complex projective space is represented also
by SU(3)/(SU(2) × U(1)) and SU(3)/Z3 ⊂ SO(6) ⊂ SO(9) is a subgroup of F4. It
would be included amongst the four-manifolds that could arise in the evolution in
higher dimensions. The isometry group of S2 × S2, SO(3) × SO(3), is included in
SO(9).

The isometry group of S3 × E1, SO(4) × R is noncompact, while that of the
compact model S3×S1, SO(4)×SO(2), is a subgroup of SO(9). The compact model
of S2 × E2, S2 × S1 × S1, has a symmetry group SO(3) × SO(2) × SO(2) and rank
3, and it may be included in SO(9). The space S2 × H2 has the isometry group
SO(3)× SO(2, 1), which is not a subgroup of SO(9).

The compact model of E4, S1 × S1 × S1 × S1 has an isometry group U(1) ×
U(1)×U(1)×U(1) of rank 4, which may be included in F4. The space E2×H2 has a
noncompact isometry group R2×SO(2)×SO(2, 1) which is not a subgroup of SO(9).
The isometries of H3×E1, SO(3, 1)×R and the symmetries of the metric on S̃L×E1

do not form subgroups of SO(9).

The isometry groups of H2 × H2 and H4, SO(2, 1) × SO(2, 1) and SO(4, 1), are
not proper subgroups of SO(9). Similarly, the isometry group of H2(C), SU(2, 1)/Z3

[2], is not a proper subgroup of SO(9).

The isometry groups of the Nil3 and Sol3 manifolds in three dimensions are not
proper subgroups of G2, because the generators of the Heisenberg group are nilpotent
and the commutation relations of the Sol group are not isomorphic to a subalgebra of
LG2. The reduction of the Nil4m,n and Sol4m,n groups to three dimensions, including
Sol4m,m ≃ Sol3×E1 [23], proves that the isometry groups of the four-dimensional Nil
and Sol geometries are not subgroups of G2 ⊂ SO(9).

The isometry group of F 4, R2 o PSL(2,R) [23], is not a subgroup of SO(9).
Therefore, this basic four-geometry cannot be included amongst those manifolds that
are included in the conformally evolve in a higher-dimensional embedding space. �

The reduction of the group of hyperbolic motions to the Nil and Sol groups for
a given signature is required for the embedding of the geometries in the hyperbolic
subspace of RPn. The representation of this hyperbolic space in Rn+1 then provides
an embedding of Nil4 and Sol4 in R5.

3 Parallelizability

Both S4 and CP2 are not parallelizable. The Euler characteristic of S2 × S2 is the
square of χ(S2) = 2, and S2×S2 is not parallelizable. The Euler characteristic of the
nontrivial S2 bundle over S2, S2×̃S2, also equals 4, and the space is not parallelizable.

The conditions for parallelizability of four-manifolds are χ(M) = 0 and π3(M) = Z
[23]. The manifold S3×E1 is parallelizable with χ(S3×E1) = 0 and π3(S

3×E1) = Z.
An S2 × E2 manifold M fibred over S1 has χ(M) = 0, π1(M) virtually isomorphic
with Z2, χ(M) = 0 with infinite π/[π, π]. The third homotopy group of the covering
space π3(S

2 ×E2) ≃ π3(S
2) ≃ Z. Consequently, S2 ×E2 manifolds are parallelizable.

An S2 or RP2 bundle over a surface of genus g ≥ 2 has the covering space S2 × H2.
Given that π1(Σg) acts trivially on H∗(S

2) and the multiplicative property of the
Euler characteristic of fibre bundles [29], χ(M) = χ(S2)χ(Σg) = 4(1 − g) and the
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compact fibration is not parallelizable for g ≥ 2.
The manifolds Nil3 ×E1, Nil4, Sol4m,n, Sol

4
0 and Sol41 have finite coverings which

are parallelizable, being solvable Lie geometries. It has been proven for β1(π) ≥ 2,
when these geometries are mapping tori of Nil3, and closed infrasolvmanifolds with
β1 = 1 have been found to have fundamental groups that are torsion free, poly-
Z groups of Hirsch length 4 [24]. It is known that affine manifolds with solvable
fundamental groups have finite coverings that are parallelizable [17]. The conditions
for parallelizability and the existence of spin structures will be distinguished since
Riemann surfaces of arbitrary genus have spin structures and do not have a global
frame of two smooth nonvanishing vector fields for g = 0 or g ≥ 2. A smooth frame
of four nonvanishing vector fields exists on E4 and S̃L × E1. Amongst the compact
parallelizable four-manifolds are the double principal circle bundles over the torus
[13], which are compact models of E4.

The quotients of the aspherical manifolds have the following characteristics [23]:

M ∼ H2 × E2 orbifold
√
π ≃ Z2 [π;

√
π] = ∞ [π : Cπ(

√
π)] < ∞ eQ(π) = 0

(3.1)

χ(M) = 0

M ≃ S̃L× E1 manifold
√
π ≃ Z2 [π :

√
π] = ∞ [π : Cπ(

√
π)] < ∞ eQ(π) ̸= 0

χ(M) = 0

M ≃ H3 × E1 manifold χ(M) = 0 π has a normal subgroup ρ× Z of finite

index,

ρ has an infinite index normal subgroup and no noncyclic abelian

subgroup

M ≃ reducible H2 ×H2 manifold π2(M) = 0 χ(M) ̸= 0

M ≃ closed orientable H4 manifold σ(M) = 0 χ ∈ 2Z+

M ≃ closed orientable H2(C) manifold χ(M) = 3σ(M) > 0

The third homotopy groups of the quotients of H2 and H3 by discontinuous groups
would not be isomorphic to Z. These manifolds are not parallelizable even though
the Euler characteristic vanishes.

The dimensions of the union of the vector space algebra and the derived algebra
defined by the commutators form the vector (2, 3, 4) for Engel distributions [12].
Parallelizable four-manifolds admit a countable number of stable Engel distributions
and represent tangent planes to a countable number of surfaces [27].

Stable prime decomposition of four-manifolds requires S2 × S2 [30], which is not
restricted to the class of parallelizable manifolds. A path integral over the class of
parallelizable four-manifolds would not consist of basic geometries such that there
exists a unique prime decomposition of a manifold with the addition of sums of copies
of S2 × S2. It has been found also that topological 4-manifolds can be smoothed
through the connected sum with copies of S2 × S2 and E8 homology manifolds [15].
Therefore, this smoothing procedure does not exist for the class of parallelizable basic
four-geometries. Since the intersection form of a connected sum of four-manifolds
is the direct sum of intersection forms, the replacement of a topological sum of E8

homology manifoldME8 and basic four-geometries by another sum could only preserve
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the homeomorphism rather than the diffeormorpism type [15]. These manifolds are

not diffeomorphic, and the smoothing method is not valid with CP2 and CP2
which

also do not belong to the class of parallelizable basic four-geometries.
The dissolving of many simply connected symplectic spin four-manifolds into con-

nected sums of S2 × S2 [32] would not occur within a domain of integration of the
path integral over the class of parallelizable Four-Geometries. A set of manifolds of
this kind H(k, n) constructed from Horikawa surfaces generates a lattice in the (χ, c21)
plane with χ(H(k, n)) = 8k + 2n − 1 and c21(H(k, n)) = 16k − 8 for k ≥ 1, n ≥ 1
[19]. The Euler characteristic cannot be reduced to zero, and fixing k also determines
c21. A more general spectrum is provided by the equalities for χ and c21 allowing ar-
bitrary values of the signature satisfying σ ≡ 0 (mod 16) for smooth manifolds [38]
Generalization to nonspin manifolds have been given [28].

4 Embedding into higher dimensions

The conditions for embedding of a spin four-manifold in S5 or equivalently R5 have
been related to the homotopy group, the second Stiefel-Whitney class and the signa-
ture. There exist four-manifolds with homotopy groups given by products of finite
cyclic groups of odd prime order that cannot be embedded even homotopically in R5

and may be embedded smoothly in R6 [3]. It is evident that products of geometric
simple manifolds of lower dimension can be embedded in R5. Furthermore, the con-
ditions of w2 = 0 and σ = 0, which suffice for the embedding in six dimensions, may
be transferred to four dimensions with a set of restrictions on the fundamental group.

Theorem 4.1 All of the stable parallelizable basic Four-Geometries with a spin
structure can be embedded in R5.

Proof. First consider the geometrically simple manifolds. The round sphere metric
on S4 is induced from the embedding metric of R5. The manifolds CP2 and S2 × S2

similarly can be embedded in five dimensions.
Since S2 and S3 may be embedded in R3 and R4 respectively, S3×E1 and S2×E2

may be embedded in five dimensional Euclidean space. It has been proven that H2

cannot be smoothly immersed isometrically in R3 [22]. There does exist an isometric
immersion [9]. It is known that the Cartesian product of n closed orientable two-
dimensional manifolds may be embedded in R2n+1 [1] This proof can be extended
to noncompact orientable two-dimensional manifolds because the obstruction of the
Stiefel-Whitney classes of the normal bundle vanish [20]. Then S2×H2, and similarly
H2 × E2 may be embedded in R5.

The trivial embedding of E4 and the not globally smooth embedding of H4 in five
dimensions induce metrics on both of these maximally symmetric spaces. It follows
from the embedding of H3 in R4 that there is a local diffeomorphism and a globally
continuous homeomorphism from H3 × E1 to R5.

There exists classes of Niln and Soln geometries that are limits of hyperbolic
cone structures [36][25]. More generally, these metrics arise as limits of metrics on
hyperbolic geometries that can be embedded in RPn [4]. It is known that RPn can-

not be embedded smoothly into Rn+1, and there is no similar embedding of RP2k

into R2k+1−1 [26], such that eight dimensions is required for RP4. Nevertheless, the
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hyperbolic limit yields an embedding in Rn+1. Then Nil3 × E1, Nil4 and Sol4m,n,

Sol40 and Sol41 may be embedded in R5. The group S̃L does not arise in a limit

of hyperbolic geometry, and yet S̃L × E1 is a parallelizable geometry. The stable
parallelizable manifolds are characterized by w2(M) = 0 and σ(M) = 0, and since

w2(E ⊕ F ) =
∑

i wi(E) ∪ w2−i(F ), w1(S̃L) = w2(S̃L) = 0, w2(S̃L × E1) = 0. The

signature of the product S̃L× E1 equals zero [11]. Then, S̃L× E1 can be embedded
in R5.

Since the χ(M) = 3σ(M) > 0 for a closed, orientable H2(C)-manifold [40], it
cannot be embedded smoothly with a spin structure in five dimensions. The covering
space H2(C), however, can be described as a unit ball in two complex dimensions
[23], which may be embedded in C2 and therefore R5 through the isotopy between C2

and R4.
Even though F4 cannot be represented by a closed four-dimensional geometry, one

noncompact model is the tangent bundle of the hyperbolic plane, and the Euler char-
acteristic vanishes [23]. The embedding of H2×E2 therefore suffices for an embedding
of F4 in R5. �

Therefore, the basic four-geometries may be combined and embedded in a a
five-dimensional space that satisfies the topological rigidity theorem. The bounded
homotopy equivalence of five-dimensional universally contractible coarse manifolds
with bounded geometry and finite decomposition complexity will be equivalent to a
bounded homeomorphism [18]. The geometries generated in four dimensions through
quantum fluctuations of the metric can be embedded in a fixed space in higher di-
mensions.

5 Conclusions

The class of parallelizable four-manifolds satisfies the conditions of vanishing Euler
character and π3(M) = Z. Homotopy equivalence of simply connected four-manifolds
is determined by the intersection form [33] and a topological classification, with the
Kirby-Siebenmann invariant, has been given when these manifolds are closed [14]
Since indefinite forms are classified by the rank b2, signature σ and parity, which would
be fixed by homotopy equivalence, and b2 = 2+ χ since the first and third homology
groups vanish, there can be many homotopy classes for each pair of values of χ and
σ [34]. It is known that simply connected smooth four-manifolds are determined up
to homeomorphism equivalence by χ, σ and the parity of the intersection form [10].
A path integral over these geometries can be reduced to a summation over these two
topological characteristics after restriction of the orientation of the representatives
of the second homology class. The vanishing of the Euler number of the manifold,
however, would the path integral only to a summation over the Hirzebruch signature.
Furthermore, it must satisfy congruence conditions such as σ ≡ 0 (mod 16) for spin
manifolds.

The summation over σ can be refined by delineating those basic four-geometries
that belong to the set of manifolds with vanishing χ. The list of geometries has
been described in §3 after establishing the conditions on the indices that character-
ize diffeomorphism classes of infrasolvmanifolds. Therefore, the enumeration of the
different types of basic geometries provides a further summation over the numbers
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of basic four-geometries. The summations over each type could be evaluated if these
geometries arise as gravitational instantons in the limit of large separation. A simul-
taneous sum over the numbers of geometrical components also can include connected
sums representing the four-manifold. The Euler characteristic of the connected sum
M1#M2 would not remain zero if M1 and M2 are parallelizable. Parallellizability of
the entire four-manifold is preserved only if the topological sums are defined over a
larger class of components including S2 × S2. Therefore, the extent of the quantum
gravitational fluctuations will determine the form of the path integral. An example of
a larger class of four-manifolds would include those geometries characterized by con-
formally parallel structures. Furthermore, the basic four-geometries are parallelizable
or conformally flat. While this category would include four-dimensional conformally
flat spaces, a solution to the word problem, valid for parallelizable manifolds and
necessary for distinguishing homotopy classes, remains to be given. Since the path
integral may be evaluated over this class of four-manifolds, it will be necessary to
consider the extension to the Euclidean sections of black hole space-times that yield
a dominant contribution from critical points of the gravitational action.
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Zeit 43 (1937), 38-58.

[21] S. W. Hawking, Spacetime foam, Nucl. Phys. 144 (1978), 349-362.
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