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Abstract. In this paper, we show that totally screen umbilic, screen con-
formal and Hopf null hypersurfaces are nonexistent in indefinite Kaehler
space forms of nonzero constant holomorphic sectional curvatures. Fur-
thermore, we prove that all totally screen umbilic null hypersurface immer-
sions into indefinite Kaehler space forms are affinely equivalent to graph
immersions.
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1 Introduction

In the book [2], the authors started the study of null submanifolds of semi-Riemannian
manifolds. Their work was later updated by K.L. Duggal and B. Sahin in the book
[3] and also by K.L. Duggal and D.H. Jin in the book [4]. In the above books, the au-
thors laid a foundation for research on null geometry by constructing their structural
equations, among other results. In fact, they introduced a non-degenerate screen dis-
tribution to construct a null transversal vector bundle which is non-intersecting to its
null tangent bundle and developed local geometry of null curves, hypersurfaces and
in general, the submanifolds of arbitrary codimension. Other pioneering works on the
theory include that of D.N. Kupeli [12]–whose approach is purely intrinsic compared
to that of [2, 3, 4], which is extrinsic. Since then, many researchers including but
not limited to [1, 6, 7], have researched on null submanifolds and many interesting
results have been obtained. Null hypersurfaces appears in general relativity as mod-
els of different types of black hole horizons (see [2, 3] for details) and their theory is
fundamental to modern mathematical physics.

Chapter 6 of [2] (also see Chapter 6 of [3]) has been devoted to null submanifolds
of indefinite Kaehler manifolds. It has been shown in [2, Theorem 2.5] that the indef-
inite Kaehler space forms of nonzero constant holomorphic sectional curvature do not
admit any totally umbilic null hypersurfaces. Furthermore, it has been proved that
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any totally screen umbilic null hypersurface are indeed totally screen geodesic (see [2,
Proposition 2.4] for more details). On the other hand, D.H. Jin [8] has introduced
the notion of Hopf null hypersurfaces, in which he has proved that indefinite Kaehler
space forms of non-zero constant holomorphic sectional curvatures do not admit any
Hopf null hypersurfaces. In this paper, we extend the study on the geometry of null
hypersurfaces of indefinite Kaehler manifolds. In particular, we prove that totally
screen umbilic null hypersurfaces of indefinite Kaehler space forms are affinely equiv-
alent to graph immersions. The rest of the paper is arranged as follows: In Section
2, we quote some basic notions necessary for the entire paper. Section 3 is devoted
to totally umbilic null hypersurfaces, while Section 4 is on the geometry of Hopf null
hypersurfaces.

2 Preliminaries

Let Cm be the m-dimensional complex number space and M̄ be a Hausdorff space.
An open chart on M̄ is a pair (U , ϕ), where U is an open set of M̄ and ϕ is a
homeomorphism of U on an open set of Cm. A complex structure on M̄ of dimension
m, is a collection of open charts (Ui, ϕi)i∈I on M̄ such that the following conditions
are satisfied: (a) M̄ = ∪i∈IUi, that is, {Ui}i∈I is an open covering of M̄ . (b) For
each i, j ∈ I, the mapping ψj ◦ ϕ−1

i is a holomorphic mapping of ϕi(Ui ∩ Uj) onto
ϕj(Ui ∩ Uj). (c) The collection (Ui, ϕi)i∈I is a maximal family of open charts for
which (a) and (b) hold. A Hausdorff space M̄ endowed with a complex structure of
dimension m is called a complex manifold (see more details in [2, Chapter 6]). Let
(zA = xA + iyA), A ∈ {1, . . . ,m}, i =

√
−1, be a complex local coordinate system

on a neighbourhood U of z ∈ M̄ . Thus, M̄ can be thought of as a particular smooth
manifold of real dimension 2m. It follows that the endomorphism J̄ : TzM̄ −→ TzM̄ ;
J̄∂xA = ∂yA ; J̄∂yA = −∂xA , does not depend on the complex local coordinate system
(see [2, p. 191]). Therefore, there exists an automorphism J̄ of the tangent bundle TM̄
satisfying J̄2 = −I, where I is the identity on TM̄ . A real 2m-dimensional manifold
M̄ endowed with the automorphism J̄ satisfying J̄2 = −I, is called an almost complex
manifold, and J̄ is said to be an almost complex structure on M̄ . It is well-known [2,
p. 191] that the almost complex structure J̄ defines a complex structure on M̄ , if and
only if, NJ̄ = 0 vanishes identically on M̄ , where NJ̄ is the Nijenhuis tensor field of
J̄ .

Consider a semi-Riemannian metric g of index 0 < v < 2m, on the almost com-
plex manifold (M̄, J̄). Then we say that the pair (J̄ , g) is an indefinite almost Her-
mitian structure on M̄ , and M̄ is an indefinite almost Hermitian manifold, if J̄z is
a linear isometry of the semi-Euclidean space (TzM̄, gz), for any z ∈ M̄ , that is,
gz(J̄zXz, J̄zYz) = gz(Xz, Yz). If, moreover, J̄ defines a complex structure on M̄ ,
then (J̄ , g) and M̄ are called indefinite Hermitian structure and indefinite Hermitian
manifold, respectively. It follows that the index of g is an even number v = 2q.
Next, consider an indefinite almost Hermitian manifold (M̄, J̄ , g) and denote by ∇
the Levi-Civita connection on M̄ with respect to g. Then, according to [2, Chapter
6], M̄ is called an indefinite Kaehler manifold if J̄ is parallel with respect to ∇, that
is, (∇X J̄)Y = 0, for all X,Y ∈ Γ(TM̄). Here, and in the rest of the paper, Γ(Ξ)
denotes the set of smooth sections of the vector bundle Ξ. An indefinite complex space
form [2, p. 191] is a connected indefinite Kaehler manifold of constant holomorphic
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sectional curvature c and it is denoted by M̄(c). The curvature tensor field of M̄(c)
is given by the same formulae as in case of positive definite metrics, i.e.,

R̄(X,Y )Z = (c/4)[ḡ(Y, Z)X − ḡ(X,Z)Y + ḡ(J̄Y, Z)J̄X

− ḡ(J̄X, Z)J̄Y + 2ḡ(X, J̄Y )J̄Z], ∀X,Y, Z ∈ Γ(TM̄).(2.1)

Let (M, g) be a null hypersurface of a semi-Riemannian manifold (M̄, ḡ). This
implies that at each point x ∈ M , the restriction g (= ḡx| TxM ) is degenerate. That
is to say, there exist a non-zero vector u ∈ TxM such that ḡ(u, v) = 0, for any
v ∈ TxM . Precisely, in null setting, the normal bundle TM⊥ of the null hypersurface
M is a rank 1 vector subbundle of the tangent bundle TM . This contradicts the
classical theory of non-degenerate hypersurfaces for which the normal bundle has a
trivial intersection with its respective tangent bundle. Thus, the geometry of null
hypersurfaces differs significantly from that of non-degenerate hypersurfaces, due to
that non-trivial intersection in TM and TM⊥. In the book [2, Chapter 4] (also see [3,
Chapter 2]), the authors proceeded by fixing, on the null hypersurface, a geometric
data formed by a null section and a screen distribution, denoted as S(TM) (see [2,
p. 78]). A screen distribution on M is considered as a nondegenerate complementary
bundle of TM⊥ in TM . This name is justified as in the case M is a null (lightlike)
cone of a 4-dimensional semi-Riemannian manifold, integral curves of vector fields in
TM⊥ are null (lightlike) rays and the fibres of S(TM) can be visualised as screens
that are transversal to these rays. It is crucial to note that a screen distribution is
not unique, but canonically isomorphic to the nondegenerate quotient tangent bundle
TM/TM⊥ [12, Definition 3.2.1, p. 46].

Hence, we have the decomposition of TM as TM = TM⊥ ⊕orth S(TM), where
⊕orth denotes an orthogonal direct sum. It is well-known [2, Theorem 1.1] that for
any null section ξ of TM⊥, there exists a unique null section N of S(TM)⊥ such that
g(ξ,N) = 1. It follows that there exists a null transversal vector bundle, tr(TM),
locally spanned by N and ḡ(N,N) = ḡ(N,Z) = 0, for any Z ∈ Γ(S(TM)). Let
tr(TM) be complementary (but not orthogonal) vector bundle to TM in TM̄ . Then,
we have the following decomposition of TM̄ |M as TM̄ |M = S(TM) ⊕orth [TM⊥ ⊕
tr(TM)]. Let P be the projection morphism of TM on to S(TM). Then, the local
Gauss and Weingarten equations ofM and S(TM) are the following (see [2, p. 82–85]
for more details);

∇XY = ∇XY +B(X,Y )N, ∇XN = −ANX + τ(X)N,(2.2)

∇XPY = ∇∗
XPY + C(X,PY )ξ, ∇Xξ = −A∗

ξX − τ(X)ξ,(2.3)

for all X,Y ∈ Γ(TM), ξ ∈ Γ(TM⊥) and N ∈ Γ(tr(TM)). Here, ∇ and ∇∗ are the
induced linear connections on TM and S(TM), respectively, B is the local second
fundamental form of M and C is the local second fundamental form on S(TM).
Furthermore, AN and A∗

ξ are the shape operators on TM and S(TM) respectively,
and τ is a differential 1-form on TM . Next, let θ = ḡ(N, ·) be a 1-form metrically
equivalent to N defined on M̄ . Then, take η = i∗θ to be its restriction on M , where
i : M ↪→ M̄ is the inclusion map. It is known that ∇∗ is a metric connection on
S(TM), while ∇ is generally not a metric connection. In fact, from the fact ∇ḡ = 0,
we get the expression of ∇g as

(∇Xg)(Y, Z) = B(X,Y )η(Z) +B(X,Z)η(Y ), ∀X,Y, Z ∈ Γ(TM).(2.4)
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Moreover, B is known to be independent of the choice of S(TM) and satisfies

(2.5) B(X, ξ) = 0, ∀X ∈ Γ(TM).

It has been shown that∇g vanishes if and only ifB = 0, i.e., whenM is totally geodesic
[3, p. 76]. In fact, from (2.4), if ∇g = 0 we have B(X,Y )η(Z) + B(X,Z)η(Y ) = 0,
for all X,Y, Z ∈ Γ(TM). Replacing Z with ξ in this relation, and considering (2.5),
we get B(X,Y )η(ξ) = 0. That is, B = 0 since η(ξ) = ḡ(ξ,N) = 1. The fundamental
forms B and C are related to their shape operators by the following equations

g(A∗
ξX,Y ) = B(X,Y ), ḡ(A∗

ξX,N) = 0,(2.6)

g(ANX,PY ) = C(X,PY ), ḡ(ANX,N) = 0,(2.7)

for all X,Y ∈ Γ(TM). It follows from (2.6) and (2.7) that both A∗
ξ and AN are

screen-valued operators. Let us denote by R and R̄ the curvature tensors of M and
M̄ , respectively. Then, using the Gauss-Weingarten formulae (2.2) and (2.3), we have
the following Gauss-Codazzi equations for M and S(TM) (see more details in [2, 3]).

R̄(X,Y )Z = R(X,Y )Z +B(X,Z)ANY −B(Y, Z)ANX + [(∇XB)(Y, Z)

− (∇YB)(X,Z) + τ(X)B(Y, Z)− τ(Y )B(X,Z)]N,(2.8)

R(X,Y )ξ = −∇∗
XA

∗
ξY +∇∗

YA
∗
ξX +A∗

ξ [X,Y ]− τ(X)A∗
ξY + τ(Y )A∗

ξX

+ [C(Y,A∗
ξX)− C(X,A∗

ξY )− 2dτ(X,Y )]ξ,(2.9)

R̄(X,Y )N = −∇XANY +∇YANX +AN [X,Y ] + τ(X)ANY − τ(Y )ANX

+ [B(Y,ANX)−B(X,ANY )− 2dτ(X,Y )]N,(2.10)

where dτ(X,Y ) = (1/2)[X(τ(Y )) − Y (τ(X)) − τ([X,Y ])], for all X,Y, Z ∈ Γ(TM),
ξ ∈ Γ(TM⊥) and N ∈ Γ(tr(TM)).

Let (M, g) be a null hypersurface of 2m-dimensional, m > 1, indefinite almost
Hermitian manifold, where ḡ is a semi-Riemannian metric of index v = 2q, 0 <
q < m. From the fact ḡ(J̄X, Y ) + ḡ(X, J̄Y ) = 0, we note that ḡ(J̄ξ, ξ) = 0 and
thus, J̄ξ ∈ Γ(TM). Therefore, J̄TM⊥ is a distribution on M of rank 1 such that
TM⊥ ∩ J̄TM⊥ = {0}. This enables one to choose a screen distribution S(TM) such
that it contains J̄TM⊥ as a vector subbundle. Then we consider a local section N of
the null transversal vector bundle tr(TM) ofM with respect to S(TM). It follows that
J̄N also lies in S(TM). In fact, ḡ(J̄N, ξ) = −ḡ(N, J̄ξ) = 0, and thus J̄N is tangent to
M . As ḡ(J̄N,N) = 0, it follows that the J̄N is a smooth vector field of S(TM). From
the facts ξ and N are null vector fields, we deduce that J̄ξ and J̄N are null vector
fields. Moreover, ḡ(J̄ξ, J̄N) = ḡ(ξ,N) = 1. Hence, J̄TM⊥ ⊕ J̄tr(TM) is a vector
subbundle of S(TM) of rank 2, with hyperbolic planes as fibres. Then there exists a
non-degenerate distribution D0 onM such that S(TM) = [J̄TM⊥⊕ J̄ tr(TM)] ⊥ D0.
Moreover, it is easy to check that D0 is an almost complex distribution with respect
to J̄ , i.e., J̄D0 = D0. Thus, we have TM = [J̄TM⊥ ⊕ J̄tr(TM)] ⊥ D0 ⊥ TM⊥.
Next we consider the local null vector fields

U = −J̄N and V = −J̄ξ.(2.11)

Then any vector field on M is expressed as X = SX + u(X)U , where u is a 1-
form locally defined on M by u(X) = g(X,V ). Applying J̄ to this relation gives
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J̄X = JX + u(X)N , where J is a tensor field of type (1, 1) globally defined on M by
JX = J̄SX, for all X ∈ Γ(TM). It follows that

J2X = −X + u(X)U, u(U) = 1, ∀X ∈ Γ(TM).(2.12)

It is well-known [2, Proposition 2.1] that (J, u, U) defines an almost contact structure
on M . However, it is not a contact metric structure on M . In fact, g(JX, JY ) =
g(X,Y )− u(X)v(Y )− u(Y )v(X), for all X,Y ∈ Γ(TM), where v is a 1-form locally
defined on M by v(X) = g(X,U), for all X ∈ Γ(TM). By a direct calculation, we
have (∇XJ)Y = u(Y )ANX − B(X,Y )U , for all X,Y ∈ Γ(TM). Replacing Y by ξ
and U , in turn, in this relation we derive

∇XV = JA∗
ξX − τ(X)V and ∇XU = JANX + τ(X)U,(2.13)

for all X ∈ Γ(TM). Furthermore, we have

B(X,U) = C(X,V ), ∀X ∈ Γ(TM).(2.14)

Next, we give some examples of null hypersurfaces of an indefinite Kaehler manifold.

Example 2.1 (Duggal-Bejancu [5]). Consider R2(m+1)
2s with the metric ḡ(x, y) =

−
∑2s

i=1 x
iyi +

∑2(m+1)
j=2s+1 x

jyj , and the almost complex structure

J̄(x1, x2, . . . , x2m+1, x2m+2) = (−x2, x1, . . . ,−x2m+2, x2m+1).

Then,

1. the null cone Λ2m+1
2s−1 of R2(m+1)

2s is a null hypersurface, whose normal bundle is
spanned by the global null vector field ξ = (x1, x2, . . . , x2m+2);

2. the hyperplanes of R2(m+1)
2s given by the equations

2(m+1)∑
a=3

ϱax
a −

√
ϱ/2(x1 + x2) = 0, ϱ =

2(m+1)∑
a=3

ϱ2a,

with ξ = (−
√
ϱ/2,−

√
ϱ/2, ϱ3, . . . , ϱ2m+2) is a null hypersurface;

3. the hypersurface of R4
2 given by the equations

x1 = u1 coshu2 + sinhu2, x2 = u3, x3 = u1 + u2,

x4 = u1 sinhu2 + coshu2,

with ξ = (coshu2, 0, 1, sinhu2) is a null hypersurface of R4
2.

3 Totally screen umbilic null hypersurfaces

We say that the screen distribution S(TM) is totally umbilic [2, p. 109] if on any
coordinate neighbourhood U ⊂M , there exists a smooth function λ such that

C(X,PY ) = λg(X,PY ), ∀X,Y ∈ Γ(TM|U ).(3.1)
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In case λ = 0, we say that S(TM) is totally geodesic. A null hypersurface whose screen
distribution is totally umbilic is called a totally screen umbilic null hypersurface.
It follows from (3.1) that on a totally screen umbilic null hypersurface, we have
C(ξ, PX) = 0, for all X ∈ Γ(TMU ). Equivalently, ANξ = 0. In the same line, a
null hypersurface is called totally umbilic [2, p. 107] if, locally, on each U there exists
a smooth function ρ such that

B(X,Y ) = ρg(X,Y ), ∀X,Y ∈ Γ(TM|U ).(3.2)

The case ρ = 0 corresponds to a totally geodesic null hypersurface. As an example,
we have the following.

Example 3.1. Consider the null cone Λ2m+1
2s−1 of R2(m+1)

2s in Example 2.1. As ξ =

(x1, x2, . . . , x2m+2) is a position vector field, then ∇Xξ = ∇Xξ = X, for all X ∈
Γ(TΛ2m+1

2s−1 ). It follows from (2.2) and (2.3) that A∗
ξX = −PX and τ(X) = −η(X),

for all X ∈ Γ(TΛ2m+1
2s−1 ). Hence, Λ2m+1

2s−1 is totally umbilic with ρ = −1.

Remark 3.2. We note that S(TΛ2m+1
2s−1 ) is not totally umbilic. In fact, as A∗

ξX =

−PX, we see that B(X,V ) = −u(X), for all X ∈ Γ(TΛ2m+1
2s−1 ). Setting X = U in this

relation and using (2.14), we get −1 = B(U, V ) = C(V, V ). Therefore, if S(TΛ2m+1
2s−1 )

is totally umbilic, we get −1 = λg(V, V ) = 0, which is a contradiction.

In [9], the authors defined an affine immersion as follows: Let f : M −→ M̄ be
an immersion of a manifold M as a hypersurface of M̄ and ∇ and ∇ be torsion-
free connections on M and M̄ , respectively. Then f is an affine immersion if there
exists locally a transversal vector field N along f such that ∇f∗Xf∗Y = f∗(∇XY ) +
B(X,Y )N , for all X,Y ∈ Γ(TM), where f∗ is the differential map of f . In the usual
way, we put ∇f∗XN = −AN (f∗X) + τ(f∗X)N . Such a definition was also used by
Duggal-Bejancu [2, p. 100], and it was concluded that any null isometric immersion
is an affine immersion. Suppose ∇ is a flat connection on M . Let ϕ : M −→ Rm+1

such that every point x ∈M has a neighborhood U on which ϕ is an affine connection
preserving diffeomorphism with an open neighborhood V of ϕ(x) in Rm+1. Consider
Rm+1 as a hyperplane of Rm+2 and let N be a parallel vector field, transversal to
Rm+1. Then, for any differentiable function F : M −→ R, define f : M −→ Rm+2;
f(x) = ϕ(x) + F (x)N , for all x ∈ M . Thus, f is an affine immersion with AN = 0,
called the graph immersion with respect to F . Accordingly, we quote the following
result.

Proposition 3.1 (Duggal-Bejancu [2], Proposition 5.2). Let (M, g) be a null hyper-
surface of Rm+2

q with a parallel screen distribution S(TM). Then the immersion ofM
is affinely equivalent to the graph immersion of a certain function F :M −→ Rm+2

q .

Next, we give a characterization of all totally screen umbilic null hypersurfaces in
indefinite Kaehler space forms.

Theorem 3.2. Let (M, g) be a totally screen umbilic null hypersurface of an indefinite
Kaehler space form M̄(c). Then, the following are all true;

1. M is totally screen geodesic, i.e. λ = 0;
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2. c = 0, i.e. M̄(c) is R2(m+1)
2s ;

3. ∇ is a flat connection on M ;

4. the immersion of (M, g) in M̄(c) is affinely equivalent to the graph immersion
of a certain function F :M −→ R.

Proof. Setting X = ξ, and Y = Z = U in (2.8) and then take the ḡ-product with ξ
leads to

ḡ(R̄(ξ, U)U, ξ) = (∇ξB)(U,U)− (∇UB)(ξ, U) + τ(ξ)B(U,U)

= ξB(U,U)− 2B(∇ξU,U)−B(A∗
ξU,U) + τ(ξ)B(U,U).(3.3)

From relation (2.14) and the assumption S(TM) is totally umbilic, we have

B(U,U) = C(U, V ) = λg(U, V ) = λ,(3.4)

B(A∗
ξU,U) = C(A∗

ξU, V ) = λB(U, V ) = λC(V, V ) = λ2g(V, V ) = 0.(3.5)

On the other hand, using the second relation of (2.13) and the fact that ANξ = 0 on
any screen umbilic null hypersurfaces, we see that ∇ξU = τ(ξ)U . Thus, we have

B(∇∗
ξU,U) = B(∇ξU,U) = τ(ξ)B(U,U) = τ(ξ)C(U, V ) = λτ(ξ).(3.6)

Then, putting (3.4), (3.5) and (3.6) in (3.3) leads to

ḡ(R̄(ξ, U)U, ξ) = ξλ− λτ(ξ).(3.7)

Next, letting X = ξ and Y = Z = U in (2.1) leads to

R̄(ξ, U)U = (3c/4)N.(3.8)

Replacing (3.8) in (3.7) gives

c = (4/3)[ξλ− λτ(ξ)].(3.9)

Furthermore, letting X = ξ and Y = PZ = U in 2.10 and taking the ḡ-product with
respect to M , we get

ḡ(R̄(ξ, U)U,N) = λg(∇Uξ, U) = −λB(U,U) = −λC(U, V ) = −λ2,(3.10)

in which we have used (2.4), (2.5), (2.14) and (3.1). It follows from (3.10) and (3.8)
that λ2 = 0, or simply λ = 0. Hence, S(TM) is totally geodesic, which proves (1).
Then, from (3.9), we get c = 0, which proves (2). Note from (2.8), and the fact
AN = 0, that R = 0 and hence ∇ is flat. This proves (3). Finally, we see, from (2.3)
that ∇XPY = ∇∗

XPY ∈ Γ(S(TM)), for all X,Y ∈ Γ(TM). This shows that S(TM)
is parallel and then (4) follows from Proposition 3.1, hence the proof. �

The following is a consequence of Theorem 3.2.

Corollary 3.3. There exist no any totally screen umbilic null hypersurface of the
indefinite Kaehler space form M̄(c ̸= 0).
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A null hypersurface (M, g) of an semi-Riemannian manifold M̄ is said to be screen
conformal [3, Definition 2.2.1] if there exists, on the neighbourhood U ⊂ M , a non-
vanishing smooth function φ such that C = φB. The conformality is said to be global
if U = M . In case φ is a constant function, then M is called screen homothetic. For
screen conformal null hypersurfaces of indefinite Kaehler space forms, we have the
following.

Theorem 3.4. Let (M, g) be a screen conformal null hypersurface of an indefinite
Kaehler space form M̄(c). Then c = 0. Moreover, either M is totally geodesic or φ
is a solution of the partial differential equation ξφ− 2φτ(ξ) = 0.

Proof. From (2.8), (2.10) and the fact that M is screen conformal, we derive

ḡ(R̄(X,Y )PZ,N)− φḡ(R̄(X,Y )PZ, ξ) = (Xφ)B(Y, PZ)− (Y φ)B(X,PZ)

2φτ(Y )B(X,PZ)− 2φτ(X)B(Y, PZ), ∀X,Y, Z ∈ Γ(TM).(3.11)

Then, applying (2.1) to (3.11) and then put X = ξ gives

(c/4)[g(Y, PZ) + u(PZ)v(Y ) + 2u(Y )v(PZ)− 3φu(Y )u(PZ)]

= [ξφ− 2φτ(ξ)]B(Y, PZ), ∀X,Y, Z ∈ Γ(TM).(3.12)

Letting Y = V and PZ = U in (3.12) gives

c/2 = [ξφ− 2φτ(ξ)]B(V,U).(3.13)

On the other hand, putting Y = U and PZ = V gives

3c/4 = [ξφ− 2φτ(ξ)]B(U, V ).(3.14)

From (3.13), (3.14) and the symmetry of B, we get (1/4)c = 0, or simply c = 0.
Finally, as c = 0 we have, from (3.12), that [ξφ− 2φτ(ξ)]B(X,PZ) = 0, from which
either B = 0 and showing that M is totally geodesic or ξφ − 2φτ(ξ) = 0, which
completes the proof. �

The following result follows from Theorem 3.4.

Corollary 3.5. There exist no any screen conformal null hypersurface of an indefinite
Kaehler space form M̄(c ̸= 0).

We also have the following result.

Corollary 3.6. Let (M, g) be a screen conformal null hypersurface of an indefinite
Kaehler space form M̄(c), such that ξφ − 2φτ(ξ) ̸= 0. Then, the immersion of
(M, g) into M̄ is affinely equivalent to the graph immersion of a certain function
F :M −→ R.
Proof. When ξφ− 2φτ(ξ) ̸= 0, we have seen that M is totally geodesic. As M is also
screen conformal, we see that C = 0, i.e. M is totally screen geodesic. It then follows
from (2.8) and the fact c = 0 that R = 0, i.e. ∇ is a flat connection on M . Note,
also, that ∇XPY = ∇∗

XPY ∈ Γ(S(TM)), for all X,Y ∈ Γ(TM). Hence, S(TM) is
parallel and by Proposition 3.1, the immersion of (M, g) in M̄ is affinely equivalent
to the graph immersion of a certain function F :M −→ R, hence the proof. �

We wind up this section by making the following observation.

Theorem 3.7. The indefinite complex space forms M̄(c ̸= 0) do not admit any totally
umbilic, totally screen umbilic and screen conformal null hypersurfaces.
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4 Hopf null hypersurfaces

Let (M, g) be a null hypersurface of a semi-Riemannian manifold (M̄, ḡ). We have
seen, in the previous sections, that there are two shape operators onM , that is AN and
A∗

ξ , and two local second fundamental forms B and C. From the relations (2.6) and
(2.7), we notice that both AN and A∗

ξ are screen-valued, and interrelates with their
local second fundamental forms. Due to this interrelatedness, D.H. Jin [8, Definitions
5.1 and 5.8] defines Hopf and quasi Hopf null hypersurfaces of an indefinite Kaehler
manifolds as follows;

Definition 4.1 (D.H. Jin [8]). Let (M, g) be a null hypersurface of an almost complex
manifold M̄ . Then, M is called

1. Hopf if the vector field U , of (2.11), is a principal vector field with respect to
A∗

ξ , i.e. A
∗
ξU = αU , for some smooth function α;

2. quasi Hopf if the vector field U , of (2.11), is a principal vector field with respect
to AN , i.e. ANU = βU , for some smooth function β.

It follows from Definition 4.1 that a totally umbilic null hypersurface is Hopf, with
α = ρ, while a totally screen umbilic null hypersurface is quasi Hopf, with β = λ.
Unlike B, the local second fundamental form C is generally non-symmetric on S(TM).
In fact, by a direct calculation, we have C(X,Y ) − C(Y,X) = η([X,Y ]), for all
X,Y ∈ Γ(S(TM)). It follows from this relation that C is symmetric on S(TM) if
and only if S(TM) is an integrable distribution. A null hypersurface for which S(TM)
is integrable is often referred to as a screen integrable null hypersurface. Some obvious
examples of such hypersurfaces are the totally screen geodesic and screen conformal
ones. Suppose that (M, g) is a screen integrable null hypersurface. Then from (2.14)
and the nondegeneracy of S(TM), we have ANV = A∗

ξU . In view of this relation, we
have the following;

Lemma 4.1. If A∗
ξU = αU on a screen integrable null hypersurface of an indefinite

Kaehler manifold, then ANV = αU .

From (2.5), we note that A∗
ξξ = 0, i.e. ξ is an eigenvector of A∗

ξ whose eigenfunction
is 0. In contrast, ANξ ̸= 0 even on a screen integrable null hypersurface. Thus, we
may set σ(X) := C(ξ, PX), for all X ∈ Γ(TM). To that end, we have the following
result.

Proposition 4.2. Let (M, g) be a screen integrable null hypersurface of an indefinite
Kaehler space form M̄(c) of dimension > 3.

1. If M is Hopf, i.e. A∗
ξU = αU , then c = 0. Moreover, the function α satisfies

the differential equations

ξα+ ατ(ξ)− α2 = B(V, JANξ),(4.1)

and PXα+ ατ(PX) = B(V, JANPX).(4.2)

2. If M is quasi Hopf, i.e. ANU = βU , then β satisfies

β2 = −Uσ(U) + σ(U)τ(U)− σ(U)2,(4.3)
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where σ(U) = C(ξ, U), and

ξβ − βτ(ξ)− (3c/4) = C(V,ANV ) + 2C(V, PJANξ).(4.4)

Proof. Assume that M is Hopf, then by a direct calculation while considering (2.1),
(2.8) and Definition 4.1, we derive

(Xα)v(Y ) + αXv(Y )− αv(∇XY )−B(Y, JANX)

− (Y α)v(X)− αY v(X) + αv(∇YX) +B(X, JANY )

= (c/4)[u(Y )η(X)− u(X)η(Y ) + 2g(X, J̄Y )],(4.5)

for all X,Y ∈ Γ(TM). On the other hand, using (2.4) and Definition 4.1, we have

Xv(Y )− v(∇XY ) = v(X)η(Y ) + g(Y, JANX) + τ(X)v(Y ),(4.6)

for all X,Y ∈ Γ(TM). Substituting (4.6) in (4.5) gives

(Xα)v(Y ) + α2v(X)η(Y ) + αg(Y, JANX) + ατ(X)v(Y )

−B(Y, JANX)− (Y α)v(X)− α2v(Y )η(X)− αg(X, JANY )

− ατ(Y )v(X) +B(X, JANY ) = (c/4)[u(Y )η(X)

− u(X)η(Y ) + 2g(X, J̄Y )], ∀X,Y ∈ Γ(TM).(4.7)

Setting X = ξ and Y = U in (4.7) and then use the fact that JU = 0, we get 3c/4 = 0,
i.e. c = 0, which was also obtained by Jin [8, Theorem 5.4]. Then putting X = ξ and
Y = V , gives ξα + ατ(ξ) − B(V, JANξ) − α2 = 0. This proves (4.1). On the other
hand, putting X = PX and Y = PY in (4.7) leads to

g([PXα+ ατ(PX)]U + αJANPX −A∗
ξJANPX,PY )

= g([PY α+ ατ(PY )]U + αJANPY −A∗
ξJANPY, PX),(4.8)

for all X,Y ∈ Γ(TM). Note that both sides of (4.8) vanish since dimS(TM) > 1
from the fact that dim M̄ > 3. Thus, the nondegeneracy of S(TM) implies that

[PXα+ ατ(PX)]U + αPJANPX −A∗
ξJANPX = 0,(4.9)

for all X ∈ Γ(TM). Taking the g-product of (4.9) with respect to V gives (4.2),
which proves (1) of our proposition. Turning to part (2), we have, from (2.10) and
Definition 4.1, that

ḡ(R̄(X,U)U,N) = −C(JANX,U) + 2C(X,U)τ(U)− UC(X,U)

+ C(∇UX,U), ∀X ∈ Γ(TM).(4.10)

On the other hand, from (2.1), with X = ξ, Y = Z = U , we have

R̄(ξ, U)U = (3c/4)N.(4.11)

Considering (4.10) and (4.11), we have

−C(JANξ, U) + 2C(ξ, U)τ(U)− UC(ξ, U) + C(∇Uξ, U) = 0.(4.12)
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But, using the fact X = PX + η(X)ξ, the symmetry of AN and JU = 0, we have

C(JANξ, U) = η(JANξ)C(ξ, U) = C(ξ, U)2.(4.13)

Furthermore, a direct calculation yields

C(∇Uξ, U) = −β2 − C(ξ, U)τ(U),(4.14)

in which we have used (2.3), 2.14 and Definition 4.1. Replacing relations (4.13) and
(4.14) in (4.12), we get −σ(U)2 + σ(U)τ(U) − Uσ(U) − β2 = 0, which proves (4.3).
Also, by (4.11), (2.8), (2.14) and Definition 4.1, we have

3c/4 = ḡ(R̄(ξ, U)U, ξ) = ξβ − 2B(∇∗
ξU,U)−B(A∗

ξU,U) + βτ(ξ),

from which we get (4.4), and hence all the claims in proposition are proved. �

The following is direct consequence of Theorem 4.2.

Corollary 4.3. There exist no any real quasi Hopf null hypersurface of an indefinite
Kaehler space forms M̄(c), with Uσ(U) − σ(U)τ(U) + σ(U)2 > 0. Moreover, if
ANξ = 0 then β = 0. Furthermore, c < 0, c = 0 and c > 0 if and only if ANV is
spacelike, null and timelike vector field of S(TM), respectively.

Theorem 4.4. Let (M, g) be a screen conformal null hypersurface of an indefinite
Kaehler manifold M̄(c). If A∗

ξ either commutes or anti-commutes with J then, the
immersion of M as a null hypersurface is affinely equivalent to the graph immersion
of a certain function F :M −→ R.

Proof. Assume that J commutes with A∗
ξ , then, by the fact JU = 0, we have JA∗

ξU =
A∗

ξJU = 0. Applying J to this relation and (2.12), we get A∗
ξU = B(U, V )U . It follows

from this last relation that M is Hopf with α = B(U, V ). As M is screen conformal,
we see that αU = A∗

ξU = φ−1ANU , from which we see that M is also quasi Hopf
with β = αφ. As C(ξ, U) = 0 on a screen conformal null hypersurface, we note, from
(4.3) that β2 = α2φ2 = 0. But φ ̸= 0, and therefore, α = 0. Therefore, from (4.9),
we have JA∗

ξA
∗
ξPX = 0, for all X ∈ Γ(TM). Applying J to the last relation and

using (2.12), we get A∗
ξA

∗
ξPX = u(A∗

ξA
∗
ξPX)U = g(A∗

ξPX,A
∗
ξV )U . From the fact

that ANV = A∗
ξU , we see that φA∗

ξV = αU = 0, which implies that A∗
ξV = 0. Hence,

A∗
ξA

∗
ξPX = 0, for all X ∈ Γ(TM). Furthermore, we may assume that A∗

ξei = µiei,
for i ∈ {1, . . . , 2m − 4}, where {V,U, ei} is a quasi-orthonormal basis of S(TM). It
follows that µ2

i = 0. Since A∗
ξV = 0 and A∗

ξU = 0, we see that B = 0 and, hence M is
totally geodesic. The assumption of screen conformality then implies that C = 0, i.e.
M is totally screen geodesic and S(TM) parallel. We then note that R = 0 and thus,
by Proposition 3.1, the immersion of M as a null hypersurface is affinely equivalent
to the graph immersion of a certain function F : M −→ R. Similar conclusions can
be arrived at when J anti-commutes with A∗

ξ , which completes the proof. �

Remark 4.2. In view of Theorems 3.2, 3.4 and 4.2 we note that the well-known
classes of null hypersurfaces, such as the totally screen umbilic, screen conformal and
the recently introduced Hopf null hypersurfaces of an indefinite Kaehler space form

M̄(c) do exist only when c = 0, that is M̄(c) is R2(m+1)
2s . Moreover, similar conclusions

have been reached if the null hypersurface is totally umbilic (see Theorem 2.5, of [2]).
Remark 4.2 highlights the need to study and perhaps describe, where possible, the

nature of null hypersurfaces in indefinite Kaehler space forms M̄(c ̸= 0).
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[1] C. Atindogbé, Scalar curvature on lightlike hypersurfaces, Balkan Society of Ge-
ometers, Geometry Balkan Press 2009, Applied Sciences, 11 (2009), 9-18.

[2] K.L. Duggal, A. Bejancu, Lightlike submanifolds of semi-Riemannian manifolds
and applications, Mathematics and Its Applications, Kluwer Academic Publish-
ers, 1996.

[3] K.L. Duggal, B. Sahin, Differential geometry of lightlike submanifolds, Frontiers
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