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Mechanical Systems on Manifolds

Mehmet TEKKOYUN

Dedicated to the memory of my father and mother

Abstract. As-well known, modern differential geometry is a suitable
frame for studying Lagrangian and Hamiltonian formalisms of classical me-
chanics. More clearly, dynamics of Lagrangians and Hamiltonians is explicitly
explained by differential geometry tools. Therefore, this study has intended to
collect the analogues of Euler- Lagrange and Hamilton equations about me-
chanical systems on manifolds produced by Author. Also the geometrical and
physical results on related mechanical systems are presented. Mechanical sys-
tems introduced here can be used to model problems in electrical, magnetical
and gravitational fields of quantum and classical mechanics of physics.

AMS 2010 Mathematical Classification: 53C15, 70H03, 70HO5.

Brief presentation of the contents

This monograph collects analogues of Euler-Lagrange and Hamilton equa-
tions, mechanical systems, energy functions and fields obtained by means of
the differentiable structures on manifolds, tangent and cotangent bundles.

In Chapter 1, preliminaries and notations are given. Clearly, Lagrangian
and Hamiltonian formalisms, quaternion and Clifford manifolds are shortly
introduced.

In Chapter 2, we introduce Euler-Lagrange and Hamilton equations on
(R%,g,J) and (R2",g,J) being models of para-Kihler space forms. Finally,
some geometrical and physical results on the related mechanical systems have
been derived.

In Chapter 3, we present standard Clifford Kéahler analogues of Hamilton-
ian and Lagrangian mechanics. Also, the some geometric and physical results
related to the standard Clifford Kéhler dynamical systems are given.

In Chapter 4, Clifford Kéhler analogues of Lagrangian and Hamiltonian
dynamics are introduced. Also, the some geometrical and physical results over
the obtained Clifford Kahler dynamical systems are discussed.

In Chapter 5, we give the further steps of the previously done studies tak-
ing into consideration analogues of Lagrangian and Hamiltonian mechanics.
Presently, considering quaternion Kéahler manifolds, we introduce quaternion
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Kéhler analogue of Lagrangian mechanics. Then a quaternion Ké&hler ver-
sion of Hamilton equations is obtained. Finally, the some results related to
quaternion Kéhler Lagrangian and Hamiltonian dynamical systems are also
given.

In Chapter 6, we present equations related to Lagrangian and Hamiltonian
mechanical systems on para-quaternion Kéhler manifold. Finally, the some
results related to para- quaternion Kéhler mechanical systems are also given.

In Chapter 7, we make a contribution to the modern development of La-
grangian formalisms of classical mechanics in terms of differential-geometric
methods on differentiable manifolds. So, we obtain complex and paracomplex
Euler-Lagrange equations with constraints on the (para) Kahler manifold.

In Chapter 8, by means of an almost product structure, we present Euler-
Lagrange and Hamilton equations related to mechanical systems on the hor-
izontal and vertical distributions of the bundles used in obtaining geometric
quantization. In conclusion, we give some results related to mechanical sys-
tems.

In Chapter 9, equations related to bi-para-mechanical systems on the bi-
Lagrangian manifold used in obtaining geometric quantization have been pre-
sented. Finally, some geometric and physical results related to dynamical
systems are given.

This book addresses to mathematicians, engineers, physics researches and
graduate students within the field, as primary comprehensive resource.

Prof.Dr. Mehmet Tekkoyun
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CHAPTER 1

Preliminaries and Notations

Modern differential geometry is a suitable frame for studying Lagrangian
formalisms of classical mechanics. More clearly, dynamics of Lagrangians is
explicitly explained by differential geometry terms. It is well-known that the
dynamics of Lagrangian systems is characterized by a convenient vector field £
defined on the tangent bundles which are phase-spaces of velocities of a given
configuration manifold Q). If ) is an m-dimensional configuration manifold
and L : TQ) — R is a regular Lagrangian function, then there is a unique
vector field £ on T'Q) such that dynamics equations is determined by

(0.1) ic®;, = dEp,

where @, indicates the symplectic form and Ey, is energy associated to L. The
triple, either (T'Q,wr,&) or (TQ,wr, L), is called Lagrangian system on the
tangent bundle T'Q.

The so-called Euler-Lagrange vector field £ is a semispray (or second order
differential equation) on @ since its integral curves are the solutions of the
FEuler-Lagrange equations as follows:

q; qi
Also, differential geometry provides a good framework in which develop the
dynamics of Hamiltonians. One may say that Hamiltonian systems are char-
acterized by a suitable vector field X defined on the cotangent bundles which
are phase-spaces of momentum of a given configuration manifold ¢). There-
fore, if ) is an m-dimensional configuration manifold and H : 7*Q) — R is
a Hamiltonian energy function, then there is a unique vector field X on T*@Q
such that dynamics equations are given by

(0.3) ix® = dH

(0.2)

where ® indicates the symplectic form. The triple, either (7T%Q,w, Zg) or
(T*Q,w, H), is called Hamiltonian system on the cotangent bundle 7@ en-
dowed with symplectic form w.

The paths of the Hamiltonian vector field X are the solutions of the Hamil-
ton equations shown by

dgi _OH dpi  OH
dt N 3}9@'7 dt N 8qi’
5

(0.4)




6 1. PRELIMINARIES AND NOTATIONS

where ¢; and (g;, p;) are respectively coordinates of ¢ and T*Q.

It is well-known that quaternions are useful for representing rotations in
both quantum and classical mechanics [1]. Quaternions are introduced by Sir
William Rowan Hamiltonian. Hamiltonian’s expression is as follows:

(0.5) i =j?=k* =ijk=—1.

If it is compared to the calculus of vectors, quaternions have slipped into
the realm of obscurity. They do however still find use in the computation of
rotations. By means of quaternions, it is possible to state many physical laws
in classical, relativistic, and quantum mechanics. Some researches hope to
find deeper understanding of the universe using quaternion algebra.

It is well known that Clifford manifold is a quaternion manifold. So, all
properties defined on quaternion manifold of dimension 8n also is valid for
Clifford manifold.

As well-known, there are many studies about Lagrangian and Hamiltonian
mechanics, formalisms, systems and equations such that time-dependent or
not, constraint, real, complex, paracomplex and other analogues [2]-[10] and
there in. So, we see that it is possible to produce different analogues in different
spaces.

We may say that the goal of finding new dynamics equations is both a new
expansion and contribution to science to explain physics and cosmos events.

Throughout this paper, all mathematical objects and mappings are as-
sumed to be smooth, i.e. infinitely differentiable and Einstein convention of
summarizing is adopted. F(M), x(M) and A*(M) denote the set of functions
on M, the set of vector fields on M and the set of 1-forms on M, respectively.



CHAPTER 2

Mechanical Systems on Para-Kahler Space Forms

In this chapter, we introduce Euler-Lagrange and Hamilton equations on
(R?%,g,J) and (R?",g,J) being models of para-Kihler space forms given by
[11, 12]. Finally, some geometrical and physical results on the related me-
chanical systems have been derived.

1. Mechanical Systems on (R?,g,.J)

The aim of this section is to introduce Euler-Lagrange and Hamilton equa-
tions on R? which is a model of para-K#hler manifolds of a para-Kéhler space
form or constant J-sectional curvature. In conclusion, some geometrical and
physical results on the related mechanic systems are given.

1.1. Para-Kahler Space Forms. Let M be a manifold endowed with
an almost product structure J # FId; which is a (1; 1)-tensor field such that
J? = Id. We say that (M,J) (resp.(M,J,g)) is an almost product (resp.
almost Hermitian) manifold, where ¢ is a semi-Riemannian metric on M with
respect to which J is skew-symmetric, that is
(1.1) g(JX,Y)+9(X,JY) =0, VX,Y € x(M).

Then (M, J, g) is para-Kéahler if J is parallel with respect to the Levi-Civita
connection.

Let (M, J,g) be a para-Kéhler manifold and let denote the curvature (0,
4)-tensor field by

R(X,Y,Z,V)=9g(R(X,Y)Z,V), VXY, Z,V € x(M),

where the Riemannian curvature (1, 3)-tensor field associated to the Levi-
Civita connection V of g is given by R =[V,V] -V . Then

and Y R(X,Y,Z, V) =0,
g
where o denotes the sum over all cyclic permutations. We know that the
following (0,4)-tensor field is defined by

RO(X7Y7 Z, V) = i{g(X, Z)g(Y, V) —g(X, V)g(Y7 Z)
—9(X,JZ)g(Y,JV) + g(X,IV)g(Y,JZ) — 29(X,JY)g(Z,JV)}

where VXY, Z,V € x(M). For any p € M, a subspace S C T,M is called
non-degenerate if g restricted to S is non-degenerate. If {u,v} is a basis of a

7



8 2. MECHANICAL SYSTEMS ON PARA-KAHLER SPACE FORMS

plane o C T,M, then o is non-degenerate iff g(u,u)g(v,v) — [g(u,v)]? # 0. In
this case the sectional curvature of o = span {u,v} is

k(o) = R(u,v,u,v)

9(u, u)g(v,v) —[g(u,v)]
From (1.1) it follows that X and JX are orthogonal for any X € x(M). By a
J-plane we mean a plane which is invariant by J. For any p € M, a vector u
€ T,M is isotropic provided g(u,u) = 0. If u € T,M is not isotropic, then the
sectional curvature H (u) of the J-plane span {u, Ju} is called the J-sectional
curvature defined by u. When H(u) is constant, then (M, J,g) is called of
constant J-sectional curvature, or a para-Kéhler space form [13, 14].

2

THEOREM 1. [13, 15] Let (M, J,g) be a para-Kdhler manifold such that
for each p € M, there exists ¢, € R satisfying H(u) = ¢, for u € T,M such
that g(u,u)g(Ju, Ju) # 0.Then the Riemann- Christoffel tensor R satisfies
R = cRo, where c is the function defined by p — c,. And conversely.

DEFINITION 1. A para-Kdhler manifold (M, J, g) is said to be of constant

paraholomorphic sectional curvature c if it satisfies the conditions of Theorem
1.

THEOREM 2. [13, 15]. Let (M,J,g) be a para-Kdhler manifold with
dimM > 2. Then the following properties are equivalent:

1) M is a space of constant paraholomorphic sectional curvature c
2) The Riemann- Christoffel tensor curvature tensor R has the expression

C

R(X,Y,Z,V) = Z{Q(X’ 2)g(Y, V) —g(X,V)g(Y, Z) — g(X,JZ)g(Y,JV)
+9(X,JV)g(Y,JZ) — 29(X, JY)g(Z, JV),

where VX, Y, Z,V € x(M).

Let (z, y) be a real coordinate system on a neighborhood U of any point
p of R?, and {(8%)1,, ((%)p} and {(dx)p, (dy)p} natural bases over R of the
tangent space T),(R?) and the cotangent space T;(R2) of R?, respectively.

The space (R?, g, J), is the model of the para-Kihler space forms of dimen-
sion 2 and paraholomorphic sectional curvature ¢ # 0, where g is the metric
given by

4
g:f(cosh22ydac®da:—dy®dy),07506R,
c

and J is the almost product structure determined by

1 0 0
=— — — cosh 2y— :
J cosh 2y Oz ® dy — cosh 2y By ®dx
Then we have
0 0 0 1 0
(1.2) J(z) = —cosh2y—, J(=—) =

Ox Oy (@ " cosh2y 0z
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The dual endomorphism J* of the cotangent space T (R?) at any point p of
manifold R? satisfies J*?> = Id and is defined by
1

(1.3) J*(dz) = — cosh 2ydy, J*(dy) = R dea:.

1.2. Lagrangian Mechanics. In this subsection, we find Euler-Lagrange
equations for classical mechanics constructed on para-Kéhler space form (R?, g, .J).
Denote by J the almost product structure and by (x,y) the coordinates

of R?. Assume that semispray be a vector field as follows:

0 0 . .
5 aw + ay? x y’ y
By Liouville vector field on para-Kihler space form (R2,g,.J), we call the
vector field determined by V' = J¢ and calculated by

1 0 0
— Y— —cosh2y. X—
cosh2y Ox cosh £y oy’
Given T by the kinetic energy and P by the potential energy of mechanics
system on para-Kéhler space form. Then we write by L =T — P Lagrangian
function and by Ep = V(L) — L the energy function associated L.
Operator ¢ defined by

iy A°R?2 = AR iy (w)(X) = w(X, JX)

JE =

is called the interior product with J, or sometimes the insertion operator,
or contraction by J, where w € A?R2?, X € x(R?). The exterior vertical
derivation d; is defined by

dJ = [ZJad] :inidiJa

where d is the usual exterior derivation. For almost product structure J
determined by (1.2), the para-Kéhler form is the closed 2-form given by
®; = —dd L such that

1
dy = —cosh2y.8adx 0

— —————.—dy: F(R?) — AR
Y cosh 2y Oz y: FR) =

Thus we get
2L 9L
®; = cosh 2y8a@y da A dx 4+ cosh Qdeb Adz
1 0L 1 9L
daNd db N dy.
cosh 2y Dadx ahay+ cosh 2y 0bOx 4
where (a,b) is other coordinates of R2. Also, one may find
1 oL OL
L= Y — 4+ cosh2y.X— — L.

“cosh2y Ox oy
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Considering (0.1), we calculate

cosh 2y X da: + cosh 2y. ngaL dx
+ XaaaaLxdy%— YaabaLwdy+ da:+ dy—O

Cosh 2y° cosh 2y °

If the curve o : I € R — R? be integral curve of &, we get equations
0 (0L oL 1 0 (0L oL
(14) OS5 <8 >+833 " cosh 2y Ot <8x)+8y

Thus we may prove the following:

PROPOSITION 1. Let & the semispray on (R2,g,J). Then the paths of &
are solutions of Fuler-Lagrange equations given by

0 (0L oL 1 0 (0L oL

cosh 2y— —=0,——— — [ — bt

ot \ oy ox cosh2y Ot \ Ox dy

on para-Kdhler space form (R?,g,.J).

=0,

PROPOSITION 2. Let J almost product structure on para-Kdhler space form
(R2,g,J).Also let (f1, f2) be natural bases of R?. Then it follows

cosh2y.J(f2) + f1 =0 <= cosh2y.f27L + =0
mj(fl)ﬂsz:O@) m-fl,L"i'fQ,L:O,

where fi, = %%, for = ayvflL D(9L), for= (8L)

Finally one may say that the triple (R?, ®p,¢) is mechanical system on
para-Kéhler space form (R?, g, .J).

1.3. Hamiltonian Mechanics. In this subsection, we conclude Hamil-
ton equations for classical mechanics structured on para-Kéahler space form
(R%,g,J).

Let J* be an almost product structure deﬁned by (1.3) and X Liouville form
determined by J*(w) = —x cosh2ydy — COSth dx such that w = zdx + ydy

1-form on R?. If & = —d)\ is closed para-Kahler form, then it is also a para-
symplectic structure on R?.

Let (R?,g,J) be para-Kihler space form fixed with closed para-Kihler
form ®. Suppose that Hamiltonian vector field Zy associated to Hamiltonian
energy H is given by

0 0

Zn=x2 v
H=X5 T,

For the closed para-Kéhler form ® on R?, we have

B cosh? 2y — 1

dz A dy.
cosh 2y vy
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Then it follows
h?2y — 1 h?2y — 1
Cos Y Yo + Cos Y

1.5 7. O = —
(15) ‘Zn cosh 2y cosh 2y

Xdy.

Otherwise, we find the differential of Hamiltonian energy as follows:

oOH oH
1.6 dH = —dx + ——dy.
(1.6) or @ oW
From (1.5) and (1.6) with respect to (0.3), we find para-Hamiltonian vector

field on para-Kéhler space form to be
cosh2y OH 0 cosh2y OH 0
(1.7) Zy = —o2%y 19 _COR E 2
cosh®2y —1 0y 0r  cosh”2y — 1 Ox Oy

Assume that the curve

f:1cR—R?
be an integral curve of Hamiltonian vector field Zp, i.e.,
(1.8) Zu(B(t) =6, t € L.

In the local coordinates we get

and
. de 0 dy 0
1. =29  WI
(1.9) B(t) dt8x+dt8y
Now, by means of (1.8), from (1.7) and (1.9), we deduce the equations
(1.10) dv  cosh2y OH dy cosh2y OH

dt cosh? 2y — 187y7 dt _cosh22y — 1%'
Thus we may prove the following:

PROPOSITION 3. Let Zy be the vector field on (R?,g,J). Then the paths
of Zy are solutions of Hamilton equations determined by

dx cosh2y OH dy cosh2y OH

dt — cosh®?2y—10y dt  cosh?2y—1 0z
on para-Kdihler space form (R?,g,J).
In the end, we may say to be para-mechanical system (R? ®, Zy) triple
on para-Kihler space form (R?,g,.J).

CONCLUSION 1. From above, we understand that Lagrangian and Hamil-
tonian formalisms in gemeralized classical mechanics and field theory can be
intrinsically characterized on (R? g,J) being a model of para-Kdhler space
forms. So, the paths of semispray & on R? are the solutions of the Euler-
Lagrange equations given by (1.4) on the mechanical system (R%, @, &). Also,
the solutions of the Hamilton equations determined by (1.10) on the mechanical
system (R%,®, Zy) are the paths of vector field Zy on R2.
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2. Mechanical Systems on (R?",g,.J)

The goal of this section is to present Euler-Lagrange and Hamilton equa-
tions on R2" which is a model of para-Kihler manifolds of constant J-sectional
curvature or a para-Kahler space form. In conclusion, some differential geo-
metrical and physical results on the related mechanic systems have been given.

Let (x;,y;) be a real coordinate system on a neighborhood U of any point
p of R?", and {(%)p, (a%i)p} and {(dz;)p, (dy;)p} natural bases over R of the
tangent space T,,(R?>") and the cotangent space Ty (R2") of R2", respectively.

The space (R2",g,J), is the model of the para-Kihler space forms of di-
mension 2n > 2 and paraholomorphic sectional curvature ¢ = 0, where g is
the metric given by

g = dx; ® dy; + dy; ® d;,
and J is the almost product structure defined by

15) 0
J = a:m ®dl‘i—67yi®d$i.
Then we have
0 0 0 0
2.1 - - _ _
(2.1) J(axi) oz, J(ayi) 0

The dual endomorphism J* of the cotangent space T (R2") at any point p of
manifold R2" satisfies J*? = Id and is defined by

(2.2) J*(dacl) = daci, J*(dyz) = —dyi.

2.1. Lagrangian Mechanics Systems. In this subsection, we introduce
Euler-Lagrange equations on para-Kéahler manifolds of para-Kéhler space form
(R, 9, ).

Given by J almost product structure and by (x;,y;) the coordinates of
R2". Let semispray be a vector field as follows:

0 0 . .
§=Xi—+Yi—, Xi=z;=y;, Yi=y.
Oz; dyi
By Liouville vector field on para-Kihler space form (R2",g,.J), we call the
vector field determined by V' = J¢ and calculated by

0 0
JE = X’axi Ylayl-’
Denote T by the kinetic energy and P by the potential energy of mechanics
system on para-Kéhler space of para-Kahler space form. Then we write by
L =T — P Lagrangian function and by E; = V(L) — L the energy function
associated L.
Operator i; defined by

iy /\ZRZ" — /\1R721"
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is called the interior product with J, or sometimes the insertion operator, or
contraction by J. The exterior vertical derivation d; is defined by

dJ = [Zjvd] :inidiJa

where d is the usual exterior derivation. For almost product structure J
determined by (2.1), the para-Kéhler form is the closed 2-form given by
®;, = —dd L such that

0 0
dy = ~—dz; — ——dy; : F(RZ") — A'R2™.
Thus we get
0*L %L
o, = — dz; A dx; dy; N dx;
- T T R I R
9*L *L
dr; N dy; dy; A dy;
LT K mr e R
Also, one may obtain
oL oL
EL=Xip— —Yie— — I,
L Oz 0yi
Taking care of (0.1), we have
9%L
—X; ax Bxld Zay 6x dx it 6x] dx]

+XZ Oz ;0y; By dy] + }/Zay i0Y; dyJ + 8yj dyj = 0.

If o on R?" is an integral curve of &, it follows

0 (0L oL d (0L oL
(2.3) — = )—-——=0, =|=— | +=—=0,

ot Ga:j ij ot 6yj 8yj
so-called Fuler-Lagrange equations whose solutions are the paths of the semis-
pray ¢ on para-Kihler space form (R2",g,J). Finally one may say that the

triple (R2",®p,¢) is mechanical system on para-Kihler manifolds of para-
Kihler space form (R2", g, J).Therefore we say

PROPOSITION 4. Let J almost product structure on para-Kdhler space of
para-Kdhler space form (R2",g,J). Also let (f1, f2) be natural bases of R2".
Then it follows

J(fi) - =0 fl,L—fl,LZO
J(fo) + fo=0+= for+for=0

where f1,p = @x,f2 3yvf1L 2(eL ) 2L:ag(gyz)
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2.2. Hamiltonian Mechanics Systems. In this subsection, we present
Hamilton equations on para-Kihler manifolds of para-Kéhler space form (R2", g, J).

Let J* be an almost product structure defined by (2.2) and A Liouville
form determined by J*(w) = %yid:vi — %xidyi such that w = %yidm’i + %xidyi
1-form on R2". If ® = —d)\ is closed para-Kihler form, then it is also a para-
symplectic structure on R2".

Let (R2" g, J) be para-Kihler manifolds of para-Kihler space form with
closed para-Kéahler form ®. Suppose that Hamiltonian vector field Zg associ-
ated to Hamiltonian energy H is given by

Zy = Xz‘aii + K;y,
For the closed para-Kihler form ® on R2", we have
® = dz; A dy;.
Then it follows
(2.4) iz, ® = —Ydzr; + X;dy;.

Otherwise, one may calculate the differential of Hamiltonian energy as follows:
OH OH

2.5 dH = —dx; + —dy;.

( ) o T+ By; Yi

From (2.4) and (2.5) with respect to iz, ® = dH, we find para-Hamiltonian

vector field on para-Kéhler space of para-Kéahler space form to be

_0H 0 0H 09

~ Oy; Ox;  Owm; Oy,

Suppose that the curve 4 on R2" is an integral curve of Hamiltonian vector

field Zy, i.e.,

(2.7) Zu(y(t)) =4, tel.

In the local coordinates we have

V(1) = (@i(t), yi(1)),

(2.6) Zy

and

. de; 0 dy; O

2.8 t) = — .

( ) ’Y( ) dt 8.731 dt 8yz-

Now, by means of (2.7), from (2.6) and (2.8), we deduce the equations so-called
para-Hamilton equations

dr; OH % B _8H

dt N 8yi7 dt a 8@

In the end, we may say to be para-mechanical system (R2", ®, Zy) triple on
para-Kéhler manifolds of para-Kihler space form (R2", g, .J).

(2.9)
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n

CONCLUSION 2. From the above, we obtain that Lagrangian and Hamil-
tonian formalisms in generalized classical mechanics and field theory can be
intrinsically characterized on (R2",g,.J) being a model of para-Kdihler space
of para-Kihler space form. So, the paths of semispray & on R2" are the solu-
tions of the Euler-Lagrange equations given by (2.3) on the mechanical system
(R, ®p,€). Also, the solutions of the Hamilton equations determined by

(2.9) on the mechanical system (R2",®, Zy) are the paths of vector field Zy
on R2".






CHAPTER 3

Mechanical Systems on Standard Clifford Kahler
Manifolds

This chapter deals with the notation of a Clifford structure on an 8n-
dimensional Riemannian manifold (as introduced in a previous paper of Bur-
dujan given in [19]) and the construction of some Lagrangian and Hamiltonian
mechanical systems related to such structure in given [16, 17]. Also, a dis-
cussion on some geometrical and physical results about Euler-Lagrange and
Hamilton equations and fields obtained on standard Clifford K&hler manifold
is given.

0.3. Clifford Kahler Manifolds. Here, we will recall the main concepts
and structures given in [18, 19]. Let M be a real manifold of dimension m.
Suppose that there is a 6-dimensional vector bundle V' consisting of J;(i = 1, 6)
tensors of type (1,1) over M. Such a local basis {J;}(: = 1,6) is called a
canonical local basis of the bundle V' in a neighborhood U of M. Then V
is called an almost Clifford structure in M. The pair (M,V) is named an
almost Clifford manifold with V. Hence, an almost Clifford manifold M is of
dimension m = 8n. If there exists on (M, V') a global basis {J; }(i = 1,6), then
(M, V) is said to be an almost Clifford manifold and the basis {J;}(i = 1,6)
is called a global basis for V.

An almost Clifford connection on the almost Clifford manifold (M, V) is
a linear connection V on M which preserves by parallel transport the vector
bundle V. This means that if ¢ is a cross-section (local-global) of the bundle
V', then Vx® is also a cross-section (local-global, respectively) of V', X being
an arbitrary vector field of M.

If for any canonical basis {J;}(i = 1,6) of V in a coordinate neighborhood
U, the identities

g(JiX, J;Y) = g(X,Y), VX,Y € x(M), (i =T,6),

hold, the triple (M, g, V) is named an almost Clifford Hermitian manifold or
metric Clifford manifold denoting by V' an almost Clifford structure V' and by
¢ a Riemannian metric and by (g, V') an almost Clifford metric structure.

Since each J;(i = 1,6) is almost Hermitian structure with respect to g,
setting

O,(X,Y) =g(J; X,Y), (i =1,6),
for any vector fields X and Y, we see that ®; are 6 local 2-forms.

17
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If the Levi-Civita connection V = V9 on (M, g, V) preserves the vector
bundle V' by parallel transport, then (M,g,V) is called a Clifford Kéhler
manifold, and an almost Clifford structure ®; of M is called a Clifford Kahler

structure.

A Clifford Kihler manifold is Riemannian manifold (M®", g). For example,
we say that R®" is the simplest example of Clifford Kihler manifold. Suppose

that let

{Zi, Tnti, Tantis Tantis Tantir Tontis Tontis TTntif s

i = 1,n be a real coordinate system on R®". Then we define by

0 0 0

and

€
0 0 0 0 0
Ox; 7 axn+i ’ 8$2n+i ’ ax3n+i ’ 8$4n+i ’ a-TEeri ’ ax6n+i ’ 8557n+i

{dzi, dxpti, dxonti, dTsnti, dTanti, dTsn4i, ATen+i, dTn4i }

be natural bases over R of the tangent space T(R®") and the cotangent space
T*(R3®") of R®", respectively. By structures J;(i = 1,3), the following expres-

sions are obtained

(0.10)

o\ _ 0 o0\ _ ol 9\ _ o)
Jl(aﬂg) - axn+ia Jz(gxi) = Oxan+g J3(g$i) = Oz3ng
J1<agn+z) = _gmz J2(axn—51> - _ax4g+z J3<ax5+z) - _am5n+z

J1(8$28n+1) = 8:1745,L+1 JQ(B.T(%"_H) = _gl‘l J3(8zgn§1) = _81‘%,H%
J1(3J13n+i) = Dxsnii J2(8$3n+1) = Dwepti J3(3$3n+i) = T Om
J ( o) ) _ 0 ( 0 ) _ 0 J ( _ o)
Wozanti/ = ~ Oxaptq 2\024n+i’ — OTnii 3\ Ozapti’! — Oxrnts
Ji(o8 3 J(e N "8 Ja(— B 8
1(89657151‘) T O0z3n4i 2(5$5n+i) T Oz7nti 3(3$5n+i) T Oxpgg
Ji( ) = 752 Jo(g72—) = — 72 (=) = 32
Wozenti! = Oxrpts 2\ Oz6n11/ — T Ozant N\ Ozenti’! — ITanii
Ji(552—) = — 52— Jo( ) = 50— J3(552—) = — 52—
ax7n+z aan«H 8x7n+1 amSn«H 8x7n+1 8w4n+1

A canonical local basis{J}}(i = 1,3) of V* of the cotangent space T*(R®") of
manifold R®" satisfies the condition:

*2 k2
it =T =

defining
(0.11)
Jf(dl’l) = dIL’n_;,_i
Jf(d(l)n_;,_i) = —dl’i
Ji(dxonti) = drant
Ji(dx3nyi) = drsnii

J;(dl’l) = dLL’Qn_H‘
J3(dznti) = —dzanyi
J;(dx2n+i) = —da;i
J5(dx3nyi) = drenti

3= I35 I3 0y = 1,

J3(dx;) = drzniq
J3(dxngi) = —drsnt
Ji(dzanti) = —drenti

J3(dw3n1i) = —dx;

Ji(dTanti) = —dxonyi 5 (dTants) = drpyg J3(dTanti) = drong
Ji(dxsnyi) = —dozngs I3 (dTsngs) = —dorny J5(dxsnyi) = dang
Ji(dxenti) = drm4q J5 (dwenti) = —dasnyi J3(dzenti) = dront
J(dxrnti) = —dTents J3(dxrnts) = dospyi J3(dxrnti) = —dTanti
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0.4. Standard Clifford Lagrangian Mechanics. Here, we obtain Euler-
Lagrange equations for quantum and classical mechanics by means of a canon-
ical local basis {J;}(i = 1,3) of V on the standard Clifford Kahler manifold
(R3™, V).

Firstly, let J; take a local basis component on the standard Clifford Ké&hler
manifold (R®*, V). Let semispray be the vector field ¢ determined by

5 Xz 8 + Xn+z +X2n+z o) X3n+i o)

Oxy, OTonti T3n+i
(012) X4n+z 8 + X5n+z (9 X6n+z " é + X7n+i " é
OTanyi 8335n+z OT6nti OT7n+ti”
Where
. ) . ) ot ) 3t )
X' = 4, X" =, X0 = B, XM = T
dnti - Snti _ bnti _ . Tnti _
XM = @y, X0 = @, XY = @ns, XY = g

and the dot indicates the derivative with respect to time ¢. The vector field
defined by

V _ Jl(f) — X xa Xn—i—z 3 +X2n+z o) +X3n+z o)

8£E n-+1 8x5n+1
_xAnti_0 o) X5n+7, e} X6n+1 o) _ X Tnti o)
ax2n+z 813714»1 8337n+1 ax6n+i

is called Liouville vector field on the standard Clifford Kéhler manifold (R®", V).
The maps given by T, P : R® — R such that

1 .2 .2 ) .2 ) ) ) )
T = §mi(ﬂfz‘ F T i F Loy F T3+ T T 51t Tongi +T7044), P = migh

are called the kinetic energy and the potential energy of the system, respec-
tively. Here m;,g and h stand for mass of a mechanical system having m
particles, the gravity acceleration and distance to the origin of a mechani-
cal system on the standard Clifford Kdhler manifold (R8", V), respectively.
Then L : R® — R is a map that satisfies the conditions; i) L = T — P is
a Lagrangian function, i) the function given by Bl = Vi (L) — L, is energy
function.
The operator 7, induced by J; and given by

r

inw(X1, Xy Xp) = Y w(X, o J1XGs o, X,
=1

is said to be wvertical derivation, where w € A"R®", X; € x(R®"). The vertical
differentiation dj, is defined by

dy, =[ig,d =ijd—dij,
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where d is the usual exterior derivation and [ ,] is Lie bracket. The Clifford
Kahler form is the closed 2-form given by @il = —dd, L such that
0 0 0
d, = ——dr;— —drpyi+—d ;
J1 a$n+i Xy 8581 xn—i—z"’ axéln—i—i $2n+7,+
0

O0%on i

3 dr3n4i
T5n+i

—dz n+i

dxenti —
O0T6n+i

Az ani — dxsnyi +

0x3n4i 0x7n44

and
d, : F(R®™) — ATRE™.

J1
Then
Ji _
q)L
__ 9L
8Cvj 8I57L+L
__ L
ij8x7n+¢

dz; N\ dx; + 833 (% dr; \Ndrny; — dx; N\ dxon g

8:E 8zn+ ox; 8m4n+

dl'] N d$3n+l + mdl}] VAN dﬂf4n+l + mdfﬂ] VAN d$5n+l

dx] /\ dl’6n+z + ax]axG i 6x +J8£En+;
0

d.%'j ANdxrpyi — dl‘n+j A dx;

Arp4j Ndxoni; — dzp45 A

9?L ) A 9°L oL
T g 0 Anti N dTnti — —ge— R —

d{L‘3n T €T Tn—+1
+1 8 a +7

82
+ 81n+] 6$2 +i
dwﬁn—l—z

dl’n+3/\dl'4n+l—|— By n+j/\

nt5 0T 3n i

2L
8:172n-',-j azn+i

82
+ 827n+3 8mGn+
Az

%L
d$n+] A dx?n-i—z d(IJQ»,H_j A d.’IJZ + Wd$2n+] A

9%L
0%2p40T50 44

__ &L
0%2n40Tan+i
AT an i

9%L
dxontjNdT3n1i+ g dTon i\

dxon4+jNdTon4i— DZamt;0Tamti

9%L
0x2p 40T 7n4s

9%L
0%2p40T3n 4
Ax7n4i

92L
dxontjNdTentit g5,

dxonjNdTsnii— DZamt;0Tamti

d$2n+jA

%L
0%3p4j0Tan+q

___ &L
07304 0T 14
dzon 1

9L
d$3n+]‘ ANdx; + de?m—&-j ANdZpyi— d$3n+j A

9%L
+50%3n4i

9%L
n+30T2n4i

__ &L
0x3740T5n 44
dxsn 4

d$3n+y /\dI’3n+@+ OT3n d$3n+] /\d$4n+z+ax3n d$3n+j/\

-0
0x3n40T7n 44

dl‘i

9%L
dx3ni jNdTenit g

. _ oL .

oL
O0T4n+t;0Tan+i

oL

0% 4n1j0T5n+4 dx4n+j A

dTyn4 i NdTpi— dxgns i NdTon1i—

__ oL
0% 4n4;0%;

dl‘SnJrz
9%L
0%4n 40T 7n i

9%L
0%4n40T2n 1
AdTen+i

92L
dxantjNdTanvit+ g5, dxan4 i\

mi’f%ﬂ' Ndx5n4i—
9L
827471,+j aw6n+i
dxpyi

d(l?5n+j /\d(l?z + md$5n+J VAN

0°L
AT anj NdT7n 15— m

0L
n+jOTon+i

92L
8x5n+j 811;5”4»

__ &L
0x5n40Tan+i
AT an 1

dxsp4jNdTon4i— dwsn 45 NAT3n+it g7 dTsn i\

9%L
0x50 40T 7n4s

9%L
0x5040T3n 44
Ax7n4i

d$5n+] Ndx 50— d$5n+] Ndxen i+ DTomt;0Tem i dx5n+] A
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92L 9L

. . 9L . L .
- 816n+j 8xn+i dm6n+] /\ dxz + 8$6n+j BIZ d$6n+.7 /\ dxn+7’ 8I6n+j 8I4n+i dw6n+j /\
dzon 1 , , ,
0°L . . 0°L . . 0°L .
- Ow6n+;0T5n4i dgn+j N dTsnrit OT6n 4 OTonti dZ6n+j\dTan+i+ O0%6n+;0T3n+i dn-+j/\
dxs5n4i . ,
___ oL ) 4oL ) L 9L .
06+ 0T 7n4i d6n-+jN\dTn i+ 06+ 0T6n+i dn+jN\AT7n+i D745 0Tn i dx7n+j/\
dIL‘i
%L ) L %L ) o %L )
+ 8$7n+j8$i dl‘7n+] /\d.’[‘n+l 81’7n+j8$4n+i d$7n+j /\dl‘Qn-H, md$7n+J A\
d$3n+i ) ) )
52L o2L , L ,
Bx7n+j 8x2n+i d$7’n’+] /\df[:4n+@+ 81‘7 n+j 8$3n+ dl'7n+.] Ad$5n+l 8I7n+]‘ 6.’177n+i dx7n+.7 /\
ATen+i .
0“L
S E—; r— d(L‘7n+j A dw?n—&-i-
Also, we obtain
J1 oy n+i 8L 2n+i_ OL 3n+i_ OL
b gfn+l - 6L+ e +8L+ . Dronisy
_ vi4n+i 5n+i 6n+1i n+i _
X 0T 1 X 0T3n 44 +X OT7n i - X OT6n+ti

With the use of Eq. (0.1), the following expressions can be obtained:
. 2 . 2 . 2
— X B —dwj+ X g = X g Sl —dwg = X g e —dwany,

ox aac"_,_l 02 0T4n+i
+Ximda74n+] 4+ Xt mdxg,nﬂ- — Xi%d$6n+j
+X@'%da¢mﬂ - X"*Z%d +X "Hmd n+j
-X n+i%d$2nﬂ'*‘x " S (an i A X v
_ x2n+i % s+ X2 % A g g j+ X0 % dT5n+;
_X2n+i%dx6n+j+)(2n+i%dx7n+j —X3n+i% T
T e = X e A= X e Ot
+X3n+i%dmn_ﬂ,%_}(:ﬁwﬂ%d$5n.ﬁ—){3n+i%dﬂfﬁn—w
4 x3n+i % drpgj — X g O —duy + X g Ol duy
_ xdnti m dropsj— X4 W dwgny; +XIT % dTan+;
L XAt % Aty j— X % dzenj+X T % dx 74
_ xon+i % dz; + X5n+i%d%+j - X 5"”%0@%4&
_ xOnti % A+ X % dzansj+X°" T % dTsn+j
X e Qon X g = X g e d
| x6nti %iaxi ditp 4~ X O+ % dxonj—X 6T % dx3p+
O S At X O s = X g e on
| xOnti % Crngs — XTI % dzj + XWL-H‘%C&?”JF]‘



22 3. MECHANICAL SYSTEMS ON STANDARD CLIFFORD KAHLER MANIFOLDS

_ yvTn+i 9%L _ vTn+i 9%L ) Tn+i 92L
X 3$7n+18$4n+idx2”+] X 8w7n+jax5n+idx3n+J+X 0x7p40T2n 14

Tn+i 9%L _ yvTn+i 9%L . Tn+i 9%L
+X 8m7n+38x3n+ dm5n+.7 X 8127”_‘_]8.%7 + dm6n+]+X 8x7n+18x6n+i

AL oL
+6790]d$.7 + Bm dm”+] + 3:1:2 dw2n+ﬂ + 8:53 i dl‘3n+] + OTant; dx4”+]
oL
+3€175n+j dx5n+] + 6x6n+j dzren+; + meﬂ- dz7n45 = 0.
If a curve a on R® is considered to be an integral curve of £, then we
calculate the following equations:

(0.13)
o (oL oL _qg o (oL \_oL _g o ( oL\, oL _
ot \ 0x; OTpyi ) Ot \ OTpyq Ox; — 70 0t \ Oxanti 0Tan4si
o( oL Ny oL _qgof oL \_ oL _qgo( oL \_ oL _
Ot \ 0r3n+i Ox5nyi 0 Ot \ OTants Oxapti 0 Ot \ OTsn4s 0x3nyi
o ( oL \, oL _qgo( oL \_ oL _
ot \ 0ven+i Ox7p4i > Ot \ Ox7nys O0Tenti )

such that the equations obtained in Eq. (0.13) are said to be Fuler-Lagrange
equations structured on the standard Clifford Kéhler manifold (R2,V) by
means of @f and in the case, the triple (R8,<I>i1,§) is called a mechanical
system on the standard Clifford Kdhler manifold (R%, V).

Secondly, we find Euler-Lagrange equations for quantum and classical me-
chanics by means of ®¢ on the standard Clifford Kihler manifold (R®, V).

Consider J5 be another local basis component on the Clifford Kédhler man-
ifold (R®, V). Let ¢ take as in Eq. (0.12). In the case, the vector field given
by

_ _ vi n+i 2n+1 8 3n+i__ 0
V J2<€) X 8;32 i - X 814n+1 - X +X OT6n+i
X4n+z 0 X5n+z 0 o X6n+z o) X7n+z 0
Ln+i 873771-‘,—1' 8m3n+1 TEn+i’

is Liouville vector field on the standard Clifford Kéhler manifold (R®, V). The
function given by EZQ =V, (L) — L is energy function. Then the operator i,
induced by Jy and denoted by
T
i (X1, Xy, Xp) = > w(X1, oy Ja Xy ooy X0),

i=1
is vertical derivation, where w € A"R8, X; € x(R®). The vertical differentia-
tion dj, is defined by

dj, = [ig,,d] =izd—diy,.

Since taking into considering Js, the standard Clifford Ké&hler form is the
closed 2-form given by <I>J2 = —dd JQL such that

d = oo dz;
(0.14) xQ +

3 i)

dl’n+1 d$2n+z + 616 = d$3n+l
9 0

it — g Arsnsi — g3 dTonsi + gy dwss

_3x4+

and
dj, : F(R®) — A'RS.

Lan+j

d$7n+j
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The closed standard Clifford Kéhler form CDf on R? is the symplectic struc-
ture. So it holds

EJ2 — Xz Xn—l—z' : X2n+z 8L + X3n+z oL
(0 15) L n4i 8354 d.ren_H
: +X4n +i_OL X5n+z oL X6n+z BL _|_ X7n+z oL
61’n+z 8$7n+1 8z3n+i 85’75n+2

By means of Eq. (0.1), using (0.12), (0.14) and (0.15), also taking into con-
sideration the above first case we calculate the equations

(0.16)
o (oL, oL _qgo( oL \_ oL _g o ( oL \_ oL _
ot \ oz; OTon4i Ot \ Oxp4i O0Tan4i 2 Ot \ Oxon4i ox; —
o ( oL oL _ o & (_oL oL _ g o (_oL ) _ _oL
ot \ 0z3y4q OTen+i Ot \ OTan+i OTpyi 7 Ot \ Oxsp4d OTrn4+i )
o (oL \_ oL _g o (_oL oL _
ot 8-736n+z 81‘3n+z ) Ot 8x7n+z 85’75n+z ’

Hence the equations obtained in Eq. (0.16) are called Euler-Lagrange equa-
tions structured by means of <I>i2 on the standard Clifford Kéhler manifold
(R8,V) and so, the triple (R®, @iz,g) is said to be a mechanical system on
the standard Clifford Kéhler manifold (R2, V).

Thirdly, we introduce Euler-Lagrange equations for quantum and classical
mechanics by means of <I>i3 on the standard Clifford Kihler manifold (R, V).

Let J3 be a local basis on the standard Clifford Kiihler manifold (R®, V).
Let semispray & give as in Eq.(0.12). Therefore, Liouville vector field on the
standard Clifford Kihler manifold (R, V) is the vector field given by

_ i _ yn+i_ 0 _ yv2n+i_ 0 3n+i 3
V - JS (6) X 8x3n+7, Xa 8555714»72 Xa 8z6n+i Xd T
4n—+1 5n+1 6n+1 _ yinti__ ¢
+X a367 i +X OLpis +X 0xap i X 0% 4n i

The function given by F L3 = V5, (L) — L is energy function and calculated by

EJ3 — X oL X nti oL X2n+i_OL oL X3n+i@7L
P T
n-+i n-+i n-+i n-+i o

+X 0T7p+i X O%p i +X OTonti X OZTan+i L.

The function 7, induced by J3 and shown by

T

ipw(X1, Xa, o Xp) = w(X1, o, 3 X,y Xo),
i=1

is said to be vertical derivation, where w € A"R®, X; € x(R®). The vertical
differentiation dj, is denoted by

dy, = ligy,d] = isd—diy,.

Considering J3, the Kéhler form is the closed 2-form given by <I>£3 = —dd 5L
such that

= 2 0 R 0 ,
dJ B 8$3n+1 dl‘l 8x5n+z d‘,BTL-‘rZ 8x6n+1 d 2n+7, 8&21 dm3n+l

0 o) 0 0
+8CE7 i dxgni; + Dnti d$5n+z + Dants drenti — md$7n+i
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and

d, : F(R®) = A'R®.
Using Eq. (0.1), similar to the above first and second cases , we find the
following equations

(0.17)
8 (oL oL _g o (oL \_ oL _q o ( oL L _
ot \ Ox; 8x3n+z T 0t \ Ot 0Tsn4+i 0 Ot \ Oxonti 0Tenti
o (_oL _ 0,0 (oL oL _ o 2 (_oL oL  _
ot \ 0x3n 44 8711 ) Ot 8374n-!—1 84137n-!—1 ) ot 81‘571-&-1 axn-H ’

a0 ( oL \_ oL _
816714—1) + 812n+1 07 8t 8$7n+i> 8fE4n-‘,—z o

Thus the equations given in Eq. (0.17) infer Fuler-Lagrange equations struc-
tured by means of <I>‘£3 on the standard Clifford Kiihler manifold (R%, V') and
therefore the triple (R, <I>i3, €) is named a mechanical system on the standard
Clifford Kihler manifold (R®, V).

0.5. Standard Clifford Hamiltonian Mechanics. Here, we obtain
Hamilton equations and Hamiltonian mechanical system for quantum and clas-
sical mechanics structured on the standard Clifford Kéhler manifold (R8™, V*).

Firstly, let (R®",V*) be the standard Clifford Kihler manifold. Assume
that a component of the almost Clifford structure V*, a Liouville form and a
1-form on the standard Clifford Kéhler manifold (R®", V*) are given by J7,
Aj; = Ji(w) and w, respectively. Then

1
w = 5(2idz; + TnyidTnii + TonyidTonyi + T3n4idT3n 1

0.18
(0.18) +ZantidZTanti + TspidTsnri + TontidTonti + TrntidTngs),
and
1
Ajp = i(xidxn—&-i — Tp4id@; + TonidTan i + T3n4idT5n4
—TantidTonti — TontidT3nyi + TontidTinri — T7nridTenti)-
It is well-known that if @+ = —dA ;s is a closed Kéhler form on the standard

Clifford Kihler manifold (R®®, V*), then ® Jr Is also a symplectic structure on
Clifford Kihler manifold (R®*, V*).

Consider that Hamilton vector field X associated with Hamiltonian energy
H given by

X = Xz 8 +Xn+z +X2n+i8 o) +X3n+z o)

xn+i x2n+i 8x3n+z
4n+i + xonti__0 o) + x6nti__0 + XTnti_0 o)
+X ax4 +1 8I5 +1 8336 +1 ax7n+z
Then
©x = drnyi A dxi + dTanyi A dTonti + dTspti A dT3n1i + dTngi A dZeni,
and
(0 19) Z‘X(pJ{ = Xn—Hd{L'Z' — Xid$n+z‘ + X4n+idx2n+i — X2n+idaﬁ4n+i

_|_X5"+id1'3n+i — X3n+id$5n+i + X7n+id$6n+i - X6n+idx7n+i-
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Moreover, the differential of Hamiltonian energy function is obtained as fol-
lows:

OH oH oH OH
dH = %dxi + den-m‘ + mdu’@nﬂ-i + Wnﬁdx?m'i‘i

(0.20) H H' bit

o)
+ dTanti + mde)nJri + Dzenis

According to Eq.(0.3), if Eq. (0.19) and Eq. (0.20) are equaled, the Hamil-
tonian vector field is found as follows:

o) o
8I4n+i d$6n+i + md$7n+i.

_ oM 9 ,0H o _9H 9 _9H 9
— Ozpyy Oz 0x; OTntq O0Tan i OT2n i 0T5p 15 OT3n 4
(0.21) oH M oH ' 9 oH 5 PH 5

0T2n 44 OTani + 0%3n+i OTsnti  OT7nti OTenti 0T6nti OT7ni”

Suppose that a curve

f:R— RY
be an integral curve of the Hamiltonian vector field X, i.e.,
(0.22) X(0(t) =0, tcR.

In the local coordinates, it holds

O(t) = (@4, Trtiy Tontis T3n+i> Tdn-tiy Lontis Lon+i> TTnti)s

and
/ _dx; 0 | dTngi 0 dTonti 0O dxsnyi 0
(0 23) e(t) — dt Ox; + dt  OTp+q dt  Oran+i dt  0x3n+i
: + dranyi O dxsnyi 0 drenti 0 dxrnyi O
dt  OTan+i dt  O0Tsp+q dt  OTen+i dt  Ox7p4i”
Considering Eq. (0.22), if Eq. (0.21) and Eq. (0.23) are equaled, it follows
de; _  O0H dxnyi _ OH dxonyi . OH  dr3nqi . OH
(0 24) dt B.Tn_H' v dt — Oz’ dt _ 8$4n+i ) dt - 8$5n+i ’
: dTanyi _ _OH  dosnt4i . OH  dTenyi . OH  dTrn4i . OH
dt - 8x2n+i ? dt - a$3n+i ’ dt - 81’7n+i ? dt - 8x6n+¢ .

Thus, the equations obtained in Eq. (0.24) are seen to be Hamilton equations
with respect to component Ji of almost Clifford structure V* on Clifford
Kihler manifold (R®,V*), and then the triple (R5", @z, X) is seen to be a
Hamiltonian mechanical system on Clifford Kihler manifold (R3", V*).

Secondly, suppose that an element of the almost Clifford structure V*
and a Liouville form on the standard Clifford Kihler manifold (R3", V*) are
denoted by J3 and Ay = J3(w), respectively.

we have
1
Mg = 5 (@idronti = TntidTangi — Tantidi + T3n4idTen+i
+Tan+idTnti — Tsn+idT7nti — TontidTan+i + Trn+idTsn4q)-
Considering

Qs = drnyi A dTanti + drongi A dzg + dospg; A dozngi + dTenyi A dTsn,

then we calculate
ix@Jg = Xn+id$4n+i — X4n+id$n+z‘ + X2n+idxi — Xidl'gn_;,_i

(0.25) +X5n+idl'7n+i _ X7”+id$5n+i + X6n+idx3n+i _ X3n+id$’6n+i-
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According to Eq.(0.3), if we equal Eq. (0.20) and Eq. (0.25), it follows

___0H 9 oH 0 OH 8 _9H 9
— Oox n+1 8x1 ox n+1q 8xn i axL Ox n+1 ox n-+1 Ox n+1
(0.26) or o e AT el B it .

T OTpyi OTants 0x7p1i OT5n i 0%3n+i OTent+i  OTsnti OT7pti

Considering Eq. (0.22), if Eq. (0.23) and Eq. (0.26) are equaled, we find
equations

dz; _  OH dTntyi . OH  drapnyi _ OH dTan+i . OH
dt Bzgnﬂ' ' dt - a$4n+i ) dt — Oz’ dt - BzgnH )
(0.27) dTan+i . OH  dxsnti . OH  drenti . OH  dTreti . OH
dt - OTp+i’ dt T Oxrn4i? dt T Ox3pyi’? dt - 0544

In the end, the equations obtained in Eq. (0.27) are known to be Hamil-
ton equations with respect to component J5 of the standard almost Clifford
structure V* on the standard Clifford Kihler manifold (R®",V*), and then
the triple (R®", ® J5 X ) is a Hamiltonian mechanical system on the standard
Clifford Kihler manifold (R®", V*).

Thirdly, by J; and Aj; = J;(w), we denote a component of almost Clifford
structure V*and a Liouville form on the standard Clifford Kéhler manifold
(R8", V*), respectively.

Then it holds

1
A = §($id$3n+i — Tn4idTonti — TontidTenti — Lan4ida;

+Zan+idTnti + TontidTnti + TontidTanti — Trn+idTan+i)-
As known if ® ;- = —dA; is a closed Kéhler form on the standard Clifford
Kihler manifold (R®*, V*), then ® Jz 1s also a symplectic structure on Clifford
Kihler manifold (R®", V*).
Taking into
Qy: = drgni Ndr; + dzngi A dTsngi + dTongi A dTenti + dTni A dTani,

we find

iX@J; = X3n+id£vi — Xidl'gn_;,_i + Xn+idl'5n+i - X5n+id£l}n+i
ey . ) Anti

+X n+zd$6n+i — X6n+zd$2n+i + X7n+ld£ﬂ4n+i - X n+7’d3§7n+i.

According to Eq.(0.3), if Eq. (0.20) and Eq. (0.28) are equaled, we obtain
a Hamiltonian vector field given by

___eH 0 oH 0 oH 0 oH @
- 8$3n [ 81’1 81’5n+i axn+i ax()n [ 8I2n+i axl am3n+i
(0.29) oH 5 oH " H oH 9 oH b

(0.28)

T O%7n+i OTanti  OTpii OTsnti  OFanti OTénti | OFdnti OT7nti
Taking into Eq. (0.22), if we equal Eq. (0.23) and Eq. (0.29), it yields
(0.30)

dr; _  OH drpyi . OH  dronyi . OH  dr3n4i _ OH
dt 0T3p4i’ dt — OTsp4q’ dt T Oxen+4i’ dt Oz’
dzan4i .  OH  dxsp+i . OH  dTen+i . OH  dTrpys . OH
dt - 8$7n+1' ’ dt - 8:En+i ? dt - 8332n+i ? dt - 8$4n+i :

Finally, the equations obtained in Eq. (0.30) are obtained to be Hamil-
ton equations with respect to component J; of the almost Clifford structure
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V* on the standard Clifford Kéhler manifold (R®", V*), and then the triple
(R8n7¢J§,X) is a Hamiltonian mechanical system on the standard Clifford

Kihler manifold (R8", V*).

CONCLUSION 3. From above, Lagrangian mechanics has intrinsically been
described taking into account a canonical local basis {Ji, J2, J3} of V' on the
standard Clifford Kihler manifold (R3, V). The paths of semispray & on the
standard Clifford Kahler manifold are the solutions Euler—Lagrange equations
raised in (0.13), (0.16) and (0.17), and also obtained by a canonical local ba-
sis {J1, Ja2, J3} of vector bundle V' on the standard Clifford Kdhler manifold
(R8, V). One can be proved that these equations are very important to ex-
plain the rotational spatial mechanics problems. Formalism of Hamiltonian
mechanics has intrinsically been described with taking into account the basis
{J{,J5,J5} of almost Clifford structure V* on the standard Clifford Kdihler
manifold (R®", V*). Hamiltonian models arise to be a very important tool since
they present a simple method to describe the model for mechanical systems. In
solving problems in classical mechanics, the rotational mechanical system will
then be easily usable model. Since physical phenomena, as well-known, do not
take place all over the space, a new model for dynamic systems on subspaces is
needed. Therefore, equations ((0.24), (0.27) and (0.30) are only considered to
be a first step to realize how Clifford geometry has been used in solving prob-
lems in different physical area. For further research, the Hamiltonian vector
fields derived here are suggested to deal with problems in electrical, magnetical
and gravitational fields of quantum and classical mechanics of physics.






CHAPTER 4

Mechanical Systems on Clifford Kahler Manifolds

In this chapter, Clifford Kéahler analogues of Lagrangian and Hamilton-
ian dynamics in given [20, 21| are introduced. Also, the some geometrical
and physical results over the obtained Clifford Kéhler dynamical systems are
discussed.

0.6. Clifford Kéahler Manifolds. Now, here we extend and rewrite the
main concepts and structures given in [18, 19] . Let M be a real smooth
manifold of dimension m. Assume that there is a 6-dimensional vector bundle
V consisting of J;(i = 1,6) tensors of type (1,1) over M. Such a local basis
{J;}( = 1,6) is named a canonical local basis of the bundle V in a neigh-
borhood U of M. Then V is said to be an almost Clifford structure in M.
The pair (M, V) is called an almost Clifford manifold with V. Thus, an almost
Clifford manifold M is of dimension m = 8n. If there exists on (M, V') a global
basis {J;}(i = 1,6), then (M, V) is said to be an almost Clifford manifold; the
basis {J;}(i = 1,6) is called a global basis for V.

An almost Clifford connection on the almost Clifford manifold (M, V) is
a linear connection V on M which preserves by parallel transport the vector
bundle V. This means that if ® is a cross-section (local-global) of the bundle
V', then Vx® is also a cross-section (local-global, respectively) of V', X being
an arbitrary vector field of M.

If for any canonical basis {.J;}(i = 1,6) of V in a coordinate neighborhood
U, the identities

g(JiX, ;Y) = g(X,Y), VX,Y € x(M), (i =1,6)

hold, the triple (M, g, V) is said to be an almost Clifford Hermitian manifold
or metric Clifford manifold denoting by V' an almost Clifford structure V and
by ¢ a Riemannian metric and by (g, V') an almost Clifford metric structure.

Since each J;(i = 1,6) is almost Hermitian structure with respect to g,
setting

P(X,Y) = g(JiX,Y), (i =1,6),
for any vector fields X and Y, we see that ®; are 6 local 2-forms.
If the Levi-Civita connection V = VY9 on (M, g, V') preserves the vector

bundle V' by parallel transport, then (M, g, V) is named a Clifford K&hler
manifold, and an almost Clifford structure ®; of M is said to be a Clifford

29
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Kahler structure. Assume that let

{4, Tntis Tantis T3n-+is Tdn-+is Ton-is Ton-ri> Tini) , 0 = 1,0
be a real coordinate system on (M, V). Then we determine by

{68 0 0 0 0 0 8}

a0 ) 9 9 ’ 9 )
Oz; axn«H’ 8fEZnJri ax3n+i 8$4n+i 8=T5n+i a$6n+i 8557n+i

and

{dz;, dznti, dTonis dT3ptis dTanti, AT5niy ATeptis dT7nyi}
the natural bases over R of the tangent space T'(M) and the cotangent space
T*(M) of M, respectively. The definition of structures {.J;} and {J}}(i = 1, 3)
is given in Chapter 3. The expressions of {J;} (i = 4,6) are as follows:
(0.31)

0\ _ o) 0\ _ o 0\ _ o)

J4(3xz‘) T O0Tany J5(<9Tﬁi) T O0xsnyg JG(awi) T O0%enig

J 0 ___ o0 J ( 0 ) ___ 0 J ( 0 ) ___ 0
4(amn5—2) 8-'EQTH—'L' 5 amn+i 813n+i 6 amn-‘—i am7n+i
J4(8z .):88 ) JB(aa .):_36 ) Jﬁ(aa .):_88 X
2n4i mngz L2n41 %7n+z -732718-&-1 15371-4—@
Ji(gm) = —vmm I5(gms) = oo Jo(g) = 3 ;
37L§Z x%nJrz xgnJrz x5+1 73387L+z $%n+1
J4(5964n+i) — 7 O J5(8734n+i) = Dxenti J6(3I4n+i) = Owsnii

Ji(g52—) = 532 (7o) = — 52 Jo(g52—) = — 52
4 3x5n+z 616714»7; 5 85175n+7l 8337, 6 8335n+7, 3x4n+z

Ji(gae) = ~ 5 (gress) = ~5as To(gaens) = — 5
4 a$6n+z aan«H‘ 5 aan«H, ax4n+z 6 a-%Gn«H 8812
J4(am7n+i) - 8$3n+i J5(8x7n+1) - axQn-‘—i J6(81'7n+1) - axn+i :

A canonical local basis{.J}}(i = 4,6) of V* of the cotangent space T*(M) of
manifold M satisfies the following condition:

(0.32)
JZ(dﬂSl) == d$4n+i Jg(dﬂjz) == d$5n+i Jg(ddfz) == d$6n+i
Ji(dzyyi) = —dxon i J3(dzyyi) = —da3ng Ji(dxnts) = —drmmts
Ji(dronyi) = drny Ji(dronyi) = —darny;  J§(dronyi) = —dazn
JI(dLUSn—H) = —dT7n4i Jg(dl‘Sn—i—z) = dzpyi Jék(dx?m-l—z) = dwoni
Ji(dranyi) = —dx; J3(dTanyi) = dTenq JE(dxants) = dospyi
Ji(drsnyi) = dTenq J3(drspyi) = —dx; Jg(dxspti) = —dTantq
Ji(dxenti) = —daspss  J5(dTenti) = —dTanyi Ji(drepyi) = —dx;
Ji(dxrpgs) = dosnyi JE(dxrngs) = doopyi Ji(dxrnys) = dopg.
and

JiP=U = =L

0.7. Clifford Lagrangian Mechanics. In this section, we introduce
Euler-Lagrange equations for quantum and classical mechanics by means of a
canonical local basis {.J;}, i = 1,6 of V on Clifford Kahler manifold (M, V).
The Euler-Lagrange equations using basis {Ji, J2, J3} of V on (R¥, V) are
introduced in Chapter 3. We see that they are the same as the equations
obtained by operators Ji, Ja, J3 of V' on Clifford Ké&hler manifold (M, V).
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Therefore, here, only we derive Euler-Lagrange equations using operators
Ju, J5, Jg of V on Clifford Kéahler manifold (M, V).

Fourth, let Jy take a local basis component on Clifford Ké&hler manifold
(M, V).Let semispray be the vector field £ given by (0.12) in Chapter 3. The
vector field determined by

_ Xn+l X2n+1 o) _ X3nti_90 o)

— i
VJ4 - J4(§) 8X 8x4n+1 P x2n+z 9 axn+’L P 83[77n-‘,-1
An+1 Sn+i 6n-+1 1
—X dz; +X 0T6n+i - X O0Z5n+i +X

is named Liouwville vector field on Clifford Kéhler manifold (M, V'). The maps
explained by T, P : M — R such that
T= %mi(wf+¢i+i+¢§n+i+¢§n+i"‘ﬂbinﬂ‘+¢§n+i+¢gn+i+¢$n+i)a P =mgh
are said to be the kinetic energy and the potential energy of the system, re-
spectively. Here m;, g and h stand for mass of a mechanical system having m
particles, the gravity acceleration and the distance to the origin of a mechani-
cal system on Clifford Kéhler manifold (M, V'), respectively. Then L : M — R
is a map that satisfies the conditions; i) L =T — P is a Lagrangian function,
i) the function given by EJt = V(L) — L, is energy function.
The operator 7, induced by J4 and defined by
T
iw(X1, Xay o, Xp) = Y w(X, o, JaXiy o, X0),
i=1

is called wvertical derivation, where w € AN"M, X; € x(M). The vertical differ-
entiation dj, is determined by

dy, = ligy,d] =izd—dij,.

We saw that the Clifford Kéhler form is the closed 2-form given by <I>Z4 =
—dd nL such that

0 0 0 0
d, = dv; — ——dxpyi + 7——dxon1i — 7——dT3n4i
0T an+i O0%on+i Tnti T7nti

A ATt

dx6n+i +
0%3n+i

+ T dwsni —

—=—dT4n1i
O0x; O0T6n+i

Ox5n4i
determined by operator

d, : F(M)— A'M.

Ja
Then

Js %L
(b 4 d.’ljj VAN dCL’Z + de] VAN d.’l?n+l - md.f] AN dx2n+i

"~ Ox; 8:(:4 +i
+Wd% A s + g2 g dty A diani -
%L %L ) _ 9%L .
ax.axgmﬂ 930w 407 N ATTn+i = g g, Antj A A
an+Jax2n+ 8xn+]~azn+i

0’L - L4 0L A A
+ oo oo Wntg N dTsnyi + 550 dn g A dan

2
7&% Tren s dz; N\ dxs, g

dz; N drenti —

dl‘nJrJ AN d.ﬁnJﬂ — dl’n+] VAN dﬂl’QnJrl



32

4. MECHANICAL SYSTEMS ON CLIFFORD KAHLER MANIFOLDS
- % dnij N dTsnyi + %d%ﬂ A dxenai
_%dlﬁ-ﬁ A d$7n+z‘ - %dmnﬂ A dx;
2 2
%Hzgaizzmdmnﬂ N dTpyi — (%%%dmnﬂ A dxon+i
Dzant;0Tinte dxontj N dx3nyi + mdazgnﬂ A dT i
_(%ﬁ%dxgn-w A dxspyi + amnfjﬁd:czn_kj A dZen4i
_%d$2n+j Ndxnyi — %d:pgnﬂ A dz;
[mwzjz{%?’”’idmnﬂ ANdrpg; — %daﬂgnﬂ A dxon4i
mdx3n+j N dzn i+ mdazgnﬂ A dTan4i
_%dfwn—&—j A dTsn+i + %d{ﬂgn_kj A dzen+ti
_%dxgm-j N drrngq — de’w A dx;
mdl‘4n+j N dxpy; — W(ﬂxmﬂ.j A dzonti
denﬂ' N dxgnti + #jaxidmnﬂ A dZgn i
_%dunﬂ' A dxsn4i + %dunﬂ A dxenai
_%dxmﬂ' N dx7p4i — %d%nﬂ- A dx;
M%}}Wrdl'5n+j N dTpyi — %d%nﬂ A dxon+i
By Ornrs Asn+j N dT3pi + mdx5n+j A AT gnii
_%d«x&ﬁ-j N dTsn+i + md.x&kw’ A dZen4i
_%d$5n+j N dTnti — %dwﬁnrkj A dx;
%dwﬁn-ﬂ A dmn—i—i - mdxﬁn_w' A dafgn_i_i
#dm6n+j N dxgnyi+ %d%nﬂ A dZgp i
6n+jO0TTnti 6n+50T;
—%dwﬁnﬂ N dxspiq + %d%nﬂ A dxeni
_Wd«rﬁn-ﬁ-j N dT7n+i — %d%ﬁb_w A dx;
%dl'%“ﬁj N dxp i — %dl‘wwj A dZToni
"‘(%szjzaimmd%mﬂ N dzn i + axf:;?a;idxmﬂ A dTap v
_mdx7n+j N dTsni + md$7n+j A dZn4i
—%d.rwkw AN i
Also, we have energy function as follows:
EJ4 Xz 8x4n+z Xn—l—z e + x2nti 8:?,{11 X?)‘n—l-z%
—X4”+Z% + X5n+1% X6n+z% + X7n+z%f+i .

By means of Eq. (0.1), we calculate the following expressions
X L sy, 4 X Sdan i — X5 0L _§1dpy, .,

a$j8£4n+ ox; 812n+ al‘jaxn_H'

i 0L i i L i .
+ X O dsn i + X' g0 0] dan i — X' g Gt b] drso g
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+Xi%55dx6n+i — X"%(ﬁdwmﬂ - X"H% Ziidl‘l
X e e O g — X 6 i
_|_Xn—|—z %(ﬁ:_ﬁ dl‘3n+z + Xnti %6215 dx4n+z
_XnJFZ% Zi_id$5n+z Xn+1%52j;zjdx6n+z
2 2
+X2n+lm 2n+i d$n+z XQTH—ZW 2n+i dl‘2n+z
X e s ot Qe+ X2 g Py 6 v
I A PR il T
_ x2nti__ 0°L 2n+j _ X3n+i__ 0L 3ntig

OTopt;0T7pn4i  2n+i dm?n—i—z’

Bnti 0L g3nt]
+X 8I3"+J8$2n+z 3n+i
Snbi_ 9L
+X 034 j0T7n i SN+
_xdnHi___9°L

0x3n+4;0Ten4i SN+

__ &L g3ntj
0314 jOT T4 SN+0 d‘T?n—i—z
dn+i __ OL  gAn+tj
+X al’4n+]8$2n+z 4An-+1

dmn—&-z

_ X3n+z

dmn—&-z
_|_X4n+z

O 45007t Anti

X3n+z

X4n+i 9L

X4n+z

Ox3p+;0Tant;  dn+i
%L $3ntj
0x3p+4j0Tn4q SNt dx?n—i—z

2
3n+]d$3n+1 + X3n+187L53n+j

8I3n+]’ Ox; ~3n+i dx4n+l

2
3n+]dx5n+z +X3n+187[,63n+]

3n-+i AT6n+i
9L g4n+j

0% an+;0Tan i 4n+i d;

_ 9L g4ntj

0T ant;0Tnti dn+ti dxon i

Ox3n4j0T5n4i

3
% i d$3n+z + XAnti 87L54n+3

OTynt;0T; 4n+ti dTan+i

NG A SN i
_ ypdnti % ot gy — XM % ot da
X ot m gZiz dxp i — Xonti % gZiz dzan
+X5n+l m SZIZ dm3n+z XSH—H #_ﬁaxzdg;big d‘r4"+1
IBSUAGET O s,
X o g — X e O

X e G Oon
2
W gZig dxsnyi +
— X 6n+i W SZE dxspyi +
O e O 142 —
+ X Tnti W ;ZI g
+X7n+z W Tt
m ;Zif dxspyi +
_XTnti__ 0L §Tntj
OT7y4jOT3n 4 TN+

dIn—H
+ X6n+z

dxn—H

_ X?n—i—z

oL
+Bzz + dZ2n+j + 8903 + dx3nyj + 8:}04
+mdx6n+j + mdmmﬂ- =0.

X6n+z

X7n+z

57n+3d$3n+z 4 X7n+z %L

dm?n-{—z + B;U dxj + 8$

_ 0L 6ntj
0%6n+jO0Tn i ON+L dI2n+z

4 X 6nti __92L_ s6n+tj

6n+1 dx dn+1

8$6n+j23$i
iy
XMHW il da;

W ;Zigdx%ﬂ

™m+j
O7nt;0%;  Tn+i AT an i

4 Xt 2L Tty

35E7n+] Bm5n+, Tn+i denJri

dmn_;'_]
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By a curve @ on M being an integral curve of &, we found equations as
follows:

(0.33)
o0 (oL 4 oL  __ 0 9 oL 9oL __ 0 0 oL oL __
ot \ dx; 8‘T4n+i — ot al‘n_H' 8$2n+i = Ot \ Ozan4i 8;271_“ -
0 oL oL __ 0 0 oL 0oL __ 0 0 oL oL 0
ot 6$377,—0—71 am'?n—‘—i ’ Ot a-'541'1,-‘—7‘ asz ot am5n+l a-'5671,4—7, ?
o( oL \_ oL _ o o (_oL oL _
Ot \ Oxen+i Oxsnts ) Ot \ Ox7rngs 0T3nyi

such that the equations expressed in Eq. (0.33) are named Fuler-Lagrange
equations structured on Clifford Kéhler manifold (A, V') by means of <I>}i4 and
in the case, the triple (M, <I>‘£4, €) is said to be a mechanical system on Clifford
Kéhler manifold (M, V).

Fifth, we obtain Euler-Lagrange equations for quantum and classical me-
chanics by means of @f on Clifford Kéhler manifold (M, V).

Let J5 be another local basis component on the Clifford Kéhler manifold
(M,V). Let € take as in Eq. (0.12) given in Chapter 3. In the case, the
vector field defined by

_ i _ yn+i__ 0 _ y2n+i_ 0 3n+i_ 0
VJ5 - J5 (5) X 8$5n+z X T3 +4 X Bx7n+, X 8xn+1
dn+i__ 0 5n+i 0 _ ybnt+i_ 0 ™m+i_ 0O
+X 6w6n+i X ox; X az4n+i + X ann-‘ri

is Liouwville vector field on Clifford Kahler manifold (M,V’). The function
given by Eg5 = Vy. (L) — L is energy function. Then the operator i, induced
by J5 and defined by

,

ipw(X1, Xa,y o Xp) = (X1, J5 X, o, X))

i=1
is wvertical derivation, where w € A"M, X; € x(M). The vertical differentiation
d 5 is determined by

dj, = ligg,d] =ijd—dig,.
Taking into consideration Js, the Clifford Kéahler form is the closed 2-form
given by <I>°£5 = —ddj, L such that
0 dx;

d
(034) T 88I5n+ g
+85‘76n+i dx4n+i o Tﬁwdm‘r’nﬂ OTanti dm6”+l + Bmz +i dx7n+u

6307 - dronti + ax dx3n+z

by means of the operator
dy, : F(M) — A" M.
The closed Clifford Kéhler form <I>£5 on M is the symplectic structure. So it
yields
] <9L 2n+i_ 0L 3 oL
L — Xz _ Xn—H T - X n-+1 T + X n+14 T

+
4n—+1 8L 5n+1 8L 6n-+i_ 0L Tn+i_ 0L
+X Dzonti - X X Oz anti +X Ozan+i

(0.35)
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Using Eq. (0.1), using (0.12), (0.34) and (0.35), also similar to the above
fourth case we obtain the equations

(0.36)
0 (oL 4 oL  __ 0 9 oL oL  __ 0 0 oL oL __ 0
ot \ Ox; 8$5n+i - ot 8$n+i 81‘3714,_1' - Y ot 8:172n+i a$7n+i -
kel oL oL  __ 0 0 oL oL  __ 0 Kl oL oL __ 0
ot a$3n+i 8mn+¢ ot 822471_‘_1 6w6n+i Y ot BCESn-‘—i ox; ~—
o( oL \_ oL _ o (_ oL oL _
Ot \ Oxen+i O%ant+i ) Ot \ Ox7ngs OTonti

Thus the equations found in Eq. (0.36) are named Euler-Lagrange equations
structured by means of @1‘{5 on Clifford Kahler manifold (M, V) and so, the
triple (M, <I>f’,§) is called a mechanical system on Clifford Kahler manifold
(M, V).

Sixth, we present Kuler-Lagrange equations for quantum and classical me-
chanics by means of @i"’ on Clifford Kahler manifold (M, V).

Let Jg be a local basis on Clifford Kédhler manifold (M, V). Let semispray
¢ give as in Eq.(0.12). So, Liouwville vector field on Clifford Kéhler manifold
(M,V) is the vector field defined by

VJG — J6(€) — Xz 9 _ Xn—l—i o) . X2n+i o] : +X3n+i 0 .

i 63I6n+i St 88557n+i onti 9w3n+z7 i 8 0Tan4i
n—+1 _ n—+1 _ n+v_0 n—+e
+X 0x5n 14 X RETE X Ox; +X 0%y i "

The function given by E/¢ = V(L) — L is energy function and found by

EJ6 _ Xz oL XnJri oL X2n+i oL + X3n+i oL
70 =

a$6n+i ax'?n-&-i T3n+i 83[7271-‘,-1'
+X4n+i oL X onti oL Xﬁn—&—i(’?fL + X Tn+i oL L
T5n+i OTan4i Ox; OZnti :

The function 7, induced by Js and given by

r

i (X1, Xo,y o, Xp) = 3 w(Xa, oy 6 Xiy ooy X0),
=1

is said to be wvertical derivation, where w € N"M, X; € x(M). The vertical
differentiation dj, is determined by

dj, = ligs, d] = ij,d — di g,
We say the Kéahler form is the closed 2-form given by @if" = —dd 6L such that

d, : F(M)— A'M,

J6
0 0
d,, = dr; — ——dxp4i — ——dxo,4i + dx3n4i
O0r6n i 0T 74 031 0%+
+ ATanyi — 57— dT5n i — 5—dTenti + 7——dT7n 4.
Ton+i am4n+i Ox; 8xn+i
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Considering Eq. (0.1), similar to the above cases, we calculate the following
equations

(0.37)
o (oL, oL _go (oL \_ oL _go( oL \_ oL _|
ot \ dz; 8$6n+i — Y 0t 8a:n+i a$7n+i — Y 0t 81‘2n+1; 81‘3n+i -
0 oL oL =0 0 oL OL =0 Kl oL 0oL _
ot 81’3714—1' 81’2714—1’ ot a$4n+z ax5n+z ot ax5n+2 am4n+1 -

kel oL _
ot \ Oxen+i ox; —

Thus the equations obtained in Eq. (0.37) infer Euler-Lagrange equations
structured by means of @]{6 on Clifford Kahler manifold (M, V) and so, the

triple (M, <I>‘£6,§) is called a mechanical system on Clifford Kéhler manifold
(M, V).

0.8. Clifford Hamilton Mechanics. Here, we obtain Hamilton equa-
tions and Hamiltonian mechanical system for quantum and classical mechanics
by means of a canonical local basis {J}(i = 1,6) of V* on Clifford Kéhler
manifold (M, V™). The Hamilton equations using basis {J},J3,J5} of V on
(R®", V*) are introduced in Chapter 3. We see that they are the same as the
equations obtained by operators Ji, J5, J3 of V* on Clifford Kahler manifold
(M, V*).

Therefore, here, only we derive Hamilton equations using operators Jj, J5, Jg
of V* on Clifford Kéhler manifold (M, V™).

Fourth, let (M, V*) be a Clifford Kéhler manifold. Suppose that a com-
ponent of the almost Clifford structure V*and a Liouville form and a 1-form
on Clifford Kéhler manifold (M, V™) are given by Jj and Ajx, respectively.

Let w be as given by Eq. (0.18) in Chapter 3.

1
5(
+TantidTanti + TsntidTsnti + Tent+idTenti + TrntidTinyi),

w = 2idx; + TptidTpyi + TontidTonyi + T3p1idT3n 44

we have

*
Aip o= Ji(w) = §($id$4n+i — TnyidTonti + TonyidTnyi — T3nidT7n g

—Zan+idTi + T idTenti — Ten+idTonti + Trn+idT3n4i)-

It is known that if - is a closed Kéhler form on Clifford Kéhler manifold
(M,V*), then ® J; 1s also a symplectic structure on Clifford Kéhler manifold
(M, V™).
Take into consideration that Hamilton vector field X associated with
Hamilton energy H is given by
X = Xz 8 _|_Xn+z X2n+z 0 +X3n+z 0

anrz 8x2n+1 6x3n+z

+X4n+z + X5n+z + XGn—H + X7n+7,

1‘4 +1i IS —+1 IG “+1i 8x7n+z
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Then
@y = —dAj; = doptiNdTopti+dx3n+i N7+ +dTan4+i AT+ dT6n4i NAT5n i
and
(0.38) ‘ ' . ‘
iX(I)JZ _ (I)JZ (X) = Xn+zd$2n+z‘ _ X2n+1dxn+i 4 X3n+zdx7n+i _ X7n+zdx3n+i
—|—X4n+ld$i — X1d$4n+i + Xﬁn—HdZEngri — X5n+zd$6n+i'
Furthermore, the differential of Hamilton energy is obtained as follows:

dH = $Bdz; + 2% dp, i + 58 daon i + 5250 dws,
(039) oH T Tn+i T2n4i T3n4i
+3~’C4n+i
According to Eq.(0.3), if equaled Eq. (0.38) and Eq. (0.39), the Hamilton
vector field is calculated as follows:
OH 0 OH 9  _OH ol OH ol

o) o
dTan+i + mdfﬁmﬂ + md$6n+i + md$7n+z’~

a0) X Ty e i T i
0x; OTan+i 0Ten+i OT5n+i 0T5n4i OT6n+i 0T3n4i OT7n+i
Assume that a curve
a:R—M
be an integral curve of the Hamilton vector field X, i.e.,
(0.41) X(a(t)) =@, t € R.

In the local coordinates, it is found that

a(t) = (Ti, Tnti, T2ntiy T3ntis Tantis Tontis Tontis LTn-+i)

and
: (t) _dz; O + dTnti 9 dTonti O dT3nti O
(0 42) — dt Ox; dt  Oxp4i dt  O0Tap4q dt  0r3n4i
: dranti 0O drsniti 9 drenti O dr7nyi 9
dt  OTan+i dt  0Tsp4 dt  O0Ten+i dt  Ox7p4i”
Thinking out Eq. (0.41), if equaled Eq. (0.40) and Eq. (0.42), it follows
(0.43)
de; _  OH dzn+i _  OH dxonyi .  OH  dr3n4i . OH
dt — 81’4n+1‘ ) dt - 8x2n+¢ ’ dt - anﬂﬂ ) dt - 81’7n+1‘ )
dTanti _ OH dTsnti . OH drenti .  OH dT7n4i . OH
dt — Oz’ dt - 8x6n+i ) dt - 8$5n+¢ ) dt - BzgnH :

Hence, the equations obtained in Eq. (0.43) are shown to be Hamilton equa-
tions with respect to component J; of almost Clifford structure V* on Clif-
ford Kdhler manifold (M, V*), and then the triple (M,, ®x, X) is said to be
a Hamiltonian mechanical system on Clifford Kahler manifold (M, V™).

Fifth, let (M, V™) be a Clifford Kéhler manifold. Assume that an element
of the almost Clifford structure V*and a Liouville form on Clifford K&hler
manifold (M, V™) are determined by J35 and Aj: (= J5(w)), respectively.

we have

1
Ay = 5(@idsnti = Tnridtants = TanridTTngi + T3ntidlni

+Tan4idTenti — Tn+idTi — TenidTanti + TrntidTonii).
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Take into consideration

@ = —dAjr = drpyiNdT3n4i+dTon+iNdT T4 +dT5n 1 AAT+dT6p4i AT an 4,
then we find
(0.44)

iX(I)Jg = (I)Jg (X) = Xn+id$3n+i — X3n+id$n+i + X2n+id$7n+i — X7n+id$2n+i
+X5n+7’dl‘z' — dex5n+z’ + X6n+zda?4n+i — X4n+2d1}6n+i.

According to Eq.(0.3), if we equal Eq. (0.39) and Eq. (0.44), it follows
— oH 0 oH o) oH 0 oH 0

(0.45) 8H3$5n+(§ Ox; 83}316371-% OTnti 8I?I$7n+i8312n+i 81(?I:Bn+z‘ %ﬂ:sn+i

O0T6n+i OTan+i O0x; OT5n+i OTan+i OT6n4i 0T2n+i OT7nti

Taking Eq. (0.41), if Egs. (0.42) and (0.45) are equaled, we obtain equations

(0.46)
de; _ __O0H dznyi _ _OH dzonyi _ _OH dzsnyi _ _ _OH
dt 0T5n44 dt T O0x3n4i dt T O0xrni? dt - OTp+i’
dzanyi _ __OH drsnyi _ OH dZTenys _ _OH dz7nyi _ __OH
dt - 0Ten4i’ dt Oz’ dt T O0Tan+i’ dt - 0Ton4i

In the end, the equations found in Eq. (0.46) are seen to be Hamilton equa-
tions with respect to component J: of the almost Clifford structure V* on
Clifford Kéhler manifold (M, V™), and then the triple (M, ® -, X) is named a
Hamiltonian mechanical system on Clifford Kéhler manifold (M, V™).

Sixth, let (M, V™) be a Clifford Kéhler manifold. By Jg, Aj: , we denote a
component of almost Clifford structure V*, a Liouville form on Clifford K&hler
manifold (M, V*), respectively.

Then it yields

1
Ajp = Jo(w) = §(xid5176n+i — TntidT7n4i — Ton4idT3n4i + T3n4idTonti
+Zan+idT5n+i — Ton+idTanti — Ten+idTi + TrnidTnyi)-

It is known that if ® gy 1s a closed Kéhler form on Clifford Kéhler manifold
(M, V™), then @+ is also a symplectic structure on Clifford Kéhler manifold
(M, V*).

Considering

@ jx = —dAjp = dTntiNdTTn1i+dTon1iNdT3n1i+dT50 1 AATan4i+dTen4iNdTi,

we calculate
(0.47)
iX(I)Jg = (I)Jg (X) = X”+idx7n+i — X7n+idl’n+i + X2n+id:133n+z‘ - X3n+idx2n+i
+X5n+idl’4n+i — X4n+idl’5n+i + X6n+id{£i — Xidl’6n+i.

According to Eq.(0.3), if Egs. (0.39) and (0.47) are equaled, Hamilton vector
field is found as follows:

) S oH 0 oH o oH 8
(0.48) agxﬁnﬂa‘%i 85‘387131% 69”75&' 85%% %’C%H 8%%“8&0%“

T 0%5n4i OTanti 0%4nti OT5nti 0z; OTgnt+i  OTpyi OT7pti
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Considering Eq. (0.41), we equal Eq. (0.42) and Eq. (0.48), it holds

dz; _ _ OH dznyi _  OH dzon+i _  OH drgnii _  OH
dt 0T6n4i’ dt = Ox7rp4q’ dt T O0x3n4i dt - 0Top 44’

(0'49> dxanyi _  OH drsnyi . OH drenyi _ OH dTrni: . OH
dt - 0T5n 44 dt T O%an4i’ dt Oz’ dt - 0Ty i

Finally, the equations calculated in Eq. (0.49) are called to be Hamilton
equations with respect to component Jg§ of the almost Clifford structure V*
on Clifford Ké&hler manifold (M, V*), and then the triple (M, (I)Jéf,X) is said

to be a Hamiltonian mechanical system on Clifford Kéhler manifold (M, V™).

CONCLUSION 4. From above, Lagrangian formalisms has intrinsically been
described taking into account a canonical local basis {J;}, i = 1,6 of V on
Clifford Kdhler manifold (M, V). The paths of semispray & on Clifford Kdhler
manifold are the solutions Euler—Lagrange equations raised in (0.33), (0.36)
and (0.87), and also obtained by a canonical local basis {J;}, i = 1,6 of vec-
tor bundle V' on Clifford Kdhler manifold (M,V). One may be shown that
these equations are very important to explain the rotational spatial mechanics
problems. Hamilton Formalisms has intrinsically been described with taking
into account the basis {J;}, i = 1,6 of almost Clifford structure V* on Clif-
ford Kdhler manifold (M,V*). Hamilton models arise to be a very important
tool since they present a simple method to describe the model for dynamical
systems. In solving problems in classical mechanics, the rotational mechanical
system will then be easily usable model. Since a new model for dynamic sys-
tems on subspaces and spaces is needed, equations (0.43), (0.46) and (0.49)
are only considered to be a first step to realize how Clifford geometry has been

used in understanding, modeling and solving problems in different physical
fields.






CHAPTER 5

Mechanical Systems on Quaternion Kahler
Manifolds

This chapter presents the further steps of the previously done studies tak-
ing into consideration analogues of Lagrangian and Hamiltonian mechanics
in given [22, 23]. Presently, considering quaternion Kéhler manifolds, we
introduce quaternion Kéahler analogue of Lagrangian mechanics. And then a
quaternion Kahler version of Hamilton equations is obtained. Finally, the some
results related to quaternion Kéahler Lagrangian and Hamiltonian dynamical
systems are also given.

0.9. Quaternion Kahler Manifolds. Here, we recall some definitions
given in [18]. Let M be an n-dimensional manifold. It has a 3-dimensional
vector bundle V' consisting of tensors of type (1,1). The manifold M satisfies
the condition given by:

(a) In any coordinate neighborhood U of M, there exists a local basis
{F,G,H} of V such that

F?=G?= H?>=FGH = —1I.

I denotes the identity tensor of type (1,1) in M. Such a local basis {F, G, H}
is called a canonical local basis of the bundle V in U. Then V is said to be
an almost quaternion structure in M, and M with V is an almost quaternion
manifold denoted by (M, V). An almost quaternion manifold M is of dimen-
sion n = 4m (m > 1). In any almost quaternion manifold (M, V), there is a
Riemannian metric tensor field g such that

9(¢X,Y) +g(X,9Y) =0

for any cross-section ¢ on M and any vector fields X,Y of M. An almost
quaternion structure V fixed with a Riemannian metric g is called an almost
quaternion metric structure. A manifold M endowed with an almost quater-
nion metric structure {g, V'} is said to be an almost quaternion metric manifold
denoted by (M, g, V). Let {F, G, H} be a canonical local basis of V' an almost
quaternion manifold (M, g, V). Since each of F,G and H is almost Hermitian
with respect to g, setting

O(X,Y) = g(FX.Y), W(X,Y)=g(GX.Y), O(X,Y) = g(HX,Y)
for any vector fields X and Y, we see that ®, ¥ and © are local 2-forms.

41
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Assume that the Riemannian connection V of (M, g, V') satisfies the con-
ditions as follows:

(b) If ¢ is a cross-section (local or global) of the bundle V', then Vx¢ is
also a cross-section of V', where X is an arbitrary vector field in M. From
(0.5) we see that the condition (b) is equivalent to the following condition:

(b)) If F,G, H is a canonical local basis of V', then

VxF = r(X)G —q(X)H, VxG=—r(X)F+p(X)H,
VxH = qX)F —p(X)G

for any vector field X, where p,q and r are certain local 1-forms. If an almost
quaternion metric manifold M satisfies the condition (b) or ('), then M is
said to be a quaternion Kdhler manifold and an almost quaternion structure
of M is called a quaternion Kdhler structure.

Let {@, Tnti, Tonti, Tanti}, © = 1,n be a real coordinate system on a

neighborhood U of M. Note that { 0 9 9 9 } and {dz;, dxn1i, dTonti, T34}

0x;? O%pyi’ O%anyi’ 0T3n4s

are natural bases over R of the tangent space T'(M) and the cotangent space
T*(M) of M, respectively. The standard almost quaternion structure on R"
is given in [19]. Inspiring of [19], we can determine the existence of a lo-
cal coordinate system connected with integrability of the almost quaternion
structure as follows.

N 5 Ooi
F( 633277,—0—7, ) - 81'3714—1' ’ ( 8x3n+1 ) - 8$2n+z ’
G 61‘2 ) = 8mi+z ) (8mn+l ) = ax3n+z ?
(0.50) Glrl) = =D G _y— B
axZn-ﬁ—i - Ox;’ 8$3n+1 - axn-ﬂ ?
H( 0 ) — 0 ( 0 ) — 0
Jx; 67/‘3n+z ’ 8xn+z 6732n+z
H(gl) = g H(p ) =" 2
812714»2 8xn+z ’ ax3n+z 8I1

A canonical local basis{F*,G*, H*} of V* of the cotangent space T*(M) of
manifold M satisfies the condition as follows:

*

F*2:G 2: H*2:F*G*H*:—I,

defining by
F*(dl‘l) = dl‘n+i, F*(dl‘n+l) = —dl’i,
F*(dzonyi) = dwznri, F*(dzsnyi) = —dran,
(051> G*(dl’z) = d$2n+i, G*(d$n+l) = —dl’gn+i,

G*(dxonyi) = —dx;, G*(dT3ngi) = dTny,
H*(dx;) = dx3nti, H*(drnyi) = droni,
H*(dCCQnJri) = —dl‘nJri, H*(d$3n+1) = —dxi.

So, we say to be a quaternion manifold M denoted by (M, V™).
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0.10. Quaternion Lagrangian Mechanics. In this subsection, we ob-
tain Euler-Lagrange equations for quantum and classical mechanics by means
of a canonical local basis {F,G,H} of V on quaternion Ké&hler manifold
(M, V).

Firstly, let F' take a local basis component on the quaternion Kéhler mani-
fold (M, V), and {z;, Tn+ti, Tanti, T3n+i } be its coordinate functions. Let semis-
pray be the vector field £ determined by

0 .0 9 0
XnJrz X2n+z X3n+1
Oz * OTnyi * O0T2n+i * Ox3nti’

(0.52) E=X"

where Xi = :éi, XnJri = .i‘nJri, X2n+i = i'2n+i7 X3n+i = j:3n+iand the dot
indicates the derivative with respect to time t. The vector field defined by

0 _ Xn-l—li + X2n+ii _ X37L+’L'L

Ve = F(§) = X*
F (€) 0%y i Ox; 0x3n4i O0x2n4i

is called Liouwville vector field on the quaternion Kéhler manifold (M, V). The
maps given by T,P : M — R such that T = %mi(:ﬁf + a':i_H- + x%nﬂ- +
¢§n+i), P = m;gh are called the kinetic energy and the potential energy of the
system, respectively. Here m;, g and h stand for mass of a mechanical system
having m particles, the gravity acceleration and distance to the origin of a
mechanical system on the quaternion Ké&hler manifold (M, V'), respectively.
Then L : M — R is a map that satisfies the conditions; i) L = T — P is
a Lagrangian function, ii) the function given by Ef = Vp(L) — L, is energy
function.
The operator ip induced by F' and given by

.
ipw(X1, Xo, ooy Xp) = Y w(X1, 000, FXG, 0, X3),
=1

is said to be wertical derivation, where w € N"M, X; € x(M). The vertical
differentiation dp is defined by

dp = [ip,d] =ipd — dip,

where d is the usual exterior derivation. For F' | the closed Kéahler form is the
closed 2-form given by <I>f = —dd, L such that

? dz; — idmwi + 0 dron+i — 68d3n+i t F(M) — AM.

d, =2
0T p Oz; 03044 Tonti

F



44 5. MECHANICAL SYSTEMS ON QUATERNION KAHLER MANIFOLDS

Then

F_ 9L .
q) md% VAN dl'z + (933 a.’t d.rj VAN d.’L'TH_Z
9%L

ox; 3$3n+i
9%L
6xn+g 8z7z+z
___ oL
81‘n+]' BI%R+

2L 9L . .
8$2n+]8$n+ dx2n+] AN dwz + 812n+j833¢ dxgnﬂ A\ dwn—i—z

&L . 4L 9’L
8$2n+18$3n+id 2n4j /\ don+i + 0x25,4+j0T2n 44

9%L ) ) 9%L ) )
7Bw3n+ﬁ$n+ dr3n4; N\ dx; + Dm0 drsp4j N drn4i
0°L

oL oL
0T3n4;0T3n+i d23n+j A dTonri + 0%3n4;0T2n+i

dCU] A dIL‘Qn_H‘ + mdﬁij A d$3n+z
2
d$n+] AN dCCZ + den'iU AN d$n+l

8L

dIL‘n+J A d$2n+@ + Wd

Damy Ln+j Ad$3n+z

dxon+j N drsni

dr3nij N drsni-

Also, we have
Xl

+i 0L on+i_ 0L 3n+i_ 0L
8I+ - X" ZTM+X” 16$3n+i_Xn 13$2n+i_L
With the use of Eq. (0.1) the following expressions can be obtained:

) 7 7 7 92L .
-X Oz ;0T n1i 81 nti dwﬂ +X 833 d:c dw”‘w X ox; &Bg +i dm?”""J + X 0x;0Ton 44 d.’L‘3n+]

_ yn+i 9%L n+i n-4i 9%L )
X ~—C = dx X5 "‘X 87) t g 61‘ d$n+j X 7(&62”_’_]

Bl’na»jaw'rw»i 61‘n+361’3n+z
n-+i 0°L . v2n+i 9%L . 2n+i 8%2L
+X 3xn+7 OT2n+i d$3n+] X 8:1:2n+] 0T 4i Tj+ X OTon+; Bazédx”+J
_ v2n+i 9%L . 2n-+1 d%L . v3nti 0“L .
X a$2n+38$3n+ denJ,_] +X a$2n+]8[£2n+ld 3?’L+j X 81’3n+Ja$n+l x]

3n+i__ 9%L . _ Y3n+i %L . 3n+i %L )
+X 8$3n+ ox; dxnﬂ X 8$3n+J8$3n+ d$2n+] + X 8$3n+]8z2n+1d 3n+j

8L

If a curve denoted by a on M being an 1ntegral curve of 5 , then we calculate
the following equations:

a aL) L _ o O ( oL ) _ AL _
ot \ dz; OTp+i 0 Ot \ Oxp4s ox; ~— )

(0'53) 9 oL + oL _ . 9 OL _ oL _
ot \ Oranti 0x3n+i ot \ 0x3n 44 O0T2n 14 )

such that the equations obtained in Eq. (0.53) are said to be Fuler-Lagrange
equations structured on quaternion Kihler manifold (M, V) by means of &
and thus the triple (M, ®¥ £) is said to be a mechanical system on quaternion
Kéhler manifold (M, V).

Secondly, we find Euler-Lagrange equations for quantum and classical me-
chanics by means of ®¢ on quaternion Kihler manifold (M, V).

Consider G be another local basis component on the quaternion Kéahler
manifold (M, V). Let £ take as in Eq. (0.52). In the case, the vector field
given by

0 XnJrz 0 X2n+z 0 X3n+z 0

Ve=GE&) =X"— —
(é-) 8x?n—i—z 8iU?m—i—z axz 8xn+i

is Liouville vector field on the quaternion Kéhler manifold (M, V'). The func-
tion given by Ef = Ve(L) — L is energy function. Then the operator ig
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induced by G and denoted by

iqw(X1, Xa, ., X)) =Y w(Xy, ., GX,y oy X)
i=1
is vertical derivation, where w € N"M, X; € x(M). The vertical differentiation
dg is defined by

dg = lig,d] = igd — dig.
Since taking into considering G, the closed Kahler form is the closed 2-form
given by ®¢ = —dd L such that

G, 0
dy, = ———dr; — ———dap i —

———d3pgi : F(M) — A'M.
O0Ton 4 031 i+ F(M)

dron4i +
i OTnyi

ox;
Then we have

G _ 9L
o7 = 70xj6x2n+
dr; Adzsy.; — —L  dy A dx; +78L dx A dTpti
J 3nti T ox +J85E2n+ n+] ? ox n+j 8x3n+ n+.7 n+1t
92 L
0%2n+450T3n 44
%L

da?j A\ dIZ -+ de] A dl’n+l + (92? ax d,I] A d$2n+l
__ 9L
833 anJr

73%271-«-531271“ d$2n+j A dx;

d$2n+] Ndrp; + mdﬂ?%—s—] N droni; — d$2n+j A dx3pn

L
dx3n+] /\ dﬂjz + 01‘3 8278:03 +i

dx3ntj N dT3n4i-

6$2n+ 8-73n+i

0°L . .
;e — drspyj N drpyi+ md$3n+g N dxop 1

_8x3n+]8xn+i
Also, we obtain
EL — X’L oL o XnJrz oL X2n+z oL X3n+z oL — L.
ax?n—‘rz axSn—H 8551 8xn-i—i

By means of Eq. (0.1), we calculate

_Ximd:c] + ledxnﬂ + Xlax S5 dTon4j — X’degnﬂ
—Xnﬂmdxj + X"Hmmﬂ + X"“%dmnﬂ-
—X”“md Sntj — X2"+Zmdxj + XQWW Ty
+XEH 8x28+L81‘ dromy; — X 2t 8:62”(3 -gxnﬂ drsny; — X st axgnfjgmnﬂ' Tj

+X3n+i 9°L X3n+z 0“L X3n+z %L

Wd ntj 8$3 0% drontj — Dwomg; Onys A3+
+Wjd$j + (% dxn+] + 6x2 da:gn+] + 8:53 d$3n+J =0.

By « being an integral curve of £, then we obtain the equations:

9 + —0. 2 (0oL ) _ oL _ g

(0 54) ot Bmz (9x2n+z T 0t \ Oxp4i 0T3n+i )
’ 9 oL OL _ . O OL + oL _
ot \ Ozap4q 8&21 0t \ Ox3n4i OTpyi

Thus the equations obtained in Eq. (0.54) are called Euler-Lagrange equations
structured by means of ®¢ on quaternion Kihler manifold (M, V) and thus

the triple (M, @g,f) can be called to be a mechanical system on quaternion
Kahler manifold (M, V).
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Thirdly, we introduce Euler-Lagrange equations for quantum and classical
mechanics by means of ®¥ on quaternion Kéhler manifold (M, V).

Let H be a local basis on the quaternion Kéhler manifold (M, V').Consider
€. It is the semispray given in Eq.(0.52). Therefore, Liouville vector field on
the quaternion Kéahler manifold (M, V') is the vector field given by
+ XnJri 9 _ X2n+i 9 _ X3n+ii

Vg =H() =X — .
" © 0T34 O0T2n O0Tp Ox;

The function given by EH = Vi (L) — L is energy function. The function iy
induced by H and shown by

r

igw(X1, X, Xp) = Y w(Xy, . HXG, ., X,),
=1

is said to be wertical derivation, where w € N"M, X; € x(M). The vertical
differentiation dg is denoted by

dg = [ig,d) = igd — dig.

Then the closed Kéahler form is the closed 2-form given by @g = —dd, L such
that

d, = 3$§n+z dx; + (%fmdﬂsnﬂ- — mdx2n+i — £id3n+i c F(M) — AtM
Then we get
<I>H mda:] Adx; — Wdl‘] ANdTpii + 92,00 61 e dxj N\ dron4s
—I—ax ax dr; N dxr3ni; — mcﬂxnﬂ ANdx; — md%ﬁj A dxpy;
+8:cnf]78Lz+dxn+J A dxonti + mdxn+] AN dTsnti — a@ﬂfjﬁdazgnﬂ A dz;
_8@"%2(%%&62”4_] A dxpti + 89%’5;?8%de2”+] A dxon+i + de%ﬁ_] A dTsn4i
—mdl‘gnJr] ANdx; — mdl‘gnJm A dTpy; + mdl’gnJr] A dToni
%dwgn_ﬂ A dTsn4i.
Also, we find
Bl = X' g0k g XnHig Ol xonbi gL ySndifL [

Using Eq. (0.1), we calculate the following expression:

i 9L v i _
02023014 X Ox; 8:1:2 +i dl‘"JF] +X Ox; 896 nti d$2"+.7 + X 8x 636 dm3n+]
_ yn+ti 82L _ yn+i 9%L n+i 02L
X aln+ja$3n+id X 8zn+1612n+2d TL—‘r] X 81’n+ 8zn+ld 2”""]
Xn—l—z' 0°L X2n+z 9%L dr: — X2n+z 9%L

0T 4 j 3$3n+z‘ J 024 jOT2n 4 dx”+j

2n+1 0%L . 2n+1 9L . v3n+i 0%L .
+X id‘r2”+] +X 8z2n+J ox; dm?’"‘H X 0T3n4;0T344 dx]

_ y3n+i 0°L . 3n+i 9%L . 3n+i 0°L )
X Bxgngaxgmﬂd n+j + X 8x3n+]axn+ d$2”+ﬂ + X 0345015 d$3"+]

da?] + dl’ d$n+] + 81172 i denJ'_] + 81‘3 " dCan_H — O
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By means of an integral curve a of £, then we find the equations:

o (oL L _ o o (_oL oL _
a 87551) + 8x3n+i - O’ ot (8xn+i> + 8x2n+i - 0’
o ( oL \ _ oL _ o 8 (_ 0oL oL _
ot 8$2n+i

(0.55)

8acn+i Y ot a$3n+i ox;

Thus the equations given in Eq. (0.55) infer Fuler-Lagrange equations struc-
tured by means of ® on quaternion Kihler manifold (M, V) and thus the

triple (M, ®1 ¢) is said to be a mechanical system on quaternion Kihler man-
ifold (M, V).

0.11. Quaternion Hamiltonian Mechanics. Here, we introduce quater-
nion Kéahler analogue of Hamilton equations given in (0.4).

Firstly, let (M,V*) be a quaternion K&hler manifold. Assume that a
component of almost quaternion structure V*, a Liouville form and a 1-form
on (M,V*) are shown by F* A\p+ = F*(w) and w, respectively.

One puts

1
(0.56) w= §($id$i + TpyidTppi + TontidTonti + T3n4idT3n1q)-
Then we have
1
Aps = §($id9€n+z‘ — Tpgid®; + T2 dT3n1i — T3n4idTon4i)-

It is concluded that if ®p+ = —dAp~ is a closed Kahler form on the quaternion
Kéhler manifold (M, V*), then ®p« is also a symplectic structure on (M, V*).

Consider that Hamiltonian vector fields Xp«, Xg+, Xg+ associated with
Hamiltonian energy H are given by

Xps = Xz 6 +Xn+z X2n+i o) '_|_X3n+i o)

o Ba:g_,_l i 8:v26n+, i 8335”_,_1-7
() n-r1 n-r n-r1
(057) XG* Y + Y 8xn+i + Y 8$2n+i + Y 8x3n+1
() n4i__ 0 Z2n+i__ 0 3n+i
XH* Z a + Z xn+i + X 12 +1 + Z 85’33714»7,

Then we have
Qpv = drpii N dx; + dxspsi A deop
and
(0.58)  ixp.®pr = X" Mda; — X'dzyg; + X" dron s — X2 dwgn .
Moreover, the differential of Hamiltonian energy is obtained as follows:
OH OH oH oH

0.59 dH = —dz; + ——dzpyi + —d + —d ;-
( ) 0z, T + Dy Tp+i + Y Ton+i + DT amri T3n—+i
According to Eq. (0.3), by Eq. (0.58) and Eq. (0.59) the Hamiltonian vector
field is found as follows:

oH 0 OoH 0 OoH 0 OH 0
(0.60) Xp= =—

0Tpyi 0r; 0% OTpyi  O%3ngi OTopyi  OTonti OL3n

Suppose that a curve
a:ICR—-M
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be an integral curve of the Hamiltonian vector fields X g+, X+, X+, i.e.,
(0.61) Xp+(a(t)) =a, Xg+(a(t)) =a, Xg+(a(t)) =a,t € 1.
In the local coordinates, it is obtained that

a(t) = (@i, Tnti, Tontir T3nti)

and
. dx; ATy dxon 1 dx3n 4
(062) O[(t): x; O L+ 0 Lon+ 0 4 L3n+ 0 .
dt Ox; dt  0Tni; dt  O0xopti dt  0x3n4q
By Eq. (0.60), Eq. (0.61), Eq. (0.62) we have
(0.63)
dxi _ OH dmn—&-i . OH d$2n+i _ OH dx3n+i . OH
dt N al'n_H" dt - &in’ dt - 81'3”_;,_1" dt - 6a:gn+i'

Thus, the equations obtained in Eq. (0.63) are seen to be Hamilton equations
with respect to component F™* of the almost quaternion structure V* on the
quaternion Kéhler manifold (M, V*), and then the triple (M, ® g+, X) is seen
to be a Hamiltonian mechanical system on (M, V™).
Secondly, suppose that an element of almost quaternion structure V*and
a Liouville form on (M, V*) are denoted by G*and Ag+ = G*(w) respectively.
By (0.51) and (0.56) we calculate

1
Agr = §(xid332n+i — TntidT3n4i — TontidTi + Tan+idTpii).

It is known if &g+ = —dAg+ is a closed Kéahler form on the quaternion Kahler
manifold (M, V*), then ®¢~ is also a symplectic structure on (M, V*).
Considering

b+ = dronys Adx; + depys A despg,
then we calculate
(0.64)  ix..®g =Y dy; — Yidwop + V" dgny; — Y da .
Taking account of Eq.(0.3), if we equal Eq. (0.59) and Eq. (0.64), it follows

B OoH 0 OH 0 L+ OH 0 B OH 0
O%onyi Ox;  Oxgnyi OTpyi 0T OTonyi  OTngi OTanti

(0.65) Xq- =

Considering Eq. (0.61), if Eq. (0.62) and Eq. (0.65) are equaled, we find
equations

(0.66)
% _ oH d$n+i _ OH dl‘2n+i o OE dﬂ’JgnJﬂ' _ oH
dt N a$2n+i’ dt a a$3n+i7 dt N 81)/ dt a (%:TLH'

In the end, the equations obtained in Eq. (0.66) are known to be Hamilton
equations with respect to component G* of the almost quaternion structure V*
on the quaternion Kéhler manifold (M, V*), and then the triple (M, ®g+, X)
is a Hamiltonian mechanical system on (M,V*).
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Thirdly, by H*and A+ = H*(w) we denote a component of almost quater-
nion structure V* and a Liouville form on (M, V*), respectively.
By means of (0.51) and (0.56) we find

1
A = 5(.I‘Z'dl'3n+i + Ty idTon i — TonridTn i — T3pids;).

It is well-known that if ® 7+ = —dA g~ is a closed Kéhler form on the quaternion
Kéhler manifold (M, V*), then ® g+ is also a symplectic structure on (M, V*).
Taking into

Oy = dwspyi N dx; + dxoni N drpg,
we find
(0.67)  ix,. ®pe = Z°"Vdy; — Z'dwsns + 27" drng — 27 dwop .

By Eq.(0.3), Eq. (0.59) and Eq.(0.67), one obtains a Hamiltonian vector
field given by

(0.68) Xy = — OH o0  OH 0 OH 0 OH 0
' B Oanyi 0xi  Oonyi OTnri  Opii OTonri | Ox; OTanri
Taking into Eq. (0.61), if we equal Eq. (0.62) and Eq. (0.68), it yields
(0.69)
@ _ OH d.%'n+l' _ OH dx2n+i . OH d$3n+i . 6£
dt N 61’3n+i’ dt N al'2n+i7 dt N 8:En+i’ dt N 8{[}@

Finally, the equations obtained in Eq. (0.69) are obtained to be Hamilton
equations with respect to component H* of the almost quaternion structure V*
on the quaternion Kéhler manifold (M, V*), and then the triple (M, ® g+, X)
is a Hamiltonian mechanical system on (M,V*).

CONCLUSION 5. From above, Lagrangian mechanics has intrinsically been
described taking into account a canonical local basis {F,G,H} of V on the
quaternion Kdahler manifold (M, V). The paths of semispray & on the quater-
nion Kahler manifold are the solutions Fuler—Lagrange equations raised in Eq.
(0.53), Eq. (0.5}) and Eq. (0.55), and obtained by a canonical local basis
{F,G,H} of the vector bundle V on the quaternion Kdhler manifold (M, V).
Formalism of Hamiltonian mechanics has intrinsically been described with tak-
ing into account the basis {F*,G*, H*} of the almost quaternion structure V*
on the quaternion Kdahler manifold (M,V*). The paths of Hamiltonian vec-
tor field on the quaternion Kdhler manifold are the solutions Hamilton equa-
tions raised in (0.63), (0.66) and (0.69), and obtained by a canonical local
basis {F*,G*, H*} of the vector bundle V* on the quaternion Kdihler manifold
(M, V™).






CHAPTER 6

Mechanical Systems on Para-Quaternion Kahler
Manifolds

In this chapter, we present equations related to Lagrangian and Hamilton-
ian mechanical systems on para-quaternion Kéhler manifold given in [24].

The algebra B of split quaternions is a four-dimensional real vector space
with basis {1,4, s,t} given by

?=-1, s =1=+t> is=t=—si.

This carries a natural indefinite inner product given by < p, ¢ >= Repq, where
p = z+iy+su+tv hasp = r—iy—su—tv. We have ||pH2 =22+9y?—s2—t%,s0a
metric of signature (2,2). This norm is multiplicative, ||pg||* = [|p||* ||¢||%, but
the presence of elements of length zero means that B contains zero divisors.
The fundamental structures 1,4, s,t are not the only split quaternions with
square £1. Using the multiplication rules for B, one can calculate

p? = —1 if and only if p = iy + su + tv,y? — s> — 2 = 1,

2 = 41 if and only if p = iy + su+ tv,y?> — s> —t> = —1 or p = +1.

The right B-module B"=R*" inherits the inner product < &,1 >= ReET" of
signature (2n,2n). The automorphism group of (B", (-,-)) is Sp(n,B) = {A €
M, (B) : ATA = 1} which is a Lie group isomorphic to Sp(2n, R), the symme-
tries of a symplectic vector space (R?",w). Especially, Sp(1, B)=SL(2, R) is
the pseudo-sphere of B = R?2. The Lie algebra of Sp(n, B) is sp(n, B) = {A €
M,(B): A +A = 0}, so sp(1, B) = ImB. The group Sp(n, B) x Sp(1, B)
acts on B" via

(0.70) (A,p).§ = ALp.
For detail see [25] .

0.12. Para-Quaternion Kihler Manifolds. Here, we recall hypersym-
plectic manifolds and para-quaternion Kéhler manifolds given in [25]. Let
m = 4n, identify R* with B" and consider G = Sp(n, B) C GL(4n, R). An
Sp(n, B)-structure Spp(M) on M defines a metric g of signature (2n,2n) by

51
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g(u(v),u(w)) =< v,w >. The right action of 7, s and t on B" define endomor-
phisms F,G and H of T, M satisfying

(0.71) F’=_1, G*= H?=1, FG=H = —GF,
and the compatibility equations, for X, Y € T, M
(0.72)  g(FX,FY)=g(X,Y), g(GX,GY) = —g(X,Y) = g(HX, HY),

where I denotes the identity tensor of type (1,1) in M, and ¢ is Riemannian
metric. Using (0.71), we obtain three 2-forms wr,we and wy given by

wr(X,Y)=g(FX,)Y), we(X,Y)=g(GX,Y), wg(X,Y)=g(HX,Y).

The manifold M is said to be hypersymplectic if the 2-forms wr,wg and wy
are all closed:

dwp =0, dwg =0 and dwgy = 0.

Now we think of the larger structure group Sp(n, B)Sp(1, B) acting on B" =
R* via (0.70). Again we have metric of neutral signature (2n,2n), but now
we can not distinguish the endomorphisms F,G and H . Instead we have
a bundle G of endomorphisms of T'M that locally admits a basis {F,G, H}
satisfying (0.71) and (0.72). {F,G,H} is called a canonical local basis of
the bundle V' in any coordinate neighborhood U of M. Then V is called a
para-quaternion structure in M. The pair (M, V') denotes a para-quaternion
manifold with V. A para-quaternion manifold M is of dimension m = 4n (n >
1).A para-quaternion structure V' with such a Riemannian metric g is called
a para-quaternion metric structure. A manifold M with a para-quaternion
metric structure {g, V'} is called a para-quaternion metric manifold. The triple
(M, g,V) denotes a para-quaternion metric manifold. If n > 1, we say that
M is para-quaternion Kahler if its holonomy lies in Sp(n, B)Sp(1, B).

Let {@i, Tnti, Tonti, Tanti}, © = 1,n be a real coordinate system on a

neighborhood U of M, and let {i o o 0 } and {dx;, dxp4i, dTopti, dT3p4i }

0x;? OTpyi’ OTapti’ OT3nti

be natural bases over R of the tangent space T (M) and the cotangent space
T*(M) of M, respectively. Taking into consideration (0.71), then we can obtain
the expressions as follows:

0 0 0 0 0 0

(3% ) Onti  OTpyi ) ox;’ (3$2n+i 03nti’

0 0 0 0 0 15)
F(al‘smi T Oxanyi O Oxansi ¢ OTnri’  Otznsi

0 0 0 0 0 0
G(ax2n+i) ~ Oxy’ G(3$3n+z‘ B _3$n+i’H(3TCi  Omansi

0 0 0 0 0 0
H(aanri) © Omonyi Ozonti’  Oxpyi a Otsnyi’  Ox;
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A canonical local basis{F*,G*, H*} of V* of the cotangent space T%(M) of
manifold M satisfies the condition as follows:

F*Q — —I, G*Q — H*Q — I, F*G* — H* — —G*F*,

defining by
F*(dz;) = depyi, F(dony) = —drg, F*(drony) = despy,
F*(dx3nyi) = —doony, G (dw;) = dvonys, G (drnyi) = —dr3ng,

)

)
G*(dxonyi) = dxi, G*(dx3nti) = —dopyi, H (dx;) = dagni,
(dSCn_H) = dﬂfgn+i, H* (dCCQn_H‘) = de'n_;,_i, H*(dI3n+Z) = dd?z

0.13. Para-Quaternion Lagrangians. Here, we obtain Euler-Lagrange
equations for quantum and classical mechanics by means of a canonical local
basis {F, G, H} of V on para-quaternion Kéhler manifold (M, g, V).

Firstly, let F' take a local basis element on the para-quaternion Kahler
manifold (M, g, V), and {x;, Tpti, Ton+i, Tanti} be its coordinate functions.
Let semispray be the vector field X determined by

0 0

i 0 .0 .
0.73 X=X"—+ Xn'H + X2n+17 + X3n+17
( ) O OTpyi O0%on+i OT3n1i

)

where Xi = .in,Xn+i = .i:‘n_;_i,inJri = .i'gn_;_i,XSnJri = .i'gn_;_i and the dot
indicates the derivative with respect to time t. The vector field defined by
9 9 O a0

Xn+z + X2n+z
axn+z 0x; a553n+z axQnJri

Vp=F(X)=X'

is named Liouwille vector field on the para-quaternion Kahler manifold (M, g, V).
The maps given by T, P : M — R such that T = %mz(acl2 + a’ciﬂ- + :'Ugnﬂ- +
$§n+i), P = m;gh are said to be the kinetic energy and the potential energy of
the system, respectively. Here m;, g and h stand for mass of a mechanical sys-
tem having m particles, the gravity acceleration and distance to the origin of a
mechanical system on the para-quaternion Kéhler manifold (M, g, V), respec-
tively. Then L : M — R is a map that satisfies the conditions; i) L =T — P
is a Lagrangian function, i) the function determined by Ef = V(L) — L, is
energy function.
The function iz induced by F' and denoted by

r

ipw(X1, Xoy ooy X)) = Y _w(X1, o0, FXG, 0, X5,
=1

is called vertical derivation, where w € N"M, X; € x(M). The vertical differ-
entiation dr is given by

dp = [ip.d] = ipd — dip
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where d is the usual exterior derivation. In the case the closed para-quaternion

Kihler form is the closed 2-form given by ®f' = —dd,. L such that
0 0 0 0
d, = ——dr; — —dTnq; dxopy; — —dsn+i - F(M AM.
L x oz, Tnti + Ton+ Dzamis 3nvi F(M) —

Then we have

O0x3n+i

q)F md(ﬂj VAN del + (9x 61 dl'j AN dlL‘nJrl

0%L
de] A dl’2n+z + de] A dxgn_H
2L 921,
~ oy 0y Wnti N dri + g = dn i A din g
_327[/ 2

8$n+j8$3n+i
0%L

8 L
dIn+] VAN dﬂ?gn_t,_l + den—iﬂ AN dx3n+i

2'3962n+z'
6x2n+]856n+ d!L‘QnJrJ AN d$z + 6$2n+j8x¢ d(L‘QnJrj AN d!L‘nJrrL

%L . 4 9L
T Ozt 39033+z dZontj N dTanti + 3xzn+j3$2n+i

dzonyj N drsnti
7a$3n+]3$n+ dxgn_H ANdz; + 7&53 I dx3n+j A da;nH

9L 0°L
d$3n+] N dxon i+ G

 Ox3n4;0T3n+i Wdﬂf:%nﬂ' N dgn i

Also we find energy function as follows:
F _ oL +i OL 2n+i_ OL 3n+i_ 0L
E/ =Vp(L)-L= X’ax - — X" as X Zaxgmﬂ — X ’81,2”“ —

By means of a being an integral curve of X, then we obtain the equations

given by

o (oL L _ o o ( 8L oL __

9% 8961-) ~ Beny = O O (aan) tom =0

o( oL \_ oL _q o (_oL aL _ _
Jt \ Ozan 4 0%3n+i 0%2n 44 ’

(0.74)

ot \ 0x3p4q

such that the equations calculated in (0.74) are named FEuler-Lagrange equa-
tions constructed on the para-quaternion Kéahler manifold (M, g, V') by means
of ®I" and thus the triple (M, ®f, X) is called a mechanical system on the
para-quaternion K&hler manifold (M, g, V).

Secondly, we introduce Euler-Lagrange equations for quantum and clas-
sical mechanics by means of @f on the para-quaternion Kéahler manifold
(M,g,V).

Take GG. It is another local basis element on the para-quaternion Kéahler
manifold (M, g, V). Let us X which is the semispray in (0.73). In the case,
the vector field determined by

0 o Xn+i 9 + X2n+z 9 X3n+i 9

Vo =G(X) =X
“ 0 O0T2n4i 0x3n4i Ox; 0Ty i

is Liouwille vector field on the para-quaternion Kéahler manifold (M, g, V). The
operator given by E¥ = Vg(L) — L is energy function. Then the function ig
induced by G and given by
iew(X1, Xo, o0y Xp) = Y w(X1, 000, GXG,y oy X5)
i=1
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is vertical derivation, where w € A"M, X; € x(M). The vertical differentiation
dg is given by
dg = [ig,d] = igd — dig

where d is the usual exterior derivation. Since taking into consideration GG, the

closed para-quaternion Kihler form is the closed 2-form given by ®¢ = —dd, L
such that
0 0 0 0
d, = dr; — ——dxpy; + —d i, — ——dsn4i : F(M ALM.
a 6x2n+i X a$3n+i Tpti + 8.%’1 TIn+i axn—i—i 3n+i ( ) -
Then we get
(pg = 73$J6$2n+ dﬂjj A dl‘l + 783) O3t dl'] A dﬂ?n_i_l

g0 g e N i + g diy A dsny

2 2

_an:jaLr%Jr dx”""] /\ dwl + ox +881‘3 +i
9L 9L

o3 da}n_H VAN den—l—z + md$n+] VAN dx3n+z

a$n+2] 82
8$2n+yax2n+zd 2n+j A dwz + 8JCZn-Q— 8$3n+2

9?2 les
de%ﬂ N dxonyi + Wdﬂf%ﬂ N dx3pn

0%L 0°L
313n+gax2 + dw3n+] A dx; + O3t 0T3m1i dx3n+] Ndxni;

9L . O°L
axdn-‘-Jawi dx3n+j A d$2n+z + 8x3n+jaxn+i

dl’n_t,_] A dl‘n_H

dx Ton45 /\ dTp i

drsn+j N dzsnt.
Also, we calculate function
OL

8L X?’L+Z aL X27’L+Z aL X3TL+Z — L.

EG = xt 9%
a$2n+z ax3n+z Ox; al‘nJri

By « an integral curve of X, then we obtain the equations:
9 (oL oL o( oL\, oL _g
ot \ dz; 3332»,14” ? Ot \ OTpyi 0x3n4+i )

0,
9 oL O oL oL __ 0
ot \ Ozapn+q 8501 0T3n+i OTpyi

(0.75)

9
0

Hence the equations introduced in (0.75) are named Fuler-Lagrange equations
constructed by means of ®% on the para-quaternion Kihler manifold (M, g, V)
and hence the triple (M, @f, X) is said to be a mechanical system on the para-
quaternion Kéhler manifold (M, g,V).

Thirdly, we present Euler—Lagrange equations for quantum and classical
mechanics by means of &% 7 on para-quaternion Kéahler manifold (M, g, V).

Let H be a local basis element on the para-quaternion Kéhler manifold
(M, g,V). Consider X given by (0.73). So, Liouville vector field on the para-
quaternion Kéahler manifold (M, g, V) is the vector field determined by

;.0 .0 9 )
Vg=H(X)=X" + X”J”i + X2n+17 + X3n+17'
" ( ) ax3n+i 8$2n+i 8xn+i ox;
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The function given by Ef = V(L) — L is energy function. The operator iy
induced by H and given by
,
inw(X1, Xy, Xp) = Y w(Xy, o HXG, o, X,),
i=1
is named vertical derivation, where w € A" M, X; € x(M). The vertical differ-
entiation dg is given by

dg = ig,d] =igd — dig,

Thus, the closed para-quaternion Kéhler form is the closed 2-form given by
& = —dd,, L such that

0 0 0 0
d, = dr; + ———dTpri + =——dxon; + —dspyi: F(M) — AL
T Owgny OTon i O%nti ox;
Then we find
H _
oy = dej Ndx; — dej A dxp4;
9L 2
— st 0 N Ao — gy 5o A g
oL , o L ,
Wd%ﬂ Nz = gy —dan N din g
0L
Wdl‘nJrj A d$2n+z - den+3 VAN dl‘3n+i

9L

don+j N ATi = 5o, s

W dxontj N dTn i

0“L
0$2n+] 3$n+i dx2n+j A dzon4i — amnﬂ afx d$2n+] N dx3n4i
0%L . L 8%L . .
8x3"+] 61‘3"+Z d 3TL+] A dxz 8I3n+jax2n+i dm3n+] A dxn+7’
9%L

. o __0°L ‘ )
mdl‘3n+] VAN dx2n+l am?erjaxi dﬂfgnJrj A d$3n+1.

Also we have

Ei—[ — Xz +Xn+z +X2n+288L _|_X3n+z aL _ L

81?3 +i $2n+z

Taking o being an integral curve of X, then it follows:

o (oL 9oL __ 0 9 oL 9oL _ 0
ot \ dz; 0x3n4+i 0 Ot \ OTpqi 0Ton4si

KA oL oL __ 0 9 oL 0oL __ 0
ot \ Oxon+i OTpyi ) Ot \ Ox3n4i ox; — -

(0.76)

Thus the equations introduced by (0.76) infer Euler-Lagrange equations con-
structed by means of ®¥ on the para-quaternion Kéhler manifold (M, g, V)
and then the triple (M, ®¥ X) is named a mechanical system on the para-
quaternion Kéahler manifold (M, g, V).

0.14. Para-Quaternion Hamiltonians. Here, we present Hamilton equa-
tions and Hamiltonian mechanical systems for quantum and classical mechan-
ics constructed on the para-quaternion Kéhler manifold (M, g, V*).

Firstly, let (M, g, V*) be a para-quaternion Kéhler manifold. Suppose that
an element of para-quaternion structure V*, a Liouville form and a 1-form on
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para-quaternion Kéhler manifold (M, g, V*) are shown by F*, Ap+ and wp+,
respectively.
Consider

1
Wp* = E(xidl‘i + TpyidTppi + TontidTonti + T3n4idT3n4i)-
Then we have
. 1
Aps = F*(wp+) = i(xid@’n—l-i — TpidT; + T2045d230 i — T3n4idT2n44)-

It is concluded that if &z« is a closed para-quaternion Kéhler form on the
para-quaternion Kéhler manifold (M, g,V*), then ®p~ is also a symplectic
structure on the para-quaternion K&hler manifold (M, g, V*).

Take X. It is Hamiltonian vector field associated with Hamiltonian energy
H and determined by (0.73).

Then

S« = —dApr = dxpgi N dx; + desngi N dxopyi,
and
(0.77) ixPps = Ope (X)) = X" Tda;— X'day i+ X3 dwg, 1 i— X i das, .
Furthermore, the differential of Hamiltonian energy is obtained by
OH OH oH oH

0.78 dH = —dzx; + ———dxp+i + ———dxop;
(0.78) oz; * OTnyi Pori T O0T2p 4 Pants 034

dx3n ;.

With respect to (0.3), if equaled (0.77) and (0.78), the Hamiltonian vector
field is found as follows:

OoH 0 OH 0 oH 0 oH 0

0.79 X =— — .
(0.79) 0xpyi Ox; 0% OTpyi  O0T3p44 OTongi  OTopgs 0T34

Assume that a curve

a:ICR—-M
be an integral curve of the Hamiltonian vector field X, i.e.,
(0.80) X(a(t) =a, tel.

In the local coordinates, it is obtained that

a(t) = (331'7 Tn+is L2n+is 1’3n+z‘)

and

. diL'Z‘ 0 dxn+i 0 dxgn_;_i 0 d$3n+i 0
0.81 t) = .
( ) Oé( ) dt 6.%'1 dt (9.21?”4_2' dt 6$2n+1’ + dt 6-%'3n+i

Taking (0.80), if we equal (0.79) and (0.81), it holds

(0.82)
d.’Ei 8H dl‘nJri o 87H dm2n+i o 8H dx3n+i o 8H

dt - 8:cn+i ’ dt aIEZ ’ dt - 8x3n+i ’ dt - 8$2n+i
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Hence, the equations introduced in (0.82) are named Hamilton equations with
respect to component F* of the para-quaternion structure V* on the para-
quaternion Kéhler manifold (M, g, V*), and then the triple (M, ® g+, X) is said
to be a Hamiltonian mechanical system on para-quaternion Kahler manifold
(M, g, V™).

Secondly, assume that a component of para-quaternion structure V*, a
Liouville form and a 1-form on the para-quaternion Kéahler manifold (M, g, V*)
are denoted by G*, Ag+ and wg=, respectively.

Take

1
war = §($id37z‘ + Ty idThpi — Ton+idTonti — T3n4idT3n4i)-
Then we calculate
1
Aar = G (wgx) = §($idx2n+i — TptidT3n4i — Ton+idTi + T3n4idTntq).

It is well-known if &g+ is a closed para-quaternion Kéahler form on the para-
quaternion Kéhler manifold (M, g, V*), then ® g~ is also a symplectic structure
on para-quaternion Kéahler manifold (M, g, V*).

Let X a Hamiltonian vector field related to Hamiltonian energy H and
given by (0.73).

Taking into consideration

Qg+ = —dAgx = droni N dx; + drppi N drgn,
then we calculate
(0.83) ix P = Pa+(X) = X2 da;— Xdwo, i+ X" drs,i— X" da, 4.
According to (0.3), if we equal (0.78) and (0.83), it yields
OoH 0 oH 0 oH o  0H 0

Oxonti 0xi  0x3p4i OTpgi 0% OTongi  OTpgi OT3ngq
Taking (0.80), if (0.81) and (0.84) are equaled, we find equations

(0.84) X =—

(0.85)
@ _ OH dl’n+i _ OH dl‘QnJri . 8£ dl’3n+i _ 8H
dt N 8$2n+i7 dt N 8x3n+i’ dt N 695/ dt N 8£Cn+i

Finally, the equations found in (0.85) are called Hamilton equations with
respect to component G* of the para-quaternion structure V* on the para-
quaternion Ké&hler manifold (M, g, V*), and then the triple (M, ®g«, X) is
named a Hamiltonian mechanical system on the para-quaternion Kahler man-
ifold (M, g, V™).

Thirdly, by H*, A+ and wg+, we give a element of para-quaternion struc-
ture V*, a Liouville form and a 1-form on para-quaternion K&hler manifold
(M, g,V*), respectively.

Let

1
WH* = i(l'idxi + TptidTypi — TontidTonti — T3n4idTanti).
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Then we find
1
A+ = H (wp+) = i(l’idxi%n—i-i + TptidTonyi — TontidTnyi — T3p4idx;).

We know that if &g+ is a closed para-quaternion Kéahler form on the para-
quaternion Kéhler manifold (M, g, V*), then ® g+ is also a symplectic structure
on the para-quaternion K&hler manifold (M, g, V*).

Let X a Hamiltonian vector field connected with Hamiltonian energy H
and given by (0.73).

Calculating
(086) Sy = —dAg+ = dxspyi N dag + dropyi A dep s,
we have
(0.87)

ix®re = ®p(X) = X" Mda; — X'dws, i+ X2, — X" dxg, .
With respect to (0.3), if we equal (0.78) and (0.87), we find the Hamiltonian
vector field given by

oH 0 oH 0 OoH 0 oH 0
O3n1i O;  OTonyi OTnri  OTpi; OTonyi  OT; OT3nti
Considering (0.80), if (0.81) and (0.88) are equaled, it yields

(0.88) X =-—

(0.89)
@ _ OH d(L‘n_;,_Z' _ OH d$2n+z‘ . OH dx3n+i . 87H
dt N 8w3n+i’ dt N 8x2n+i’ dt N 8xn+i’ dt - 8952

In the end, the equations introduced in (0.89) are named Hamilton equations
with respect to element H* of the para-quaternion structure V* on the para-
quaternion Kéhler manifold (M, g,V*), and then the triple (M, ®g~, X) is
called a Hamiltonian mechanical system on the para-quaternion Kahler man-
ifold (M, g, V™).

CONCLUSION 6. From above, Lagrangian mechanical systems have intrin-
sically been described taking into account a canonical local basis {F,G,H} of
V' on the para-quaternion Kdhler manifold (M, g,V'). The paths of semispray
X on the para-quaternion Kdhler manifold are the solutions Euler-Lagrange
equations raised in (0.74), (0.75) and (0.76), and introduced by a canonical
local basis {F, G, H} of vector bundle V' on the para-quaternion Kdhler mani-
fold (M, g,V). Also, Hamiltonian mechanical systems have intrinsically been
described with taking into account the basis {F*,G*, H*} of para-quaternion
structure V* on the para-quaternion Kdhler manifold (M, g, V*). The paths of
Hamilton vector field X on the para-quaternion Kdhler manifold are the solu-
tions Hamilton equations raised in (0.82), (0.85) and (0.89), and obtained by a
canonical local basis {F*,G*, H*} of vector bundle V* on the para-quaternion
Kdhler manifold (M, g, V*). Lagrangian and Hamiltonian models arise to be a
very important tool since they present a simple method to describe the model
for mechanical systems. One can be proved that the obtained equations are
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very important to explain the rotational spatial mechanical-physical problems.
Therefore, the found equations are only considered to be a first step to real-
ize how para-quaternion geometry has been used in solving problems in dif-
ferent physical area. For further research, the Lagrangian and Hamiltonian
mechanical equations derived here are suggested to deal with problems in elec-

trical, magnetical and gravitational fields of quantum and classical mechanics
of physics.



CHAPTER 7

Mechanical Systems with Constraints

The purpose of this chapter is to make a contribution to the modern de-
velopment of Lagrangian and Hamiltonian formalisms of classical mechanics
in terms of differential-geometric methods on differentiable manifolds. So, we
introduce complex and paracomplex Euler-Lagrange and Hamilton equations
with constraints on the (para) Ké&hler manifold given in [26, 27].

1. Constrained Complex Mechanical Systems

Assume that (T'Q), ®1) is symplectic manifold and @ = {w,...,w,} is a
system of constraints on 7'Q). We call to be a constraint on T(Q to a non-
zero 1-form w = A%, on TQ, such that A® are Lagrange multipliers. We
call (TQ,®r,Er,w) a regqular Lagrangian system with constraints. The con-
straints @ are said to be classical constraints if the 1-forms wy,1 < a < r, are
basic. Then holonomic classical constraints define foliations on the configura-
tion manifold @, but holonomic constraints also admit foliations on the phase
space of velocities T'Q). As real studies, generally a curve « satisfying the Fuler
Lagrange equations for Lagrangian energy Ej will not satisfy the constraints.
It must be that some additional forces (or canonical constraint forces) act on
the system in addition to the force dE7, for a curve « to satisfy the constraints.
It is said that the quartet (T'Q, @1, Er,w) defines a mechanical system with
constraints if the vector field £ given by the equations of motion

(1.1) ie®p, = dEL + A"wa, wa(§) = 0,

is a semispray. Then, it is given FEuler-Lagrange equations with constraints as
follows:
oL doL

1.2 - —
(1.2) dq"  dt g’

/\a(wa)i.

Let M be configuration manifold of real dimension m. A tensor field J on TM
is called an almost complex structure on T'M if at every point p of TM, J is
endomorphism of the tangent space T,,(T'M) such that J? = —I. A manifold
T M with fixed almost complex structure J is called almost complex manifold.
Assume that (z;) be coordinates of M and (z;, y;) be a real coordinate system
on a neighborhood U of any point p of TM. Also, let us to be {(%)p, ((%i)p}
and {(dz%),, (dy"),} to natural bases over R of tangent space T,(TM) and
cotangent space T, (T'M) of T'M, respectively.

61
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Let T'M be an almost complex manifold with fixed almost complex struc-
ture J. The manifold T'M is called complex manifold if there exists an open
covering {U} of T'M satisfying the following condition: There is a local coor-
dinate system (x;, y;) on each U, such that

(1.3) 72 0 52 0

o0 = oy 7oy T " awr

for each point of U. Let z; = x;+iy;,i= v/—1, be a complex local coordinate
system on a neighborhood U of any point p of T M. We define the vector fields
by

0 1,0 ., 0 0 1,0 ., 0
(1.4) (822-)12 = 5{(8xi)p - 1(8yi)p}7 (8? )p = 5{(8xi)p + l(ayi)p

and the dual covector fields
(1.5) (d2"), = (da') +i(dy")p, (dz'), = (dz'), —i(dy"),

which represent bases of the tangent space T,(T'M) and cotangent space
T, (T'M) of TM, respectively. Then the endomorphism J is shown as

0 0 0 0
1.6 J(—)=i—, J(+—) = —i—.
The dual endomorphism J* of the cotangent space T} (T'M) at any point p of
manifold T'M satisfies J*?> = —I, and is defined by

(1.7) J*(dzz) = idzi, J*(dfz) = —id?i.

A Hermitian metric on an almost complex manifold with almost complex
structure J is a Riemannian metric g on T'M such that

(1.8) 9(JX,JY)=g(X,Y),

for any vector fields X, Y on T'M. An almost complex manifold T'M with a
Hermitian metric is called an almost Hermitian manifold. If, moreover, T'M
is a complex manifold, then T'M is called a Hermitian manifold.

Let further TM be a 2m-dimensional real almost Hermitian manifold with
almost complex structure J and Hermitian metric g. The triple (T'M, J, g)
may be named an almost Hermitian structure. We denote by x(TM) the set
of complex vector fields on TM and by AY(TM) the set of complex 1-forms
on T'M. Let (T'M, J, g) be an almost Hermitian structure. The 2-form defined
by

(1.9) O(X,Y)=g(X,JY),VX,Y € x(TM)

is called the Kdhler form of (T'M, J,g).
An almost Hermitian manifold is called almost Kdhler if its Kahler form &
is closed. If, moreover, T'M is Hermitian, then T'M is called a Kahler manifold.
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1.1. Complex Lagrangians. Let J be an almost complex structure on
the Kahler manifold and (2*,%") its complex coordinates. We call to be the
semispray to the vector field £ given by

(1.10) =

The vector field V = J¢ is called Liouville vector field on the Kéhler manifold.
We call the kinetic energy and the potential energy of system the maps given by
T,P:TM — C such that T = %mz(?)2 = %mi(zl)Q, P = m;gh, respectively,
where m; is mass of a mechanic system having m particles, g is the gravity
acceleration and h is the origin distance of the a mechanic system on the
Kahler manifold. Then it may be said to be Lagrangian function the map
L:TM — C such that L =T — P and also the energy function associated L
the function given by Ey, = V(L) — L.
The vertical derivation operator ¢y defined by
T
(1.11) i1 (20, Doy ooy Ze) = Y (Z1s ey T Ziy s By,
i=1
where w € N"T'M, Z; € x(T'M). The exterior differentiation d; is defined by
(1.12) dy=1lij,dl =ijd—diy,

where d is the usual exterior derivation.
For almost complex structure .J, the closed Kéahler form is the closed 2-form
given by

(1.13) dp = —ddyL,
such that
dy: F(TM) — AT M.

By means of (1.1), complex Euler-Lagrange equations on Kahler manifold 7'M
is found the following as:

L L L L
(1.14) i2 8. —a.zo,ié 8— +8.:0.
ot \ 0z* 0z ot \ 93* 95"
1.2. Constrained Complex Lagrangians. Let J be an almost complex

structure on the Kihler manifold and (2, z%) its complex coordinates. Assume
to be semispray to the vector field £ given as:

(1.15) §:§L+/\awa:§iaii +?3azi + A%, 1 <a <,
The vector field determined by
-0 —i 0
1.1 = — et e
(1.16) V= Jg =igss —iE o
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is called Liouville vector field on the Kahler manifold TM. The closed 2-form
given by ®; = —dd ;L such that

(1.17) dy=1 O 4o —i0 gt F(TM) — AT M.
0z* 0z*

is found to be

Oy = i-LL dyi A dyd +1-2L g2 A dF

(1.18) FFo T T e
: PP A
+18zjazidz ANdz" + 16?87& AdZzt.

Let £ be the semispray given by (1.15) and

ie®p =i 0L di —ig L Iy 4 jei DL gz §g' DL 5Ty

(1'19) 82(’22.7'&}' ; ggzazi i 5 82353'3;:' ~ a(gijaZi i
. 0 ] =1 et 3 . j . . .
T 55550, d7" — 1§ 55a5d2) +18 55550;dZ' =18 5575 d7 .

Since the closed Kéahler form ®; on T'M is symplectic structure, we obtain

..OL 0L
(120) EL = 1€ 8Zi 1§ % L

and hence
a,, _ s¢i 0L g 5  sF 82L 3.5  OL .5
dEp 4+ Nw, = i€ 5275 dz i 52705 dz 520 dz

sei OPL g=j st OPL 3= OL 3—j
H' 5557477 — 1§ 55 5d7 — £5dZ7 4+ Nw,.

(1.21)

With respect to (1.1), if (1.19) and (1.21) are equalized, we conclude the
equation as follows:

« i 92 . =l 2 . .
—igi ;%) — i€ L d2d + DLy

027 92" 077 0z¢
(122) sri 0L T] 92 dﬁ] aiLd*] _ .a
HE 5w 027 HE o d? + 55 d7 = Nwa

Now, let the curve o : C — T'M be integral curve of £, which satisfies equations

CilgietL oL | g o AL g
1S 027 0z* +€ 957 94 dz’ + azjdz

(1.23)

lej o2 P L | gii L, 0L 410 _ na
¢ 02193 +4 95 93" dz” + 95’ dz NWa

where w, = (wq); dz? + (wa)jd,éj and the dots mean derivatives with respect
to the time. We infer the equations

oL .0 (O0L\ S OL 0 (OLN _ ...\
(1.24) 55 i <azi) = A" wa)i, Py +16t <azﬂ'> = A" wq)i-

Thus, by complexr Euler-Lagrange equations with constraints we may call the
equations obtained in (1.24) on Kéhler manifold T'M. Then the quartet (T'M, &1, £, ©)
is named mechanical system with constraints.
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2. Constrained Paracomplex Mechanical Systems

In this section, as a contribution to the modern development of Lagrangian
and Hamiltonian systems of classical mechanics, we present paracomplex anal-
ogous of some topics in the geometric theory of constraints [9, 28, 29].

Let (T*Q,®,H) be a Hamiltonian system on symplectic manifold 77*Q
with closed symplectic form ®. Let us consider a Hamiltonian system (7*Q, ®, H)
together with a system @ of constraints on 7*Q. So, it is called (T*Q, ®, H,©)
to be a Hamiltonian system with constraints. In general, a curve « satisfying
the Hamiltonian equations for energy H does not satisfy the constraints. For
a curve « satisfying the constraints, some additional forces must act on the
system in addition to the force dH. So, the dynamical equations of motion
become

(2.1) iz® = dH + Nwq, we(Z) =0,

where Z is a vector field on 7*@Q. From (2.1), Hamilton equations with con-
straints is given by:

dag®

cgt - (% + /\a(Ba)i)v

(2:2) W= (G + A (Aa)),
(Aa)icfjit + (Ba)i ddzi =0,

where 1 <i<m,1<a<s.

It is well known that (para)Ké&hler manifolds play an essential role in var-
ious areas of mathematics and mathematical physics, in particular, in the
theory of dynamical systems, algebraic geometry, the geometry of Einstein
manifolds, quantum mechanics, quantum field theory, and in the theory of su-
perstrings and nonlinear sigma-models, too. For example, it was shown in [30]
that the reflector space of an Einstein self-dual non-Ricci flat 4-manifold as well
as the reflector space of a paraquaternionic Kahler manifold admit both Nearly
para-Kéhler and almost para-Kéhler structures. Wade [31] showed that gen-
eralized paracomplex structures are in one-to-one correspondence with pairs
of transversal Dirac structures on a smooth manifold. In [32], it was given a
representation of the quadratic Dirac equation and the Maxwell equations in
terms of the three-dimensional universal complex Clifford algebra Cs. Baylis
and Jones introduced in [33] that a R3 o Clifford algebra has enough structure
to describe relativity as well as the more usual Ry 3 Dirac algebra or the R3
Majorana algebra. In [34], Baylis represented relativistic space-time points
as paravectors and applies these paravectors to electrodynamics. Tekkoyun
[9] generalized the concept of Hamiltonian dynamics with constraints to com-
plex case. In the above studies; although paracomplex geometry, complex
mechanical systems with constraints, Lagrangian and Hamiltonian mechan-
ics were given in a tidy and nice way, they have not dealt with constrained
paracomplex mechanical systems.
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2.1. Paracomplex Geometry. An almost product structure J on a tan-
gent bundle T'M of m-real dimensional configuration manifold M is a (1,1)
tensor field J on TM such that J? = I. Here, the pair (T'M, J) is called an al-
most product manifold. An almost paracomplex manifold is an almost product
manifold (7'M, J) such that the two eigenbundles TTTM and TT~M asso-
ciated to the eigenvalues +1 and —1 of J, respectively, have the same rank.
The dimension of an almost paracomplex manifold is necessarily even. Equiv-
alently, a splitting of the tangent bundle TT'M of tangent bundle T'M, into
the Whitney sum of two subbundles on TT*M of the same fiber dimension is
called an almost paracomplex structure on T'M. From physical point of view,
this splitting means that a reference frame has been chosen. Obviously, such
a splitting is broken under reference frame transformations. An almost para-
complex structure on a 2m-dimensional manifold TM may alternatively be
defined as a G-structure on T'M with structural group GL(n,R) x GL(n,R).

A paracomplex manifold is an almost paracomplex manifold (7'M, J) such
that G- structure defined by tensor field J is integrable. Let (x?) and (2%, y*) be
areal coordinate system of M and T'M, and {(%)p, (a%i)P} and {(dz")p, (dy*),}
natural bases over R of tangent space T),(T'M) and cotangent space T (T M)
of T'M, respectively. Then, J can be denoted as

0 0 0 0

Let 2 = z'+j v, j2> = 1, be a paracomplex local coordinate system of T'M.
The vector and covector fields are defined, respectively, as follows:

(o) = 3 (G = 80 (o = 5o + 30,

(dzi)p = (dxi)p +j(dy")p, (dzi)p = (dxi)p — j(dy"),.
The above equations represent the bases of tangent space T),(T'M) and cotan-

gent space T (T'M) of T'M, respectively. Then the following results can be
easily obtained, respectively:

) .0 o, .0
(2.4) J*(d2") = —jdz*, J*(dZ') = jdz".

Here, J* stands for the dual endomorphism of cotangent space T, (T'M) of
manifold T'M satisfying J*2 =1 .

An almost para- Hermitian manifold (T'M, g, J) is a differentiable manifold
TM endowed with an almost product structure J and a pseudo-Riemannian
metric g, compatible in the sense that

9g(JX,Y)+9(X,JY) =0, VXY € x(TM).
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An almost para-Hermitian structure on a differentiable manifold TM is
G-structure on T'M whose structural group is the representation of the parau-
nitary group U(n, A) given in [14]. A para- Hermitian manifold is a manifold
with an integrable almost para-Hermitian structure (g, .J). 2-covariant skew
tensor field ® defined by ®(X,Y) = g(X, JY) is so-called as fundamental 2-
form. An almost para-Hermitian manifold (T'M, g, J), such that ® is closed,
is so-called as an almost para-Kdhler manifold.

A para-Hermitian manifold (7'M, g, J) is said to be a para-Kdhler manifold
if ® is closed. Also, by means of geometric structures, one may show that
(T*M,g,J) is a para-Kdhler manifold.

2.2. Paracomplex Lagrangian Systems. In this subsection, some para-
complex fundamental concepts and para-Euler-Lagrange equations for classical
mechanics structured on para-Kéhler manifold TM introduced in [7] can be
recalled.

Let J be an almost paracomplex structure on the para-Kéhler manifold
and (2%,7') its coordinates. Let a second order differential equation be vector
field &7, given by:

0 =i 0

02 & oz’

Then vector field V' = J¢, is called a para-Liouville vector field on the para-
Kahler manifold TM. The mappings given by T, P : TM — A such that

(2.5) &L=2¢

T = %mi(le)z, P = m;gh can be called as the kinetic energy and the potential
energy of system, respectively, where m; is mass of a mechanical system, g is
the gravity and h is the distance of the mechanical system on the para-Kéhler
manifold to the origin. Then we call map L : TM — A such that L=T — P
as para- Lagrangian function and the function given by E; = V(L) — L as the
para-energy function associated with L.

The operator ¢y induced by J and shown as

T
ig(Zy, Doy oo Ze) = Y w(Z1y ey T Ziy s Zy)
i=1
is said to be vertical derivation, where w € N"T'M, Z; € x(T'M). The vertical
differentiation dj is defined as follows:

dy=lij,d] =ijd—diy,

where d is the usual exterior derivation. For almost paracomplex structure J
determined by (2.3), the closed para-Kéhler form is the closed 2-form given
by ®; = —dd ;L such that

dy = —j 9 dZi—l-jaazidZi:f(TM) — AITM,

0z¢
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Paracomplex-Euler-Lagrange equations on para-Kéhler manifold T'M are shown
by

0 (OL\  OL .9 (OL\ 0L
(26) Yot (8zi) ton =0y <azi) “om Y

Thus, the triple (T'M, @1, &) is called a paracomplez-mechanical system.

2.3. Paracomplex Hamiltonian Systems. Here, we consider paracomplex-
Hamilton equations for classical mechanics structured on para-Kéhler manifold
T*M introduced in [7]. Let T"M be any para-Kdhler manifold and (z;,z;)
its coordinates. {B%JP’ %\p} and {dz|p,dZ;|,} be bases over paracomplex
number A of tangent space T),(T'M) and cotangent space T, (T'M) of T'M.
Assume that J* is an almost paracomplex structure given by J*(dz;) = —jdz;,
J*(dz;) =jdz; and X is a para-Liouville form given by A\ = J*(w) = %_](zldz —
Z;dz;) such that paracomplex 1-form w = %(zldfl +Zidz;) on T*M. If & = —d\
is closed para-Kahler form, then @ is also a para-symplectic structure on 7% M.

Let T*M be para-Kéahler manifold with closed para-Kéahler form ®. Then
para-Hamiltonian vector field Zy on T*M with closed form ® can be given
by:

.OH 0 ,0H 0
— 0z; 0%; tJ 0z; 0%Z; '
According to (2.4), para- Hamiltonian equations on para-Ké&hler manifold T M

are denoted by equations of

dz; O0H dz; OH
2.8 _— = —.7 —_— 1 .
( ) dt J 0z; T odt J 0z;

EXAMPLE 1. A central force field f(p) = Ap®~'(a # 0,1) acts on a body
with mass m in a constant gravitational field. Then let us find out the para-
Lagrangian and para-Hamiltonian equations of the motion by assuming the
body always on the vertical plane.

(2.7) Zy =

The para-Lagrangian and para-Hamiltonian functions of the system are,
respectively,

L= tmzz = AV/E —jmg— >f( .
(z+72)y/1— ESiL

H:%mzéJr A V3 4 jmg (:=2)vez —.
o (z+7)4/1— g;g

Then, using (2.6) and (2.8), the so-called para-Lagrangian and para-Hamiltonian
equations of the motion on the para-mechanical systems, can be obtained, re-
spectively, as follows:
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Ll:jaatS—Szo,LQ:jgtUJrU:O,

such that
A — . mg(z—2)Z . mgVzz
S = ——(Vz)* - -~
22( %) J2\/§(z+z) J(errz)VV
_i_.mg\/ﬁ(z —2) mg\/;( )( z+z))2 + g;g )
T Eew T (z+2)W3 ’
A — . mg(z—7%)z . mgVzz
U = ——-(V22)" - +
2?( %) J2\/§(z +Z2)W . (z+2)W
2
+ mgV2zZ(z — %) ng\/Z(z - Z)((z+z)2 + E ; )
(z+2)2W (z+zZ)W3

and

‘ dz__,é —a . mg(z—2)z _,mg\/ﬁ
HL dt ‘](22(\/;) +J2\F(z+2) J(z+§)W

2
omgVFE(z—7)  mevEE(z = D) (Gt )

(z+7%)2°W —J (z+2)W3 )
H2 - g:.](é(\/g)a—i- mg(z —2Z)Z . mg\/ﬁ

+
J2\/§(z+z J(z+§)W
_meVEG=3) | movEE A + )

Crazew (z +2)W3 '

where W = (/1 — E;_é;z

2.4. Constrained Paracomplex Lagrangians. In this subsection, we
obtain para-Euler-Lagrange equations with constraints for classical mechanics

structured on para-Kahler manifold T M.

Let J be an almost paracomplex structure on the para-K&hler manifold
and (2*,Z") its coordinates. Let us take a second order differential equation to

the vector field & given by:

(29) §=&+ Nw, = gzaazl 681 + /\away 1<a<m,
The vector field V' = J&;, calculated by
o i 0 el 0
—J§ 540 + 3¢ 77



70 7. MECHANICAL SYSTEMS WITH CONSTRAINTS

is para-Liouville vector field on the para-Kéahler manifold TM. The closed
2-form expressed by ®; = —dd ;L is found to be:

2 2
b, = —j——-dd NdZ' +j——-dZ NdE
L ']823821 & i +']8§Jazl “ i
2L . . 2L . .
—j——d NdF — j———dZ NdZF’
J@zﬂ@? “ ‘ "'azaazz “ =

where 5 5

dy=—j dZ' +j—dz" : F(TM) — AT M.

ozt
If ¢ is a second order differential equation defined by (1.1), then we have
(2.10)

ie®p = —jei 2L 551 4 eI 0L pi 4 §E DL 51y jei DL gz

o 0279z° P 5 0219z ~i 5 0z79z1 71 i 0799z
sei 0L 57 gwi 4 37t 0L i L 57 g5 4 3 L 3=j
I8 gz 03 47" 38 g e’ — I8 gz 07 dE 36 Gopmd?
Since closed para-Kahler form ®;, on T'M is para-symplectic structure, we find
0L 0L
E = —j v - + j —_— — L
L=-J 540 J€ 77
and hence
- sei _O2L i it 92L i _ 9L 7.5
(2.11) AEp + N = = 9204 a= Hi o0z d=" = gdz],
=€ 55707 + 3§ oz d?? — 25dZ + Nw.

According to (1.1), if (2.10) and (2.11) are equal to each other, then the
following equation can be obtained:

sei O2L i 1 it 921 i . OL 3.4
+j&* dz? +j& dz) + §%dz

821'26,21' 079 9zt
sei 0L oj _ sFh 020 g | OL jj
—I8 5a0m 07 =38 g A7 + g d? = Nwa

Now, let curve a : A — T'M be integral curve of £, which satisfies equations
of

| e 22L g2 i | OL 7.
+J |:£'] 02907 +£ 8z78z2] dZ‘] + @dzj

| 52 J 52 .j i
—j |:€j 8L_+€ 8_L_:| dzj+%dz]:/\“wa,

02793" 027 9z"
where the dots mean derivatives with respect to time and w, = (wa)i d2*+(wa)
dz'.
This refers to equations of
AT <§L) - N, -5 (§L> = A
Thus, the equations obtained in (2.12) on para-Kéhler manifold 7'M are so-

called as constrained paracomplex Euler-Lagrange equations. Then the quartet
(TM,®r,£,) is named constrained paracomplex mechanical system.
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2.5. Constrained Paracomplex Hamiltonians. Here, we conclude para-
complex Hamiltonian equations with constraints on para-Kéhler manifold T* M.
Similar to (0.3), the vector fields on T*M satisfying the condition

(2.13) 124P = wq, 1 <a < s,
can be represented by Z,.

PROPOSITION 5. Let T*M be para-Kdhler manifold with closed para-Kdhler
form ®. Let us consider vector field Z, on T*M given by:
0 0
— +j(Ay)i—.
0z; +J( a)z 0z;

PRrROOF. Let T*M be para-Kéahler manifold with form ®. Consider that
vector field Z, is given by

(2'14) Zy = _j(Ba)i

Zy = (Za),»aii + (Za>iazi.
From (2.13), iz, ® can be calculated as
(2.15) iz, (—d\) = j(Z,)idzi — §(Z,):dZ;.
Moreover, we set
(2.16) wa = (Aq)idzi + (Ba)idz;
According to (2.13), if (2.15) and (2.16) are equal to each other, proof finishes.

O

Now, with the case of (0.3), (2.1) and (2.13); one may easily deduce

(2.17) Z=7Zg+NZ,.

Hence, by means of (2.8), (2.14) and (2.17) we obtain the following vector field
. OH a o . 0H “ 0

(2.18) Z = —‘](azi +A (Ba)z)a—% +,](8Zi + A (A“)l)azi‘

Suppose that curve
a:ICA—-T"M

be an integral curve of paracomplex vector field Z given by (2.18), i.e.,
Z(a(t)) =alt), tel.
In the local coordinates, for a(t) = (z(t),z;(t)), we have

o dz; O dz; 0

oM ="0ras " @ oz
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Then we reach the following equations

95— —j(S2 + AY(Ba)y),

(2.19) i = 5% + A4 (Aw)),
(Aa)i% + (Ba)i% =0,

which are so-called as constrained paracompler Hamiltonian equations on para-
Kéhler manifold 7*M. Here 1 < a < s. Then the quartet (T*M,®, H,@) is
named constrained paracomplexr mechanical system.

CONCLUSION 7. Finally, considering the above, complex analogous of the
geometrical and mechanical meaning of constraints given in [2, 29] may be
explained as follows.

1) Let W be a system of constraints on Kdhler manifold TM. Then it may
be defined a distribution D on w as follows.

(2.20) D(z) ={£ € T,TM| we(§) =0, forall a,1<a<r}

Thus D is (2m —r) dimensional distribution on T M. In this case, a system of
complex constraints w is called holonomic, if the distribution D is integrable;
otherwise we call W anholonomic. Hence, W is holonomic if and only if the
ideal p of N\TM generated by @ is a differential ideal. Obviously (1.24) holds
for holonomic as well as anholonomic constraints. For a system of holonomic
constraints, the motion lies on a specific leaf of the foliation defined by D.

2) From (1.1) it is obtained equalities of

(2.21) 0= (1¢®)(§) = dEL(§) = £(EL),

Therefore, the Lagrangian energy Er on Kdhler manifold TM for a solution
a(t) of (1.24) is conserved.

Considering the above, paracomplex analogous of the geometrical and me-
chanical meaning of constraints given in [2, 9, 28, 29] can be explained as
follows:

3) Let W be a system of constraints on para-Kdhler manifold TM or T* M.
Then it may be defined a distribution D or D*on @ as follows:

D(z) ={& € T,TM| wa(€) =0, forall a,1<a<r}

(2.22) D*(x) = {Z € TuT*M)| wa(Z) = 0, for all a,1<a < s}

Thus D or D* is (2m—r) or (2m—s)-dimensional distribution on TM or T* M.
In this case, a system of paracomplex constraints W is paraholonomic, if the
distribution D or D* is integrable; otherwise W is paraanholonomic. Hence,
w is paraholonomic if and only if the ideal p of NT'M or NT*M generated by
w is a differential ideal, i.e., dp C p. Obviously, (2.12) and (2.19) hold both
paraholonomic and paraanholonomic constraints. The motion for a system of
paraholonomic constraints lies on a specific leaf of the foliation defined by D
or D*.
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4) From (1.1) and (2.1), the following equalities can be obtained:

0= (ig®)(€) = dEL(E) = £(BL),
(2.23) 0= (fzw)(z) = deL{(Z) = Z(fl).

So, Lagrangian energy Er, and Hamiltonian energy H of (2.12) and (2.19) for
a solution «(t) are, respectively, conserved.






CHAPTER 8

Mechanical Systems on Distributions

As well-known Lagrangian distribution on symplectic manifolds are used
in geometric quantization and a connection on a symplectic manifold is an
important structure to obtain a deformation quantization [35].

In this chapter, by means of an almost product structure, we present Euler-
Lagrange and Hamilton equations given in [36]. They are related to mechan-
ical systems on the horizontal and vertical distributions of the bundles used
in obtaining geometric quantization.

1. Manifolds, Bundles and Distributions

Here, we extend some definitions introduced in [37]. Let TM be tangent
bundle of a manifold M of dimension n. Denote by x a point of M such that
¢(z) = (2%). Given the projection 7 : TM — M, 7(u) = . Let (2%, 4") be a real
coordinate system on a neighborhood (U, ¢) of any point u of TM. Then we
respectively define by (%, 8%1) and (dz’,dy’) the natural bases over R of the
tangent space T,,7'M and the cotangent space T, (T'M) at the point u € T'M,
respectively. And also F(T'M )— and F(T*M )— linear mappings (named to be
almost tangent structures) J : x(TM) — x(T'M)and J* : x(TM) — x(T'M)
are given as follows:

0 0 0
TG = 5 ()

=0,

and
J*(dz') = dy', J*(dy') = 0.

Consider that the tangent space V,, to the fibre 77 !(x) in the point u € TM
is locally spanned by { 8%1’ v %}. The mapping given by V: v € TM —
V. C T,TM provides a regular distribution generated by the adapted basis
{ 8‘31 }. So, V is an integrable distribution on M. And then one says that V'
is the vertical distribution on T'M. Let N be a nonlinear connection on T'M.
N is characterized by v, h vertical and horizontal projectors. Assume that
the vertical projector v : x(T'M) — x(T'M) is defined by v(X) = X, VX €
x(VI'M); v(X) = 0,VX € x(HTM). Similarly, the mapping given by H:
uveTM — H, C T,TM provides a regular distribution determined by the
adapted basis {%}. Therefore, H is an integrable distribution on 7M. Finally
we call to be H the horizontal distribution on T'M. Suppose that there is
a F(TM)-linear mapping h : x(TM) — x(TM), for which h? = h, Ker

75




76 8. MECHANICAL SYSTEMS ON DISTRIBUTIONS

h=x(VTM).1f X and XV are horizontal and vertical components of vector
field X, respectively, then any vector field X € x(T'M) can be uniquely given
by
X =hX +oX =X"4+xV
such that
9 i 9 V _ yingi 9
97 _Nj(ajay)aiyj)a X=X Nj(l'vy)aiyj
where N jl are a local coefficients of a nonlinear connection N on T'M.
A local basis adapted to the horizontal and vertical distribution denoted

by HTM and VTM is (5‘;“ 8‘;). Then (dz',dy") is dual basis of (5‘;,-, 622-)
basis. Let P be an almost product structure on T'M. So, we have

PX)=X,VX e x(HTM); P(X)=-X,YX € x(VTM)

P*(w) =w,Vw e x(HT*M); P*(w)=—w,Yw e x(VI*M),
where P* is the dual structure of P. Also, we have

o 0 0
Srt . Oxi *Ng(ﬂﬂay)@-

and
oyt = dy' + Nj’:(:c,y)dxj.

Taking into consideration the operators h,v, P, P*, J, J*constructed on the
distributions HT'M, VI'M, HT*M, VIT*M of bundles TM and T*M of M,
one writes the following equalities:

h+v=I P=2h—1, P=h—v, P=1—2v,

JP=J, PJ=—-J, J'P*=J" P*J"=-J",

W) = s, h(g) = 0, v() = 0, o) = 2

&%i - 5161'7 8215 5 ayia
P(W) = Sz P(Tyz) = T oyt

P*(da?) = dxt, P*(6y') = —d0y'.

1.1. Lagrangian Mechanical Systems on Distributions. Here, we
present Euler-Lagrange equations for classical mechanics structured by means
of almost product structure P under the consideration of the basis {%, 3%1-
on distributions HT'M and VT M of tangent bundle T'M of manifold M. Let
(x%,y%) be local coordinates. Also, let semispray be the vector field X given
by 0 0

A i
_ (2
X=X St X oy’
where the dot indicates the derivative with respect to time t. Then the vector
field given by

X' = XN

S0 i 0
=PX)=X'—-X —
v (X) ox* oy’
is called Liouville vector field on the bundle T'M. The maps given by T, P :

TM — R such that T = %mi(a}l)z, P = m;gh are called the kinetic energy and
the potential energy of the mechanical system, respectively. Where m; is the
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mass of a mechanical system having m particles, g is the gravity acceleration
and h is the distance to the origin of a mechanical system on the tangent
bundle 7M. Then L : TM — R is a map that satisfies the conditions: i)
L =T — P is a Lagrangian function, i) the function given by E;, = V(L) — L
is a Lagrangian energy. The operator ¢p shown by
T
ipw(X1, Xo, oo X)) = Y w(X1, .00, P(X5), .., Xy)
i=1
is said to be vertical derivation, where w € N"T'M, X; € x(T'M). The vertical
differentiation dp is given by
dp = [ip,d] =ipd — dip,

where d is the usual exterior derivation. It is well known that the closed
fundamental form is the closed 2-form given by ®; = —ddpL such that

dp : F(TM) — T*M.
Then we have

by = —(2da? + %(5yj)(5L dz’ — g—;éyi)

dxd ozt

= Feiserdr) Ndat — 6a§jay)i da? A oy" — 8y(jax)i Oy A dz' + 55570y A Oy’
and
(1.1)
ix®p = — X'l §ldrt + X0 O ) 4 X féf;;i Syt — X ;ﬂf?;y’i dz
S O(OL) o 5 i i OSL) ¢ i ' 2L sis i w' 9L s
-X OyJ 6t 51’ dr® 4+ X* OyJ st oy + X AyI Oy’ 51‘ oyt — X ByT Oy? oy’
Because the closed 2-form @, is in the symplectic structure, one obtains
0L . i0L
Er=V(L)-L=X'"—-X——-1L
L (L) ox? oy
and hence
_ i 8L goj ' 80L) g 8L g j
(12) dEL, = X' 5 55=dx’ —'X 527017 d) — $%dx?
) ; OL) < j ' 92L i 9L s,

By means of (0.1), (1.1), (1.2) we find

— X1 0L gy — X' DOL) g 4 L gy

oxddxt “ oylbat
; §(OL) i -t 2L i oL s.j _
-I-Xzézjayiéyj + X 5,795 oy + a—yjéyj =0.

Taking a curve o : R — T'M  being an integral curve of X, i.e. X (a(t)) = ==,
then we introduce the equations given by

d oL oL d OL OL

G~ 5 =0 G+ =

dt dx ox dt " Oy dy

(1.3)



78 8. MECHANICAL SYSTEMS ON DISTRIBUTIONS

Thus the equations obtained by (1.3) are shown to be Euler-Lagrange equa-
tions on HT'M horizontal and V'T'M vertical distributions, and then the triple
(TM,®r,X) is named to be a mechanical system with taking into account
almost product structure P especially and the basis { 52502-, 8‘31-} on the distri-
butions HT'M and VT M.

2. Hamiltonian Mechanical Systems on Distributions

Now, here we obtain Hamiltonian equations for classical mechanics con-
structed on the distributions HT*M and VT*M. By P*, A and w we denote an
almost product structure, a Liouville form and a 1-form on T* M, respectively.
Then we can write

w= %(yidwi + 2'0y")
and 1 .. o
A= P (w) = §(gfdacZ —x'0y").
As ¢ is a closed 2- form on T*M, then ¢y is also a symplectic structure on
T*M. If Hamiltonian vector field X is given by
0 0

Xyp=X'—4YVi_—
a (5xz+ oy’

then we have
b = —d)\ = —8y* A dx’

and
(2.1) ixy ¢ = —Yide' + X'y
Besides, the differential of Hamiltonian energy is
(2.2) dH = gidazi + giayi.
By (0.3), (2.1), (2.2), one finds

_O0H 6 0H 0

2. Xg=———— ——.
(23) a oyt dx* bzt Oy

Consider that a curve
a:lCR—-T'M
be an integral curve of the Hamiltonian vector field Xy, i.e.,

(2.4) Xpr(aft)) = 920

dt
Then we can write the equations

,tel.

da(t) dxt §  dy* O
2. — = — 4+ ——
(25) dt dt Szt + dt oyt’
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in the local coordinates. Using (2.3), (2.4), (2.5), one gets the result equations
as follows:

dxt _ OH dy’ ~_ O0H
dt — Oy’ dt  oxt
Thus, the equations (2.6) are named to be Hamilton equations on the hori-
zontal distribution HT™* M and vertical distribution VI M, and then the triple
(T*M, ¢, Xp) is seen to be a Hamiltonian mechanical system with the use of
almost product structure P* and basis {%, 9.1 on the distributions HT™*M

oy’
and VT™*M.

(2.6)

CONCLUSION 8. Lagrangian and Hamiltonian dynamics have intrinsically
been described with almost product structure and taking into account the ba-
sis {5‘;, 8‘;} and dual basis (dxt,5y') on distributions of tangent and cotan-
gent bundles TM and T*M of manifold M. As is well known, geometry of
Lagrangians and Hamiltonians introduces a model for relativity, Gauge the-
ory, electromagnetism, quantum mechanics, analytical mechanics and classical
fields theory. These geometrical models determine the characteristics proper-
ties of these physical fields. Therefore we say that the equations (1.3) and
(2.6) especially can be used in the above fields.







CHAPTER 9

Bi-Para Mechanical Systems on Lagrangian
Distributions

Some works in paracomplex geometry are used for mathematical models.
These works can be the papers numbered as [14, 38, 39, 40| at the end of
this document. The first reference is a well-known survey about paracomplex
geometry. In the second reference the authors study the paraholomorphic
functions and manifolds modelled over the paracomplex numbers. The last
reference is the classical paper about paracomplex structures of Kaneyuki and
Kozai. As known, Lagrangian foliations on symplectic manifolds are used in
geometric quantization and a connection on a symplectic manifold is an impor-
tant structure to obtain a deformation quantization. A para-K&hler manifold
M is said to be endowed with an almost bi-para-Lagrangian structure (a bi-
para-Lagrangian manifold) if M has two transversal Lagrangian distributions
(involutive transversal Lagrangian distributions) D; and Do [35].

In this chapter, equations related to bi-para-mechanical systems on the
bi-Lagrangian manifold given in [41] and used in obtaining geometric quanti-
zation have been presented.

1. Bi-Para-Complex Geometry

An almost bi-para-complex structure on a differentiable manifold is given
by two tensor fields F' and P of type (1, 1) verifying F?2 = P2 =1, Fo P +
PoF =0 (see [35]). The name of bi-para-complex manifold is due to the
existence of two almost paracomplex structures on M, the tensor fields F' and
P. Note that P o F' is an almost complex structure.

If the G-structure defined by the almost bi-para-complex structure is in-
tegrable then for every point p € M there exists an open neighborhood U of
p and local coordinates (U; a1, ...,z", y!, ...,y™) such that

F(0/0z") = 9/oy',F(0/0y") = d/ox",
P(8/0z") = 0/0x',P(d/oy") = —0/dy' Vi=1,...,n,

(see [42]). The existence of these kind of local coordinates on M permit

to construct holomorphic local coordinates, (U; 21, ..., 2"), 2 =ak gk k=
1,...,n, or paraholomorphic local coordinates, (U; 21, ..., 2"), 2P =2k ik k=
1,...,n, where iZ2 = —1 and j? = 1 (see [38, 40)).

81
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A para-Kéahler manifold (M, g, J) always posses two transversal distribu-
tions defined by the eigenspaces associated to the +1 and —1 eigenvalues of
J. Moreover, these distributions are involutive Lagrangian distributions if one
considers the symplectic form ® defined by

D(X,Y) = g(JX,Y),VX,Y € y(M).

Let (¢, y%) be a real coordinate system on a neighborhood U of any point p
of M, and let {(%)p, (%)p} and {(d:pi)p, (dyi)p} be natural bases over R of
the tangent space T),(M) and the cotangent space T,;(M) of M, respectively.
Then the definitions can be given by

0 0 0 0

Let 2! = '+ jy’, j?> = 1, also be a para-complex local coordinate system on
a neighborhood U of any point p of M. The vector fields can then be shown:

(oo = 3L~ oz = 3+

And the dual covector fields are:
(d2"), = (da') +i(dy")p, (d2'), = (dz'), —i(dy)y,

which represent the bases of the tangent space T),(M) and cotangent space
1, (M) of M, respectively. Then the following expression can be found

0 .0 0 . 0
M) =g 1) =gz
The dual endomorphism J* of the cotangent space T} (M) at any point p of
manifold M satisfies that J*? = I, and is defined by

J*(d2Y) = —jdz*, J*(dZ') = jdz".

Let V4 be a commutative group (V,+) endowed with a structure of unitary
module over the ring A of para-complex numbers. Let V% denote the group
(V,+) endowed with the structure of real vector space inherited from the
restriction of scalars to R. The vector space V% will then be called the real
vector space associated to V4. Setting

J(u) = ju, PT(u) = etu, P~ (u) = e u, u e VA4,
the expressions
JP=1y, P2 =pt P 2=pP  PtoP =P oPt=0
Pt4+P =1y, Pt - P =],
P~ = (1/2)(1y — J), P* = (1/2)(1y + J),

j2=1,et2=¢t, e2=¢",etoe" =e 0et =0,
e =L et e = e = (1/2)(1— ), e = (1/2)(1+J).
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can be written. Also, it is found that

Jdy\_ 0 _ 0 Jd\_ 0 _ 0
J(W@) = By _J(?a J(a%i) = 947 a—JTym
PT(g5) = =€ 5, PT(gz) = ¢ g
P*F(dz") = —eTdz', P*T(dz") = eTdz".

If the manifold (M, g,J = PT — P7) satisfies the following conditions simul-
taneously then the manifold is an almost para-Hermitian manifold. The first
condition can be written as follows:

(L1)  g(X,Y)+g(X,Y) =0 g(X.Y) =0, VX,Y € x(Dy).
Because PT and P~ are the projections over D; and D5 respectively, then
(Pt—P ) X)=P"X-P X=P"X=X,(PT—P)(Y)=P'Y-P Y =
PTY =Y. Analogously we can write the second condition as follows
(1.2) gX)Y)+9(X,Y) =0+ g(X,Y) =0, VXY € x(D2).
Let X = X1 + X5,Y = Y7 +Y5 be vector fields on M such that X;,Y; € D,
and Xo,Y5 € Dy. Then
g(JX, Y) = g(JXl +JXo, Y1 + YQ) = g(X1 - X0, Y1 + YQ)
= g(XlaYl)_g(X27}/1)+g(X17Y2)_g(X27Y2)
= _g(XQayl) +g(X1a}/2)7

g(X,JY) = g(Xi+ Xo, JY1 +JY2) = g(X1 + X2,Y1 — Y2)

= g(X1,Y1) +9(X2, Y1) — g(X1,Y2) — g(X2,Y)

= g(X27 Yl) - g(X17 Y2)7
and hence g(JX,Y)+¢g(X,JY) = —g(X2, Y1)+9(X1, Y2)+9(Xo, Y1)—9g(X1,Y2)
0, for all vector fields X,Y on M. If the conditions (1.1) and (1.2) are true
then D; and Dy Lagrangian distributions respect to the 2- form ®(X,Y) =
g(J X, Y ). Therefore, if the almost paracomplex structure J is integrable then
(M,g,J) is para-Kéhler manifold, or equivalently, (M,®,D;,Ds) is a bi-
Lagrangian manifold.

2. Bi-Para-Lagrangians

In this section, bi-para-Euler-Lagrange equations and a bi-para-mechanical
system can be obtained for classical mechanics structured under the consider-
ation of the basis {e™, e} on bi-Lagrangian manifold.

Let (P, P™) be an almost bi-para-complex structure on the bi-Lagrangian
manifold, and (z%,%') be its paracomplex structures. Let semispray be the
vector field € given by

et +207e; 2= et + e = Tet + e

— i =i =i+ i —i+ —i— _
=Ztet 47 e ;2 =2 et 42 e =& et +E& e

. 7+ o . —_
f': e+<£z+82i +§Z 3(;) +e (& 321’ +§l - );
2=
z
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where the dot indicates the derivative with respect to time ¢. The vector field
denoted by V = (PT — P7)(&) and given by
" _ e O iy 0 e 0 - 0
is called bi-para-Liouville vector field on the bi-Lagrangian manifold. The
maps given by T,P : M — A such that T = %mz(?‘)Q = %mi(zi)Q,P =
m;gh are called the kinetic energy and the potential energy of the system,
respectively. Here m;, g and h stand for mass of a mechanical system having
m particles, the gravity acceleration and distance to the origin of a mechanical
system on the bi-Lagrangian manifold, respectively. Then L : M — A is a map
that satisfies the conditions; i) L = T — P is a bi-para-Lagrangian function,
i1) the function given by Ep = V(L) — L is a bi-para-energy function.
The operator i(p+_p-y induced by P* — P~ and shown by

r

ipr_p-w(Z1, 22, Zy) = > w(Z1,...(PY = P24, ..., Zy)
i=1
is said to be wertical derivation, where w € N"M, Z; € x(M). The vertical
differentiation d p+_p-y is defined by

dip+_p-y = [i(p+—p-),d] = i(p+ _p-yd — di(p+_p-)

where d is the usual exterior derivation. For an almost para-complex structure
Pt — P, the closed para-Kéhler form is the closed 2-form given by ®; =

—dd, . _ L such that
(PH—pP-)
dpi_py = etB—e B:F(M)— A'M
where 5 5
B=——"4d 7.
0z" S 07" *
Then
(I)L = €+C —e C
where
0L , - 9%L 4 -
Cc = ——dz) Nd2'————d2? NdZ
02702" “ i 02107" “ i
9?L ~ : 9L , :
——dz? NdZt — —dz’ A dZ.
MG A =T = A

Let £ be the second order differential equation satisfying Eq. (0.1) and

ie®p = et [¢ 2L §iqyi ¢ L _qui it L 5l gziy g7 0L,

) 8Zj8;’_:; i ) szazi ) 0210z —iZ- ) 0230%"
i+ L i o Ft 02L sigi FT 2L sigmi . £t 9L oj
T gz 7 + & apa0ide’ — & 555 0ldE + 6 55 o5 47|
N 2 - . . 2 . . 2 - . = 2 .
Ve [8 glga bl At + € T hndy v & e 6ldr — € Jhhady
i— 2L 3=j _ F 8L sigi o £ 02L §i =i £ 02L =5
g d7 — & g 0iddt + 8 gpm0idZ =& Gapmd?]
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Since the closed para-Kahler form ®; on M is the para-symplectic structure,
FE, is written as follows:

E; = e-i—(_gi-&-% _I_g'“r aL) + e (gi- oL  Fi— 8L) iy

0z 9zt 0z
and thus
_ it 0L g g+ 4 FT 0L g g+ _git 0L =i+
d€L+_625 92007 dz S~ +¢ azmggdz e ¢ Qgﬂ‘azgg'z ¢
L gzjet _ 9°Lg.i i— 0L j.j,— _ ¢ _0°L 3.5 .—
+¢ 027" dzle™ — 55 d,22 +& gez ‘jz e” —& pomddle
ie 2L i~ F— 2L g~ 02L j=i
' g dF e — & o mde G dz".

With the use of Eq. (0.1), the following expression can be obtained:

. 2 . . 2 : —i+ 52 . =i+ 52 .
gt 0L _goiet — git 0L griet 4 ¢ 9L _griet O°L_dziet

9305 02102 021051 G0
- 0L e~ i— _O°L_zje— _¢'" _O9°L i — o ' _0%L P
& g ddleT + & gandRleT — & popnddeT +§ Gapmdee

0L j.i 4 0°L j=i _
+Wd22 + ﬁdzl = 0
If a curve denoted by o : A — M is considered to be an integral curve of &,
then the equations given in the following are

(et —e)([6% 52 +ET %] e + [6m % + T % e ) (@h)dx
(e —e) (= [67 5% + T | et - [ % +E L] ) ()
+5Ldz7 + 2Ldzl = 0.

Then the following equations are found:

—\@ (OLY . OL _ — o (oL oL _
(2.1) (et —e)g (52) + 5 =0, (eF —eT)f (azi) oz — O

Thus the equations obtained in Eq. (2.1) are seen to be a bi-para-Euler-
Lagrange equations on the distributions D and Ds, and then the triple (M, @, &)
is seen to be a bi-para-mechanical system with taking into account the basis
{e™,e”} on the bi-Lagrangian manifold (M, ®, Dy, Ds).

3. Bi-Para-Hamiltonians

Here, bi-para-Hamilton equations and bi-para-Hamiltonian mechanical sys-
tem for classical mechanics structured on the bi-Lagrangian manifold (M, ®, D1, D3)
are derived.

Let (z;,%;) be paracomplex coordinates. Let {%“” %\p} and {dz;|p, dZi[p }
be bases over para-complex number A of tangent space T,(M) and cotan-
gent space T;(M ) of M, respectively. Assume that an almost bi-para-complex
structure, a bi-para-Liouville form and a bi-para-complex 1-form on the dis-
tributions Dy and D, are shown by P** — P*~ X and w, respectively. Then
w = L(zidz; + Zidz)et + (2dz; + Zidz)e™| and A = (P*F — P*7)(w) =
%[(zidz- —zidz;)et —(2;dz;—7Z;dz;)e” . Tt is concluded that if @ is a closed para-
Kahler form on the bi-Lagrangian manifold, then ® is also a para-symplectic
structure on the bi-Lagrangian manifold.
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Consider that bi-para-Hamiltonian vector field Zy associated with bi-para-
Hamiltonian energy H is given by

Zy = (Zia({; +Zz-£i)eJr + (Zz-aii +Zi£i)e‘.
Then
® = —d\= (e" —e7)(dz; Ndz),
and

(3.1) lz,® = @(ZH) = (Zidzi—Zz‘dEi)6+ + (—7idzi—|-Zid§i)€7.
Moreover, the differential of bi-para-Hamiltonian energy is obtained as follows:

OH oH _ .  OH OH _ = _
(32) dH = (8721de + aizidzl)e -+ (821 dZZ + aizidzz)e .
By means of Eq.(0.1), using Eq. (3.1) and Eq. (3.2), the bi-para-Hamiltonian
vector field is found to be
(_3Hi+8H8)e++(5Hi_8Ha .
0z; 0z; 0z; 0%; 0z; 0z; 0z; 0%; '

Suppose that a curve

(3.3)  Zy =

a:ICA—-M

be an integral curve of the bi-para-Hamiltonian vector field Zy, i.e.,
(3.4) Zg(a(t)) =a(t), tel.
In the local coordinates, it is obtained that

a(t) = (z(t), zi(t))

and
dz; O dz; 0 dzii dz; 0

. - - —_— + e - B
(3.5) 0=Cr ot wos) Cwan T @)

Under the consideration of Egs. (3.3), (3.4), (3.5), the following results can
be obtained:

dZi

dz OH dzi _ (. -\0H
di

oz dr T g
Hence, the equations obtained in Eq. (3.6) are seen to be bi-para Hamilton
equations on the bi-Lagrangian manifold (M, ®, Dy, D), and then the triple

(M, ®, Zy) is seen to be a bi-para-Hamiltonian mechanical system with the
use of basis {e*, e~} on the bi-Lagrangian manifold (M, ®, Dy, D5).

(3.6) =—(et —e7)

CONCLUSION 9. This chapter has shown to exist physical proof of the math-
ematical equality given by M = D1 @ Ds. Also, formalisms of Lagrangian and
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Hamiltonian mechanics have intrinsically been described with taking into ac-
count the basis {e*,e~} on the bi-Lagrangian manifold (M,®, Dy, Ds). Bi-
para-Lagrangian and bi-para-Hamiltonian models arise to be a very impor-
tant tool since they present a simple method to describe the model for bi-para-
mechanical systems. In solving problems in classical mechanics, the bi-para-
complex mechanical system will then be easily usable model. With the use
of the corresponding approach, thus, a differential equation resulted in me-
chanics is seen to have a non-trivial solution. J. W. Moffat’s theory using
paracomplex geometry in gravitational field of physics has been a controversial
one. Since physical phenomena, as well-known, do not take place all over the
space, a new model for dynamical systems on subspaces is needed. Therefore,
equations (2.1) and (3.6) are only considered to be a first step to realize how
bi-para-complex geometry has been used in solving problems in different phys-
ical area. For further research, bi-para-complexr Lagrangian and Hamiltonian
vector fields derived here are suggested to deal with problems in electrical, mag-
netical and gravitational fields of physics.
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