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Mechanical Systems on Manifolds

Mehmet TEKKOYUN

Dedicated to the memory of my father and mother

Abstract. As-well known, modern differential geometry is a suitable
frame for studying Lagrangian and Hamiltonian formalisms of classical me-
chanics. More clearly, dynamics of Lagrangians and Hamiltonians is explicitly
explained by differential geometry tools. Therefore, this study has intended to
collect the analogues of Euler- Lagrange and Hamilton equations about me-
chanical systems on manifolds produced by Author. Also the geometrical and
physical results on related mechanical systems are presented. Mechanical sys-
tems introduced here can be used to model problems in electrical, magnetical
and gravitational fields of quantum and classical mechanics of physics.

AMS 2010 Mathematical Classification: 53C15, 70H03, 70H05.

Brief presentation of the contents

This monograph collects analogues of Euler-Lagrange and Hamilton equa-
tions, mechanical systems, energy functions and fields obtained by means of
the differentiable structures on manifolds, tangent and cotangent bundles.

In Chapter 1, preliminaries and notations are given. Clearly, Lagrangian
and Hamiltonian formalisms, quaternion and Clifford manifolds are shortly
introduced.

In Chapter 2, we introduce Euler-Lagrange and Hamilton equations on
(R2, g, J) and (R2n

n , g, J) being models of para-Kähler space forms. Finally,
some geometrical and physical results on the related mechanical systems have
been derived.

In Chapter 3, we present standard Clifford Kähler analogues of Hamilton-
ian and Lagrangian mechanics. Also, the some geometric and physical results
related to the standard Clifford Kähler dynamical systems are given.

In Chapter 4, Clifford Kähler analogues of Lagrangian and Hamiltonian
dynamics are introduced. Also, the some geometrical and physical results over
the obtained Clifford Kähler dynamical systems are discussed.

In Chapter 5, we give the further steps of the previously done studies tak-
ing into consideration analogues of Lagrangian and Hamiltonian mechanics.
Presently, considering quaternion Kähler manifolds, we introduce quaternion
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Kähler analogue of Lagrangian mechanics. Then a quaternion Kähler ver-
sion of Hamilton equations is obtained. Finally, the some results related to
quaternion Kähler Lagrangian and Hamiltonian dynamical systems are also
given.

In Chapter 6, we present equations related to Lagrangian and Hamiltonian
mechanical systems on para-quaternion Kähler manifold. Finally, the some
results related to para- quaternion Kähler mechanical systems are also given.

In Chapter 7, we make a contribution to the modern development of La-
grangian formalisms of classical mechanics in terms of differential-geometric
methods on differentiable manifolds. So, we obtain complex and paracomplex
Euler-Lagrange equations with constraints on the (para) Kähler manifold.

In Chapter 8, by means of an almost product structure, we present Euler-
Lagrange and Hamilton equations related to mechanical systems on the hor-
izontal and vertical distributions of the bundles used in obtaining geometric
quantization. In conclusion, we give some results related to mechanical sys-
tems.

In Chapter 9, equations related to bi-para-mechanical systems on the bi-
Lagrangian manifold used in obtaining geometric quantization have been pre-
sented. Finally, some geometric and physical results related to dynamical
systems are given.

This book addresses to mathematicians, engineers, physics researches and
graduate students within the field, as primary comprehensive resource.

Prof.Dr. Mehmet Tekkoyun



Contents

Chapter 1. Preliminaries and Notations 5

Chapter 2. Mechanical Systems on Para-Kähler Space Forms 7
1. Mechanical Systems on (R2, g, J) 7
2. Mechanical Systems on (R2n

n , g, J) 12

Chapter 3. Mechanical Systems on Standard Clifford Kähler Manifolds 17

Chapter 4. Mechanical Systems on Clifford Kähler Manifolds 29

Chapter 5. Mechanical Systems on Quaternion Kähler Manifolds 41

Chapter 6. Mechanical Systems on Para-Quaternion Kähler Manifolds 51

Chapter 7. Mechanical Systems with Constraints 61
1. Constrained Complex Mechanical Systems 61
2. Constrained Paracomplex Mechanical Systems 65

Chapter 8. Mechanical Systems on Distributions 75
1. Manifolds, Bundles and Distributions 75
2. Hamiltonian Mechanical Systems on Distributions 78

Chapter 9. Bi-Para Mechanical Systems on Lagrangian Distributions 81
1. Bi-Para-Complex Geometry 81
2. Bi-Para-Lagrangians 83
3. Bi-Para-Hamiltonians 85

Bibliography 89

3





CHAPTER 1

Preliminaries and Notations

Modern differential geometry is a suitable frame for studying Lagrangian
formalisms of classical mechanics. More clearly, dynamics of Lagrangians is
explicitly explained by differential geometry terms. It is well-known that the
dynamics of Lagrangian systems is characterized by a convenient vector field ξ
defined on the tangent bundles which are phase-spaces of velocities of a given
configuration manifold Q. If Q is an m-dimensional configuration manifold
and L : TQ → R is a regular Lagrangian function, then there is a unique
vector field ξ on TQ such that dynamics equations is determined by

(0.1) iξΦL = dEL

where ΦL indicates the symplectic form and EL is energy associated to L. The
triple, either (TQ, ωL, ξ) or (TQ, ωL, L), is called Lagrangian system on the
tangent bundle TQ.

The so-called Euler-Lagrange vector field ξ is a semispray (or second order
differential equation) on Q since its integral curves are the solutions of the
Euler-Lagrange equations as follows:

(0.2)
d

dt
(
∂L

∂
.
qi

)− ∂L

∂qi
= 0.

Also, differential geometry provides a good framework in which develop the
dynamics of Hamiltonians. One may say that Hamiltonian systems are char-
acterized by a suitable vector field X defined on the cotangent bundles which
are phase-spaces of momentum of a given configuration manifold Q. There-
fore, if Q is an m-dimensional configuration manifold and H : T ∗Q → R is
a Hamiltonian energy function, then there is a unique vector field X on T ∗Q
such that dynamics equations are given by

(0.3) iXΦ = dH

where Φ indicates the symplectic form. The triple, either (T ∗Q, ω, ZH) or
(T ∗Q,ω, H), is called Hamiltonian system on the cotangent bundle T ∗Q en-
dowed with symplectic form ω.

The paths of the Hamiltonian vector field X are the solutions of the Hamil-
ton equations shown by

(0.4)
dqi

dt
=

∂H

∂pi
,

dpi

dt
= −∂H

∂qi
,

5



6 1. PRELIMINARIES AND NOTATIONS

where qi and (qi, pi) are respectively coordinates of Q and T ∗Q.
It is well-known that quaternions are useful for representing rotations in

both quantum and classical mechanics [1]. Quaternions are introduced by Sir
William Rowan Hamiltonian. Hamiltonian’s expression is as follows:

(0.5) i2 = j2 = k2 = ijk = −1.

If it is compared to the calculus of vectors, quaternions have slipped into
the realm of obscurity. They do however still find use in the computation of
rotations. By means of quaternions, it is possible to state many physical laws
in classical, relativistic, and quantum mechanics. Some researches hope to
find deeper understanding of the universe using quaternion algebra.

It is well known that Clifford manifold is a quaternion manifold. So, all
properties defined on quaternion manifold of dimension 8n also is valid for
Clifford manifold.

As well-known, there are many studies about Lagrangian and Hamiltonian
mechanics, formalisms, systems and equations such that time-dependent or
not, constraint, real, complex, paracomplex and other analogues [2]-[10] and
there in. So, we see that it is possible to produce different analogues in different
spaces.

We may say that the goal of finding new dynamics equations is both a new
expansion and contribution to science to explain physics and cosmos events.

Throughout this paper, all mathematical objects and mappings are as-
sumed to be smooth, i.e. infinitely differentiable and Einstein convention of
summarizing is adopted. F(M), χ(M) and Λ1(M) denote the set of functions
on M , the set of vector fields on M and the set of 1-forms on M , respectively.



CHAPTER 2

Mechanical Systems on Para-Kähler Space Forms

In this chapter, we introduce Euler-Lagrange and Hamilton equations on
(R2, g, J) and (R2n

n , g, J) being models of para-Kähler space forms given by
[11, 12]. Finally, some geometrical and physical results on the related me-
chanical systems have been derived.

1. Mechanical Systems on (R2, g, J)

The aim of this section is to introduce Euler-Lagrange and Hamilton equa-
tions on R2 which is a model of para-Kähler manifolds of a para-Kähler space
form or constant J-sectional curvature. In conclusion, some geometrical and
physical results on the related mechanic systems are given.

1.1. Para-Kähler Space Forms. Let M be a manifold endowed with
an almost product structure J 6= ∓Id; which is a (1; 1)-tensor field such that
J2 = Id. We say that (M, J) (resp.(M, J, g)) is an almost product (resp.
almost Hermitian) manifold, where g is a semi-Riemannian metric on M with
respect to which J is skew-symmetric, that is

(1.1) g(JX, Y ) + g(X, JY ) = 0, ∀X,Y ∈ χ(M).

Then (M, J, g) is para-Kähler if J is parallel with respect to the Levi-Civita
connection.

Let (M, J, g) be a para-Kähler manifold and let denote the curvature (0,
4)-tensor field by

R(X,Y, Z, V ) = g(R(X,Y )Z, V ), ∀X, Y, Z, V ∈ χ(M),

where the Riemannian curvature (1, 3)-tensor field associated to the Levi-
Civita connection ∇ of g is given by R =[∇,∇] -∇[ , ]. Then

R(X,Y, Z, V ) = −R(Y, X,Z, V ) = −R(X, Y, V, Z) = R(JX, JY, Z, V )
and

∑
σ
R(X,Y, Z, V ) = 0,

where σ denotes the sum over all cyclic permutations. We know that the
following (0,4)-tensor field is defined by

R0(X, Y, Z, V ) = 1
4{g(X,Z)g(Y, V )− g(X,V )g(Y, Z)

−g(X, JZ)g(Y, JV ) + g(X,JV )g(Y, JZ)− 2g(X, JY )g(Z, JV )}
where ∀X,Y, Z, V ∈ χ(M). For any p ∈ M , a subspace S ⊂ TpM is called
non-degenerate if g restricted to S is non-degenerate. If {u, v} is a basis of a

7



8 2. MECHANICAL SYSTEMS ON PARA-KÄHLER SPACE FORMS

plane σ ⊂ TpM , then σ is non-degenerate iff g(u, u)g(v, v)− [g(u, v)]2 6= 0. In
this case the sectional curvature of σ = span {u, v} is

k(σ) =
R(u, v, u, v)

g(u, u)g(v, v)− [g(u, v)]2

From (1.1) it follows that X and JX are orthogonal for any X ∈ χ(M). By a
J-plane we mean a plane which is invariant by J . For any p ∈ M , a vector u
∈ TpM is isotropic provided g(u, u) = 0. If u ∈ TpM is not isotropic, then the
sectional curvature H(u) of the J-plane span {u, Ju} is called the J-sectional
curvature defined by u. When H(u) is constant, then (M, J, g) is called of
constant J-sectional curvature, or a para-Kähler space form [13, 14].

Theorem 1. [13, 15] Let (M,J, g) be a para-Kähler manifold such that
for each p ∈ M , there exists cp ∈ R satisfying H(u) = cp for u ∈ TpM such
that g(u, u)g(Ju, Ju) 6= 0.Then the Riemann- Christoffel tensor R satisfies
R = cR0, where c is the function defined by p → cp. And conversely.

Definition 1. A para-Kähler manifold (M, J, g) is said to be of constant
paraholomorphic sectional curvature c if it satisfies the conditions of Theorem
1.

Theorem 2. [13, 15]. Let (M, J, g) be a para-Kähler manifold with
dimM > 2. Then the following properties are equivalent:

1) M is a space of constant paraholomorphic sectional curvature c
2) The Riemann- Christoffel tensor curvature tensor R has the expression

R(X,Y, Z, V ) =
c

4
{g(X, Z)g(Y, V )− g(X, V )g(Y, Z)− g(X,JZ)g(Y, JV )

+g(X,JV )g(Y, JZ)− 2g(X, JY )g(Z, JV ),

where ∀X, Y, Z, V ∈ χ(M).
Let (x, y) be a real coordinate system on a neighborhood U of any point

p of R2, and {( ∂
∂x)p, ( ∂

∂y )p} and {(dx)p, (dy)p} natural bases over R of the
tangent space Tp(R2) and the cotangent space T ∗p (R2) of R2, respectively.

The space (R2, g, J), is the model of the para-Kähler space forms of dimen-
sion 2 and paraholomorphic sectional curvature c 6= 0, where g is the metric
given by

g =
4
c

(
cosh2 2ydx⊗ dx− dy ⊗ dy

)
, 0 6= c ∈ R,

and J is the almost product structure determined by

J = − 1
cosh 2y

∂

∂x
⊗ dy − cosh 2y

∂

∂y
⊗ dx.

Then we have

(1.2) J(
∂

∂x
) = − cosh 2y

∂

∂y
, J(

∂

∂y
) = − 1

cosh 2y

∂

∂x
.



1. MECHANICAL SYSTEMS ON (R2, g, J) 9

The dual endomorphism J∗ of the cotangent space T ∗p (R2) at any point p of
manifold R2 satisfies J∗2 = Id and is defined by

(1.3) J∗(dx) = − cosh 2ydy, J∗(dy) = − 1
cosh 2y

dx.

1.2. Lagrangian Mechanics. In this subsection, we find Euler-Lagrange
equations for classical mechanics constructed on para-Kähler space form (R2, g, J).

Denote by J the almost product structure and by (x, y) the coordinates
of R2. Assume that semispray be a vector field as follows:

ξ = X
∂

∂x
+ Y

∂

∂y
, X =

.
x = y, Y =

.
y.

By Liouville vector field on para-Kähler space form (R2, g, J), we call the
vector field determined by V = Jξ and calculated by

Jξ = − 1
cosh 2y

.Y
∂

∂x
− cosh 2y.X

∂

∂y
,

Given T by the kinetic energy and P by the potential energy of mechanics
system on para-Kähler space form. Then we write by L = T − P Lagrangian
function and by EL = V (L)− L the energy function associated L.

Operator iJ defined by

iJ : ∧2R2 → ∧1R2, iJ(ω)(X) = ω(X, JX)

is called the interior product with J , or sometimes the insertion operator,
or contraction by J , where ω ∈ ∧2R2, X ∈ χ(R2). The exterior vertical
derivation dJ is defined by

dJ = [iJ , d] = iJd− diJ ,

where d is the usual exterior derivation. For almost product structure J
determined by (1.2), the para-Kähler form is the closed 2-form given by
ΦL = −ddJL such that

dJ = − cosh 2y.
∂

∂y
dx− 1

cosh 2y
.

∂

∂x
dy : F(R2) → ∧1R2.

Thus we get

ΦL = cosh 2y
∂2L

∂a∂y
da ∧ dx + cosh 2y

∂2L

∂b∂y
db ∧ dx

+
1

cosh 2y

∂2L

∂a∂x
da ∧ dy +

1
cosh 2y

∂2L

∂b∂x
db ∧ dy.

where (a, b) is other coordinates of R2. Also, one may find

EL = − 1
cosh 2y

.Y
∂L

∂x
+ cosh 2y.X

∂L

∂y
− L.
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Considering (0.1), we calculate

cosh 2y.X ∂2L
∂a∂ydx + cosh 2y.Y ∂2L

∂b∂ydx

+ 1
cosh 2y .X ∂2L

∂a∂xdy + 1
cosh 2y .Y ∂2L

∂b∂xdy + ∂L
∂x dx + ∂L

∂y dy = 0.

If the curve α : I ⊂ R → R2 be integral curve of ξ, we get equations

(1.4) cosh 2y
∂

∂t

(
∂L

∂y

)
+

∂L

∂x
= 0,

1
cosh 2y

∂

∂t

(
∂L

∂x

)
+

∂L

∂y
= 0.

Thus we may prove the following:

Proposition 1. Let ξ the semispray on (R2, g, J). Then the paths of ξ
are solutions of Euler-Lagrange equations given by

cosh 2y
∂

∂t

(
∂L

∂y

)
+

∂L

∂x
= 0,

1
cosh 2y

∂

∂t

(
∂L

∂x

)
+

∂L

∂y
= 0,

on para-Kähler space form (R2, g, J).

Proposition 2. Let J almost product structure on para-Kähler space form
(R2, g, J).Also let (f1, f2) be natural bases of R2.Then it follows

cosh 2y.J(f2) + f1 = 0 ⇐⇒ cosh 2y.
.
f2,L + f1,L = 0,

1
cosh 2yJ(f1) + f2 = 0 ⇐⇒ 1

cosh 2y .
.
f1,L + f2,L = 0,

where f1,L = ∂L
∂x , f2,L = ∂L

∂y ,
.
f1,L = ∂

∂t(
∂L
∂x ),

.
f2,L = ∂

∂t(
∂L
∂y ).

Finally one may say that the triple (R2,ΦL, ξ) is mechanical system on
para-Kähler space form (R2, g, J).

1.3. Hamiltonian Mechanics. In this subsection, we conclude Hamil-
ton equations for classical mechanics structured on para-Kähler space form
(R2, g, J).

Let J∗ be an almost product structure defined by (1.3) and λ Liouville form
determined by J∗(ω) = −x cosh 2ydy − y 1

cosh 2ydx such that ω = xdx + ydy

1-form on R2. If Φ = −dλ is closed para-Kähler form, then it is also a para-
symplectic structure on R2.

Let (R2, g, J) be para-Kähler space form fixed with closed para-Kähler
form Φ. Suppose that Hamiltonian vector field ZH associated to Hamiltonian
energy H is given by

ZH = X
∂

∂x
+ Y

∂

∂y
.

For the closed para-Kähler form Φ on R2, we have

Φ =
cosh2 2y − 1

cosh 2y
dx ∧ dy.
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Then it follows

(1.5) iZH
Φ = −cosh2 2y − 1

cosh 2y
Y dx +

cosh2 2y − 1
cosh 2y

Xdy.

Otherwise, we find the differential of Hamiltonian energy as follows:

(1.6) dH =
∂H

∂x
dx +

∂H

∂y
dy.

From (1.5) and (1.6) with respect to (0.3), we find para-Hamiltonian vector
field on para-Kähler space form to be

(1.7) ZH =
cosh 2y

cosh2 2y − 1
∂H

∂y

∂

∂x
− cosh 2y

cosh2 2y − 1
∂H

∂x

∂

∂y
.

Assume that the curve
β : I ⊂ R → R2

be an integral curve of Hamiltonian vector field ZH , i.e.,

(1.8) ZH(β(t)) =
.
β, t ∈ I.

In the local coordinates we get

β(t) = (x(t), y(t)),

and

(1.9)
.
β(t) =

dx

dt

∂

∂x
+

dy

dt

∂

∂y
.

Now, by means of (1.8), from (1.7) and (1.9), we deduce the equations

(1.10)
dx

dt
=

cosh 2y

cosh2 2y − 1
∂H

∂y
,

dy

dt
= − cosh 2y

cosh2 2y − 1
∂H

∂x
.

Thus we may prove the following:

Proposition 3. Let ZH be the vector field on (R2, g, J). Then the paths
of ZH are solutions of Hamilton equations determined by

dx

dt
=

cosh 2y

cosh2 2y − 1
∂H

∂y
,
dy

dt
= − cosh 2y

cosh2 2y − 1
∂H

∂x

on para-Kähler space form (R2, g, J).
In the end, we may say to be para-mechanical system (R2, Φ, ZH) triple

on para-Kähler space form (R2, g, J).

Conclusion 1. From above, we understand that Lagrangian and Hamil-
tonian formalisms in generalized classical mechanics and field theory can be
intrinsically characterized on (R2, g, J) being a model of para-Kähler space
forms. So, the paths of semispray ξ on R2 are the solutions of the Euler-
Lagrange equations given by (1.4) on the mechanical system (R2, ΦL, ξ). Also,
the solutions of the Hamilton equations determined by (1.10) on the mechanical
system (R2, Φ, ZH) are the paths of vector field ZH on R2.
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2. Mechanical Systems on (R2n
n , g, J)

The goal of this section is to present Euler-Lagrange and Hamilton equa-
tions on R2n

n which is a model of para-Kähler manifolds of constant J-sectional
curvature or a para-Kähler space form. In conclusion, some differential geo-
metrical and physical results on the related mechanic systems have been given.

Let (xi, yi) be a real coordinate system on a neighborhood U of any point
p of R2n

n , and {( ∂
∂xi

)p, ( ∂
∂yi

)p} and {(dxi)p, (dyi)p} natural bases over R of the
tangent space Tp(R2n

n ) and the cotangent space T ∗p (R2n
n ) of R2n

n , respectively.
The space (R2n

n , g, J), is the model of the para-Kähler space forms of di-
mension 2n ≥ 2 and paraholomorphic sectional curvature c = 0, where g is
the metric given by

g = dxi ⊗ dyi + dyi ⊗ dxi,

and J is the almost product structure defined by

J =
∂

∂xi
⊗ dxi − ∂

∂yi
⊗ dxi.

Then we have

(2.1) J(
∂

∂xi
) =

∂

∂xi
, J(

∂

∂yi
) = − ∂

∂yi
.

The dual endomorphism J∗ of the cotangent space T ∗p (R2n
n ) at any point p of

manifold R2n
n satisfies J∗2 = Id and is defined by

(2.2) J∗(dxi) = dxi, J∗(dyi) = −dyi.

2.1. Lagrangian Mechanics Systems. In this subsection, we introduce
Euler-Lagrange equations on para-Kähler manifolds of para-Kähler space form
(R2n

n , g, J).
Given by J almost product structure and by (xi, yi) the coordinates of

R2n
n . Let semispray be a vector field as follows:

ξ = Xi
∂

∂xi
+ Yi

∂

∂yi
, Xi =

.
xi = yi, Yi =

.
yi.

By Liouville vector field on para-Kähler space form (R2n
n , g, J), we call the

vector field determined by V = Jξ and calculated by

Jξ = Xi
∂

∂xi
− Yi

∂

∂yi
,

Denote T by the kinetic energy and P by the potential energy of mechanics
system on para-Kähler space of para-Kähler space form. Then we write by
L = T − P Lagrangian function and by EL = V (L) − L the energy function
associated L.

Operator iJ defined by

iJ : ∧2R2n
n → ∧1R2n

n
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is called the interior product with J , or sometimes the insertion operator, or
contraction by J. The exterior vertical derivation dJ is defined by

dJ = [iJ , d] = iJd− diJ ,

where d is the usual exterior derivation. For almost product structure J
determined by (2.1), the para-Kähler form is the closed 2-form given by
ΦL = −ddJL such that

dJ =
∂

∂xi
dxi − ∂

∂yi
dyi : F(R2n

n ) → ∧1R2n
n .

Thus we get

ΦL = − ∂2L

∂xj∂xi
dxj ∧ dxi − ∂2L

∂yj∂xi
dyj ∧ dxi

+
∂2L

∂xj∂yi
dxj ∧ dyi +

∂2L

∂yj∂yi
dyj ∧ dyi.

Also, one may obtain

EL = Xi
∂L

∂xi
− Yi

∂L

∂yi
− L,

Taking care of (0.1), we have

−Xi
∂2L

∂xj∂xi
dxj − Yi

∂2L
∂yj∂xi

dxj + ∂L
∂xj dxj

+Xi
∂2L

∂xj∂yi
dyj + Yi

∂2L
∂yj∂yi

dyj + ∂L
∂yj dyj = 0.

If α on R2n
n is an integral curve of ξ, it follows

(2.3)
∂

∂t

(
∂L

∂xj

)
− ∂L

∂xj
= 0,

∂

∂t

(
∂L

∂yj

)
+

∂L

∂yj
= 0,

so-called Euler-Lagrange equations whose solutions are the paths of the semis-
pray ξ on para-Kähler space form (R2n

n , g, J). Finally one may say that the
triple (R2n

n , ΦL, ξ) is mechanical system on para-Kähler manifolds of para-
Kähler space form (R2n

n , g, J).Therefore we say

Proposition 4. Let J almost product structure on para-Kähler space of
para-Kähler space form (R2n

n , g, J). Also let (f1, f2) be natural bases of R2n
n .

Then it follows

J(f1)− f1 = 0 ⇐⇒
.
f1,L − f1,L = 0,

J(f2) + f2 = 0 ⇐⇒
.
f2,L + f2,L = 0,

where f1,L = ∂L
∂xi

, f2,L = ∂L
∂yi

,
.
f1,L = ∂

∂t(
∂L
∂xi

),
.
f2,L = ∂

∂t(
∂L
∂yi

).
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2.2. Hamiltonian Mechanics Systems. In this subsection, we present
Hamilton equations on para-Kähler manifolds of para-Kähler space form (R2n

n , g, J).
Let J∗ be an almost product structure defined by (2.2) and λ Liouville

form determined by J∗(ω) = 1
2yidxi − 1

2xidyi such that ω = 1
2yidxi + 1

2xidyi

1-form on R2n
n . If Φ = −dλ is closed para-Kähler form, then it is also a para-

symplectic structure on R2n
n .

Let (R2n
n , g, J) be para-Kähler manifolds of para-Kähler space form with

closed para-Kähler form Φ. Suppose that Hamiltonian vector field ZH associ-
ated to Hamiltonian energy H is given by

ZH = Xi
∂

∂xi
+ Yi

∂

∂yi
.

For the closed para-Kähler form Φ on R2n
n , we have

Φ = dxi ∧ dyi.

Then it follows

(2.4) iZH
Φ = −Yidxi + Xidyi.

Otherwise, one may calculate the differential of Hamiltonian energy as follows:

(2.5) dH =
∂H

∂xi
dxi +

∂H

∂yi
dyi.

From (2.4) and (2.5) with respect to iZH
Φ = dH, we find para-Hamiltonian

vector field on para-Kähler space of para-Kähler space form to be

(2.6) ZH =
∂H

∂yi

∂

∂xi
− ∂H

∂xi

∂

∂yi
.

Suppose that the curve γ on R2n
n is an integral curve of Hamiltonian vector

field ZH , i.e.,

(2.7) ZH(γ(t)) =
.
γ, t ∈ I.

In the local coordinates we have

γ(t) = (xi(t), yi(t)),

and

(2.8)
.
γ(t) =

dxi

dt

∂

∂xi
+

dyi

dt

∂

∂yi
.

Now, by means of (2.7), from (2.6) and (2.8), we deduce the equations so-called
para-Hamilton equations

(2.9)
dxi

dt
=

∂H

∂yi
,
dyi

dt
= −∂H

∂xi
.

In the end, we may say to be para-mechanical system (R2n
n , Φ, ZH) triple on

para-Kähler manifolds of para-Kähler space form (R2n
n , g, J).
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Conclusion 2. From the above, we obtain that Lagrangian and Hamil-
tonian formalisms in generalized classical mechanics and field theory can be
intrinsically characterized on (R2n

n , g, J) being a model of para-Kähler space
of para-Kähler space form. So, the paths of semispray ξ on R2n

n are the solu-
tions of the Euler-Lagrange equations given by (2.3) on the mechanical system
(R2n

n , ΦL, ξ). Also, the solutions of the Hamilton equations determined by
(2.9) on the mechanical system (R2n

n , Φ, ZH) are the paths of vector field ZH

on R2n
n .





CHAPTER 3

Mechanical Systems on Standard Clifford Kähler
Manifolds

This chapter deals with the notation of a Clifford structure on an 8n-
dimensional Riemannian manifold (as introduced in a previous paper of Bur-
dujan given in [19]) and the construction of some Lagrangian and Hamiltonian
mechanical systems related to such structure in given [16, 17]. Also, a dis-
cussion on some geometrical and physical results about Euler-Lagrange and
Hamilton equations and fields obtained on standard Clifford Kähler manifold
is given.

0.3. Clifford Kähler Manifolds. Here, we will recall the main concepts
and structures given in [18, 19]. Let M be a real manifold of dimension m.
Suppose that there is a 6-dimensional vector bundle V consisting of Ji(i = 1, 6)
tensors of type (1,1) over M. Such a local basis {Ji}(i = 1, 6) is called a
canonical local basis of the bundle V in a neighborhood U of M . Then V
is called an almost Clifford structure in M . The pair (M, V ) is named an
almost Clifford manifold with V . Hence, an almost Clifford manifold M is of
dimension m = 8n. If there exists on (M, V ) a global basis {Ji}(i = 1, 6), then
(M, V ) is said to be an almost Clifford manifold and the basis {Ji}(i = 1, 6)
is called a global basis for V .

An almost Clifford connection on the almost Clifford manifold (M,V ) is
a linear connection ∇ on M which preserves by parallel transport the vector
bundle V . This means that if Φ is a cross-section (local-global) of the bundle
V , then ∇XΦ is also a cross-section (local-global, respectively) of V , X being
an arbitrary vector field of M .

If for any canonical basis {Ji}(i = 1, 6) of V in a coordinate neighborhood
U , the identities

g(JiX, JiY ) = g(X,Y ), ∀X,Y ∈ χ(M), (i = 1, 6),

hold, the triple (M, g, V ) is named an almost Clifford Hermitian manifold or
metric Clifford manifold denoting by V an almost Clifford structure V and by
g a Riemannian metric and by (g, V ) an almost Clifford metric structure.

Since each Ji(i = 1, 6) is almost Hermitian structure with respect to g,
setting

Φi(X,Y ) = g(JiX, Y ), (i = 1, 6),
for any vector fields X and Y , we see that Φi are 6 local 2-forms.

17
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If the Levi-Civita connection ∇ = ∇g on (M, g, V ) preserves the vector
bundle V by parallel transport, then (M, g, V ) is called a Clifford Kähler
manifold, and an almost Clifford structure Φi of M is called a Clifford Kähler
structure.

A Clifford Kähler manifold is Riemannian manifold (M8n, g). For example,
we say that R8n is the simplest example of Clifford Kähler manifold. Suppose
that let

{xi, xn+i, x2n+i, x3n+i, x4n+i, x5n+i, x6n+i, x7n+i} ,

i = 1, n be a real coordinate system on R8n. Then we define by
{

∂

∂xi
,

∂

∂xn+i
,

∂

∂x2n+i
,

∂

∂x3n+i
,

∂

∂x4n+i
,

∂

∂x5n+i
,

∂

∂x6n+i
,

∂

∂x7n+i

}

and
{dxi, dxn+i, dx2n+i, dx3n+i, dx4n+i, dx5n+i, dx6n+i, dx7n+i}

be natural bases over R of the tangent space T (R8n) and the cotangent space
T ∗(R8n) of R8n, respectively. By structures Ji(i = 1, 3), the following expres-
sions are obtained
(0.10)

J1( ∂
∂xi

) = ∂
∂xn+i

J1( ∂
∂xn+i

) = − ∂
∂xi

J1( ∂
∂x2n+i

) = ∂
∂x4n+i

J1( ∂
∂x3n+i

) = ∂
∂x5n+i

J1( ∂
∂x4n+i

) = − ∂
∂x2n+i

J1( ∂
∂x5n+i

) = − ∂
∂x3n+i

J1( ∂
∂x6n+i

) = ∂
∂x7n+i

J1( ∂
∂x7n+i

) = − ∂
∂x6n+i

J2( ∂
∂xi

) = ∂
∂x2n+i

J2( ∂
∂xn+i

) = − ∂
∂x4n+i

J2( ∂
∂x2n+i

) = − ∂
∂xi

J2( ∂
∂x3n+i

) = ∂
∂x6n+i

J2( ∂
∂x4n+i

) = ∂
∂xn+i

J2( ∂
∂x5n+i

) = − ∂
∂x7n+i

J2( ∂
∂x6n+i

) = − ∂
∂x3n+i

J2( ∂
∂x7n+i

) = ∂
∂x5n+i

J3( ∂
∂xi

) = ∂
∂x3n+i

J3( ∂
∂xn+i

) = − ∂
∂x5n+i

J3( ∂
∂x2n+i

) = − ∂
∂x6n+i

J3( ∂
∂x3n+i

) = − ∂
∂xi

J3( ∂
∂x4n+i

) = ∂
∂x7n+i

J3( ∂
∂x5n+i

) = ∂
∂xn+i

J3( ∂
∂x6n+i

) = ∂
∂x2n+i

J3( ∂
∂x7n+i

) = − ∂
∂x4n+i

A canonical local basis{J∗i }(i = 1, 3) of V ∗ of the cotangent space T ∗(R8n) of
manifold R8n satisfies the condition:

J∗21 = J∗22 = J∗23 = J∗1J∗2J∗23 J∗2J∗1 = −I,

defining
(0.11)

J∗1 (dxi) = dxn+i

J∗1 (dxn+i) = −dxi

J∗1 (dx2n+i) = dx4n+i

J∗1 (dx3n+i) = dx5n+i

J∗1 (dx4n+i) = −dx2n+i

J∗1 (dx5n+i) = −dx3n+i

J∗1 (dx6n+i) = dx7n+i

J∗1 (dx7n+i) = −dx6n+i

J∗2 (dxi) = dx2n+i

J∗2 (dxn+i) = −dx4n+i

J∗2 (dx2n+i) = −dxi

J∗2 (dx3n+i) = dx6n+i

J∗2 (dx4n+i) = dxn+i

J∗2 (dx5n+i) = −dx7n+i

J∗2 (dx6n+i) = −dx3n+i

J∗2 (dx7n+i) = dx5n+i

J∗3 (dxi) = dx3n+i

J∗3 (dxn+i) = −dx5n+i

J∗3 (dx2n+i) = −dx6n+i

J∗3 (dx3n+i) = −dxi

J∗3 (dx4n+i) = dx7n+i

J∗3 (dx5n+i) = dxn+i

J∗3 (dx6n+i) = dx2n+i

J∗3 (dx7n+i) = −dx4n+i
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0.4. Standard Clifford Lagrangian Mechanics. Here, we obtain Euler-
Lagrange equations for quantum and classical mechanics by means of a canon-
ical local basis {Ji}(i = 1, 3) of V on the standard Clifford Kähler manifold
(R8n, V ).

Firstly, let J1 take a local basis component on the standard Clifford Kähler
manifold (R8n, V ). Let semispray be the vector field ξ determined by

(0.12)
ξ = Xi ∂

∂xi
+ Xn+i ∂

∂xn+i
+ X2n+i ∂

∂x2n+i
+ X3n+i ∂

∂x3n+i

+X4n+i ∂
∂x4n+i

+ X5n+i ∂
∂x5n+i

+ X6n+i ∂
∂x6n+i

+ X7n+i ∂
∂x7n+i

.

Where

Xi =
.
xi, X

n+i =
.
xn+i, X

2n+i =
.
x2n+i, X

3n+i =
.
x3n+i,

X4n+i =
.

x4n+i, X
5n+i =

.
x5n+i, X

6n+i =
.
x6n+i, X

7n+i =
.
x7n+i

and the dot indicates the derivative with respect to time t. The vector field
defined by

VJ1 = J1(ξ) = Xi ∂
∂xn+i

−Xn+i ∂
∂xi

+ X2n+i ∂
∂x4n+i

+ X3n+i ∂
∂x5n+i

−X4n+i ∂
∂x2n+i

−X5n+i ∂
∂x3n+i

+ X6n+i ∂
∂x7n+i

−X7n+i ∂
∂x6n+i

,

is called Liouville vector field on the standard Clifford Kähler manifold (R8n, V ).
The maps given by T, P : R8n → R such that

T =
1
2
mi(

.
xi

2+
.
x

2
n+i+

.
x

2
2n+i+

.
x

2
3n+i+

.
x

2
4n+i+

.
x

2
5n+i+

.
x

2
6n+i+

.
x

2
7n+i), P = migh

are called the kinetic energy and the potential energy of the system, respec-
tively. Here mi, g and h stand for mass of a mechanical system having m
particles, the gravity acceleration and distance to the origin of a mechani-
cal system on the standard Clifford Kähler manifold (R8n, V ), respectively.
Then L : R8n → R is a map that satisfies the conditions; i) L = T − P is
a Lagrangian function, ii) the function given by EJ1

L = VJ1(L) − L, is energy
function.

The operator iJ1 induced by J1 and given by

iJ1ω(X1, X2, ..., Xr) =
r∑

i=1

ω(X1, ..., J1Xi, ..., Xr),

is said to be vertical derivation, where ω ∈ ∧rR8n, Xi ∈ χ(R8n). The vertical
differentiation dJ1 is defined by

dJ1 = [iJ1 , d] = iJ1d− diJ1 ,
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where d is the usual exterior derivation and [ , ] is Lie bracket. The Clifford
Kähler form is the closed 2-form given by ΦJ1

L = −ddJ1
L such that

dJ1
=

∂

∂xn+i
dxi − ∂

∂xi
dxn+i +

∂

∂x4n+i
dx2n+i +

∂

∂x5n+i
dx3n+i

− ∂

∂x2n+i
dx4n+i − ∂

∂x3n+i
dx5n+i +

∂

∂x7n+i
dx6n+i − ∂

∂x6n+i
dx7n+i

and
dJ1

: F(R8n) → ∧1R8n.

Then
ΦJ1

L = − ∂2L
∂xj∂xn+i

dxj ∧ dxi + ∂2L
∂xj∂xi

dxj ∧ dxn+i − ∂2L
∂xj∂x4n+i

dxj ∧ dx2n+i

− ∂2L
∂xj∂x5n+i

dxj ∧ dx3n+i + ∂2L
∂xj∂x2n+i

dxj ∧ dx4n+i + ∂2L
∂xj∂x3n+i

dxj ∧ dx5n+i

− ∂2L
∂xj∂x7n+i

dxj ∧ dx6n+i + ∂2L
∂xj∂x6n+i

dxj ∧ dx7n+i − ∂2L
∂xn+j∂xn+i

dxn+j ∧ dxi

+ ∂2L
∂xn+j∂xi

dxn+j ∧ dxn+i− ∂2L
∂xn+j∂x4n+i

dxn+j ∧ dx2n+i− ∂2L
∂xn+j∂x5n+i

dxn+j ∧
dx3n+i

+ ∂2L
∂xn+j∂x2n+i

dxn+j∧dx4n+i+ ∂2L
∂xn+j∂x3n+i

dxn+j∧dx5n+i− ∂2L
∂xn+j∂x7n+i

dxn+j∧
dx6n+i

+ ∂2L
∂xn+j∂x6n+i

dxn+j ∧dx7n+i− ∂2L
∂x2n+j∂xn+i

dx2n+j ∧dxi + ∂2L
∂x2n+j∂xi

dx2n+j ∧
dxn+i

− ∂2L
∂x2n+j∂x4n+i

dx2n+j∧dx2n+i− ∂2L
∂x2n+j∂x5n+i

dx2n+j∧dx3n+i+ ∂2L
∂x2n+j∂x2n+i

dx2n+j∧
dx4n+i

+ ∂2L
∂x2n+j∂x3n+i

dx2n+j∧dx5n+i− ∂2L
∂x2n+j∂x7n+i

dx2n+j∧dx6n+i+ ∂2L
∂x2n+j∂x6n+i

dx2n+j∧
dx7n+i

− ∂2L
∂x3n+j∂xn+i

dx3n+j ∧dxi + ∂2L
∂x3n+j∂xi

dx3n+j ∧dxn+i− ∂2L
∂x3n+j∂x4n+i

dx3n+j ∧
dx2n+i

− ∂2L
∂x3n+j∂x5n+i

dx3n+j∧dx3n+i+ ∂2L
∂x3n+j∂x2n+i

dx3n+j∧dx4n+i+ ∂2L
∂x3n+j∂x3n+i

dx3n+j∧
dx5n+i

− ∂2L
∂x3n+j∂x7n+i

dx3n+j∧dx6n+i+ ∂2L
∂x3n+j∂x6n+i

dx3n+j∧dx7n+i− ∂L
∂x4n+j∂xn+i

dx4n+j∧
dxi

+ ∂L
∂x4n+j∂xi

dx4n+j∧dxn+i− ∂L
∂x4n+j∂x4n+i

dx4n+j∧dx2n+i− ∂L
∂x4n+j∂x5n+i

dx4n+j∧
dx3n+i

+ ∂2L
∂x4n+j∂x2n+i

dx4n+j∧dx4n+i+ ∂2L
∂x4n+j∂x3n+i

dx4n+j∧dx5n+i− ∂2L
∂x4n+j∂x7n+i

dx4n+j∧
dx6n+i

+ ∂2L
∂x4n+j∂x6n+i

dx4n+j∧dx7n+i− ∂2L
∂x5n+j∂xn+i

dx5n+j∧dxi+ ∂2L
∂x5n+j∂xi

dx5n+j∧
dxn+i

− ∂2L
∂x5n+j∂x4n+i

dx5n+j∧dx2n+i− ∂2L
∂x5n+j∂x5n+i

dx5n+j∧dx3n+i+ ∂2L
∂x5n+j∂x2n+i

dx5n+j∧
dx4n+i

+ ∂2L
∂x5n+j∂x3n+i

dx5n+j∧dx5n+i− ∂2L
∂x5n+j∂x7n+i

dx5n+j∧dx6n+i+ ∂2L
∂x5n+j∂x6n+i

dx5n+j∧
dx7n+i
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− ∂2L
∂x6n+j∂xn+i

dx6n+j ∧dxi + ∂2L
∂x6n+j∂xi

dx6n+j ∧dxn+i− ∂2L
∂x6n+j∂x4n+i

dx6n+j ∧
dx2n+i

− ∂2L
∂x6n+j∂x5n+i

dx6n+j∧dx3n+i+ ∂2L
∂x6n+j∂x2n+i

dx6n+j∧dx4n+i+ ∂2L
∂x6n+j∂x3n+i

dx6n+j∧
dx5n+i

− ∂2L
∂x6n+j∂x7n+i

dx6n+j∧dx6n+i+ ∂2L
∂x6n+j∂x6n+i

dx6n+j∧dx7n+i− ∂2L
∂x7n+j∂xn+i

dx7n+j∧
dxi

+ ∂2L
∂x7n+j∂xi

dx7n+j∧dxn+i− ∂2L
∂x7n+j∂x4n+i

dx7n+j∧dx2n+i− ∂2L
∂x7n+j∂x5n+i

dx7n+j∧
dx3n+i

+ ∂2L
∂x7n+j∂x2n+i

dx7n+j∧dx4n+i+ ∂2L
∂x7n+j∂x3n+i

dx7n+j∧dx5n+i− ∂2L
∂x7n+j∂x7n+i

dx7n+j∧
dx6n+i

+ ∂2L
∂x7n+j∂x6n+i

dx7n+j ∧ dx7n+i.

Also, we obtain
EJ1

L = Xi ∂L
∂xn+i

−Xn+i ∂L
∂xi

+ X2n+i ∂L
∂x4n+i

+ X3n+i ∂L
∂x5n+i

−X4n+i ∂L
∂x2n+i

−X5n+i ∂L
∂x3n+i

+ X6n+i ∂L
∂x7n+i

−X7n+i ∂L
∂x6n+i

− L.

With the use of Eq. (0.1), the following expressions can be obtained:
−Xi ∂2L

∂xj∂xn+i
dxj+Xi ∂2L

∂xj∂xi
dxn+j−Xi ∂2L

∂xj∂x4n+i
dx2n+j−Xi ∂2L

∂xj∂x5n+i
dx3n+j

+Xi ∂2L
∂xj∂x2n+i

dx4n+j + Xi ∂2L
∂xj∂x3n+i

dx5n+j −Xi ∂2L
∂xj∂x7n+i

dx6n+j

+Xi ∂2L
∂xj∂x6n+i

dx7n+j −Xn+i ∂2L
∂xn+j∂xn+i

dxj + Xn+i ∂2L
∂xn+j∂xi

dxn+j

−Xn+i ∂2L
∂xn+j∂x4n+i

dx2n+j−Xn+i ∂2L
∂xn+j∂x5n+i

dx3n+j +Xn+i ∂2L
∂xn+j∂x2n+i

dx4n+j

+Xn+i ∂2L
∂xn+j∂x3n+i

dx5n+j−Xn+i ∂2L
∂xn+j∂x7n+i

dx6n+j+Xn+i ∂2L
∂xn+j∂x6n+i

dx7n+j

− X2n+i ∂2L
∂x2n+j∂xn+i

dxj +X2n+i ∂2L
∂x2n+j∂xi

dxn+j−X2n+i ∂2L
∂x2n+j∂x4n+i

dx2n+j

−X2n+i ∂2L
∂x2n+j∂x5n+i

dx3n+j+X2n+i ∂2L
∂x2n+j∂x2n+i

dx4n+j+X2n+i ∂2L
∂x2n+j∂x3n+i

dx5n+j

−X2n+i ∂2L
∂x2n+j∂x7n+i

dx6n+j+X2n+i ∂2L
∂x2n+j∂x6n+i

dx7n+j −X3n+i ∂2L
∂x3n+j∂xn+i

dxj

+X3n+i ∂2L
∂x3n+j∂xi

dxn+j−X3n+i ∂2L
∂x3n+j∂x4n+i

dx2n+j−X3n+i ∂2L
∂x3n+j∂x5n+i

dx3n+j

+X3n+i ∂2L
∂x3n+j∂x2n+i

dx4n+j+X3n+i ∂2L
∂x3n+j∂x3n+i

dx5n+j−X3n+i ∂2L
∂x3n+j∂x7n+i

dx6n+j

+X3n+i ∂2L
∂x3n+j∂x6n+i

dx7n+j−X4n+i ∂L
∂x4n+j∂xn+i

dxj +X4n+i ∂L
∂x4n+j∂xi

dxn+j

−X4n+i ∂L
∂x4n+j∂x4n+i

dx2n+j−X4n+i ∂L
∂x4n+j∂x5n+i

dx3n+j +X4n+i ∂2L
∂x4n+j∂x2n+i

dx4n+j

+X4n+i ∂2L
∂x4n+j∂x3n+i

dx5n+j−X4n+i ∂2L
∂x4n+j∂x7n+i

dx6n+j+X4n+i ∂2L
∂x4n+j∂x6n+i

dx7n+j

−X5n+i ∂2L
∂x5n+j∂xn+i

dxj + X5n+i ∂2L
∂x5n+j∂xi

dxn+j −X5n+i ∂2L
∂x5n+j∂x4n+i

dx2n+j

−X5n+i ∂2L
∂x5n+j∂x5n+i

dx3n+j+X5n+i ∂2L
∂x5n+j∂x2n+i

dx4n+j+X5n+i ∂2L
∂x5n+j∂x3n+i

dx5n+j

−X5n+i ∂2L
∂x5n+j∂x7n+i

dx6n+j+X5n+i ∂2L
∂x5n+j∂x6n+i

dx7n+j−X6n+i ∂2L
∂x6n+j∂xn+i

dxj

+X6n+i ∂2L
∂x6n+j∂xi

dxn+j−X6n+i ∂2L
∂x6n+j∂x4n+i

dx2n+j−X6n+i ∂2L
∂x6n+j∂x5n+i

dx3n+j

+X6n+i ∂2L
∂x6n+j∂x2n+i

dx4n+j+X6n+i ∂2L
∂x6n+j∂x3n+i

dx5n+j−X6n+i ∂2L
∂x6n+j∂x7n+i

dx6n+j

+X6n+i ∂2L
∂x6n+j∂x6n+i

dx7n+j −X7n+i ∂2L
∂x7n+j∂xn+i

dxj + X7n+i ∂2L
∂x7n+j∂xi

dxn+j



22 3. MECHANICAL SYSTEMS ON STANDARD CLIFFORD KÄHLER MANIFOLDS

−X7n+i ∂2L
∂x7n+j∂x4n+i

dx2n+j−X7n+i ∂2L
∂x7n+j∂x5n+i

dx3n+j+X7n+i ∂2L
∂x7n+j∂x2n+i

dx4n+j

+X7n+i ∂2L
∂x7n+j∂x3n+i

dx5n+j−X7n+i ∂2L
∂x7n+j∂x7n+i

dx6n+j+X7n+i ∂2L
∂x7n+j∂x6n+i

dx7n+j

+ ∂L
∂xj

dxj + ∂L
∂xn+j

dxn+j + ∂L
∂x2n+j

dx2n+j + ∂L
∂x3n+j

dx3n+j + ∂L
∂x4n+j

dx4n+j

+ ∂L
∂x5n+j

dx5n+j + ∂L
∂x6n+j

dx6n+j + ∂L
∂x7n+j

dx7n+j = 0.

If a curve α on R8 is considered to be an integral curve of ξ, then we
calculate the following equations:
(0.13)

∂
∂t

(
∂L
∂xi

)
+ ∂L

∂xn+i
= 0, ∂

∂t

(
∂L

∂xn+i

)
− ∂L

∂xi
= 0, ∂

∂t

(
∂L

∂x2n+i

)
+ ∂L

∂x4n+i
= 0,

∂
∂t

(
∂L

∂x3n+i

)
+ ∂L

∂x5n+i
= 0, ∂

∂t

(
∂L

∂x4n+i

)
− ∂L

∂x2n+i
= 0, ∂

∂t

(
∂L

∂x5n+i

)
− ∂L

∂x3n+i
= 0,

∂
∂t

(
∂L

∂x6n+i

)
+ ∂L

∂x7n+i
= 0, ∂

∂t

(
∂L

∂x7n+i

)
− ∂L

∂x6n+i
= 0,

such that the equations obtained in Eq. (0.13) are said to be Euler-Lagrange
equations structured on the standard Clifford Kähler manifold (R8, V ) by
means of ΦJ1

L and in the case, the triple (R8, ΦJ1
L , ξ) is called a mechanical

system on the standard Clifford Kähler manifold (R8, V ).
Secondly, we find Euler-Lagrange equations for quantum and classical me-

chanics by means of ΦG
L on the standard Clifford Kähler manifold (R8, V ).

Consider J2 be another local basis component on the Clifford Kähler man-
ifold (R8, V ). Let ξ take as in Eq. (0.12). In the case, the vector field given
by

VJ2 = J2(ξ) = Xi ∂
∂x2n+i

−Xn+i ∂
∂x4n+i

−X2n+i ∂
∂xi

+ X3n+i ∂
∂x6n+i

+X4n+i ∂
∂xn+i

−X5n+i ∂
∂x7n+i

−X6n+i ∂
∂x3n+i

+ X7n+i ∂
∂x5n+i

,

is Liouville vector field on the standard Clifford Kähler manifold (R8, V ). The
function given by EJ2

L = VJ2(L)−L is energy function. Then the operator iJ2

induced by J2 and denoted by

iJ2ω(X1, X2, ..., Xr) =
r∑

i=1

ω(X1, ..., J2Xi, ..., Xr),

is vertical derivation, where ω ∈ ∧rR8, Xi ∈ χ(R8). The vertical differentia-
tion dJ2 is defined by

dJ2 = [iJ2 , d] = iJ2d− diJ2 .

Since taking into considering J2, the standard Clifford Kähler form is the
closed 2-form given by ΦJ2

L = −ddJ2L such that

(0.14)
dJ2

= ∂
∂x2n+i

dxi − ∂
∂x4n+i

dxn+i − ∂
∂xi

dx2n+i + ∂
∂x6n+i

dx3n+i

+ ∂
∂xn+i

dx4n+i − ∂
∂x7n+i

dx5n+i − ∂
∂x3n+i

dx6n+i + ∂
∂x5n+i

dx7n+i

and
dJ2 : F(R8) → ∧1R8.
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The closed standard Clifford Kähler form ΦJ2
L on R8 is the symplectic struc-

ture. So it holds

(0.15)
EJ2

L = Xi ∂L
∂x2n+i

−Xn+i ∂L
∂x4n+i

−X2n+i ∂L
∂xi

+ X3n+i ∂L
∂x6n+i

+X4n +i ∂L
∂xn+i

−X5n+i ∂L
∂x7n+i

−X6n+i ∂L
∂x3n+i

+ X7n+i ∂L
∂x5n+i

− L.

By means of Eq. (0.1), using (0.12), (0.14) and (0.15), also taking into con-
sideration the above first case we calculate the equations
(0.16)

∂
∂t

(
∂L
∂xi

)
+ ∂L

∂x2n+i
= 0, ∂

∂t

(
∂L

∂xn+i

)
− ∂L

∂x4n+i
= 0, ∂

∂t

(
∂L

∂x2n+i

)
− ∂L

∂xi
= 0,

∂
∂t

(
∂L

∂x3n+i

)
+ ∂L

∂x6n+i
= 0, ∂

∂t

(
∂L

∂x4n+i

)
+ ∂L

∂xn+i
= 0, ∂

∂t

(
∂L

∂x5n+i

)
− ∂L

∂x7n+i
= 0,

∂
∂t

(
∂L

∂x6n+i

)
− ∂L

∂x3n+i
= 0, ∂

∂t

(
∂L

∂x7n+i

)
+ ∂L

∂x5n+i
= 0,

Hence the equations obtained in Eq. (0.16) are called Euler-Lagrange equa-
tions structured by means of ΦJ2

L on the standard Clifford Kähler manifold
(R8, V ) and so, the triple (R8, ΦJ2

L , ξ) is said to be a mechanical system on
the standard Clifford Kähler manifold (R8, V ).

Thirdly, we introduce Euler-Lagrange equations for quantum and classical
mechanics by means of ΦJ3

L on the standard Clifford Kähler manifold (R8, V ).
Let J3 be a local basis on the standard Clifford Kähler manifold (R8, V ).

Let semispray ξ give as in Eq.(0.12). Therefore, Liouville vector field on the
standard Clifford Kähler manifold (R8, V ) is the vector field given by

VJ3 = J3(ξ) = Xi ∂
∂x3n+i

−Xn+i ∂
∂x5n+i

−X2n+i ∂
∂x6n+i

−X3n+i ∂
∂xi

+X4n+i ∂
∂x7n+i

+ X5n+i ∂
∂xn+i

+ X6n+i ∂
∂x2n+i

−X7n+i ∂
∂x4n+i

.

The function given by EJ3
L = VJ3(L)−L is energy function and calculated by

EJ3
L = Xi ∂L

∂x3n+i
−Xn+i ∂L

∂x5n+i
−X2n+i ∂L

∂x6n+i
−X3n+i ∂L

∂xi

+X4n+i ∂L
∂x7n+i

+ X5n+i ∂L
∂xn+i

+ X6n+i ∂L
∂x2n+i

−X7n+i ∂L
∂x4n+i

− L.

The function iJ3 induced by J3 and shown by

iJ3ω(X1, X2, ..., Xr) =
r∑

i=1

ω(X1, ..., J3Xi, ..., Xr),

is said to be vertical derivation, where ω ∈ ∧rR8, Xi ∈ χ(R8). The vertical
differentiation dJ3 is denoted by

dJ3 = [iJ3 , d] = iJ3d− diJ3 .

Considering J3, the Kähler form is the closed 2-form given by ΦJ3
L = −ddJ3

L
such that

dJ3
= ∂

∂x3n+i
dxi − ∂

∂x5n+i
dxn+i − ∂

∂x6n+i
dx2n+i − ∂

∂xi
dx3n+i

+ ∂
∂x7n+i

dx4n+i + ∂
∂xn+i

dx5n+i + ∂
∂x2n+i

dx6n+i − ∂
∂x4n+i

dx7n+i
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and
dJ3

: F(R8) → ∧1R8.

Using Eq. (0.1), similar to the above first and second cases , we find the
following equations
(0.17)

∂
∂t

(
∂L
∂xi

)
+ ∂L

∂x3n+i
= 0, ∂

∂t

(
∂L

∂xn+i

)
− ∂L

∂x5n+i
= 0, ∂

∂t

(
∂L

∂x2n+i

)
− ∂L

∂x6n+i
= 0,

∂
∂t

(
∂L

∂x3n+i

)
− ∂L

∂xi
= 0, ∂

∂t

(
∂L

∂x4n+i

)
+ ∂L

∂x7n+i
= 0, ∂

∂t

(
∂L

∂x5n+i

)
+ ∂L

∂xn+i
= 0,

∂
∂t

(
∂L

∂x6n+i

)
+ ∂L

∂x2n+i
= 0, ∂

∂t

(
∂L

∂x7n+i

)
− ∂L

∂x4n+i
= 0.

Thus the equations given in Eq. (0.17) infer Euler-Lagrange equations struc-
tured by means of ΦJ3

L on the standard Clifford Kähler manifold (R8, V ) and
therefore the triple (R8,ΦJ3

L , ξ) is named a mechanical system on the standard
Clifford Kähler manifold (R8, V ).

0.5. Standard Clifford Hamiltonian Mechanics. Here, we obtain
Hamilton equations and Hamiltonian mechanical system for quantum and clas-
sical mechanics structured on the standard Clifford Kähler manifold (R8n, V ∗).

Firstly, let (R8n, V ∗) be the standard Clifford Kähler manifold. Assume
that a component of the almost Clifford structure V ∗, a Liouville form and a
1-form on the standard Clifford Kähler manifold (R8n, V ∗) are given by J∗1 ,
λJ∗1 = J∗1 (ω) and ω, respectively. Then

(0.18) ω = 1
2(xidxi + xn+idxn+i + x2n+idx2n+i + x3n+idx3n+i

+x4n+idx4n+i + x5n+idx5n+i + x6n+idx6n+i + x7n+idx7n+i),

and

λJ∗1 =
1
2
(xidxn+i − xn+idxi + x2n+idx4n+i + x3n+idx5n+i

−x4n+idx2n+i − x5n+idx3n+i + x6n+idx7n+i − x7n+idx6n+i).

It is well-known that if ΦJ∗1 = −dλJ∗1 is a closed Kähler form on the standard
Clifford Kähler manifold (R8n, V ∗), then ΦJ∗1 is also a symplectic structure on
Clifford Kähler manifold (R8n, V ∗).

Consider that Hamilton vector field X associated with Hamiltonian energy
H given by

X = Xi ∂
∂xi

+ Xn+i ∂
∂xn+i

+ X2n+i ∂
∂x2n+i

+ X3n+i ∂
∂x3n+i

+X4n+i ∂
∂x4n+i

+ X5n+i ∂
∂x5n+i

+ X6n+i ∂
∂x6n+i

+ X7n+i ∂
∂x7n+i

.

Then

ΦJ∗1 = dxn+i ∧ dxi + dx4n+i ∧ dx2n+i + dx5n+i ∧ dx3n+i + dx7n+i ∧ dx6n+i,

and

(0.19)
iXΦJ∗1 = Xn+idxi −Xidxn+i + X4n+idx2n+i −X2n+idx4n+i

+X5n+idx3n+i −X3n+idx5n+i + X7n+idx6n+i −X6n+idx7n+i.
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Moreover, the differential of Hamiltonian energy function is obtained as fol-
lows:

(0.20)
dH = ∂H

∂xi
dxi + ∂H

∂xn+i
dxn+i + ∂H

∂x2n+i
dx2n+i + ∂H

∂x3n+i
dx3n+i

+ ∂H
∂x4n+i

dx4n+i + ∂H
∂x5n+i

dx5n+i + ∂H
∂x6n+i

dx6n+i + ∂H
∂x7n+i

dx7n+i.

According to Eq.(0.3), if Eq. (0.19) and Eq. (0.20) are equaled, the Hamil-
tonian vector field is found as follows:

(0.21)
X = − ∂H

∂xn+i

∂
∂xi

+ ∂H
∂xi

∂
∂xn+i

− ∂H
∂x4n+i

∂
∂x2n+i

− ∂H
∂x5n+i

∂
∂x3n+i

+ ∂H
∂x2n+i

∂
∂x4n+i

+ ∂H
∂x3n+i

∂
∂x5n+i

− ∂H
∂x7n+i

∂
∂x6n+i

+ ∂H
∂x6n+i

∂
∂x7n+i

.

Suppose that a curve
θ : R → R8n

be an integral curve of the Hamiltonian vector field X, i.e.,

(0.22) X(θ(t)) =
.
θ, t ∈ R.

In the local coordinates, it holds

θ(t) = (xi, xn+i, x2n+i, x3n+i, x4n+i, x5n+i, x6n+i, x7n+i),

and

(0.23)

.
θ(t) = dxi

dt
∂

∂xi
+ dxn+i

dt
∂

∂xn+i
+ dx2n+i

dt
∂

∂x2n+i
+ dx3n+i

dt
∂

∂x3n+i

+dx4n+i

dt
∂

∂x4n+i
+ dx5n+i

dt
∂

∂x5n+i
+ dx6n+i

dt
∂

∂x6n+i
+ dx7n+i

dt
∂

∂x7n+i
.

Considering Eq. (0.22), if Eq. (0.21) and Eq. (0.23) are equaled, it follows

(0.24)
dxi
dt = − ∂H

∂xn+i
, dxn+i

dt = ∂H
∂xi

, dx2n+i

dt = − ∂H
∂x4n+i

, dx3n+i

dt = − ∂H
∂x5n+i

,
dx4n+i

dt = ∂H
∂x2n+i

, dx5n+i

dt = ∂H
∂x3n+i

, dx6n+i

dt = − ∂H
∂x7n+i

, dx7n+i

dt = ∂H
∂x6n+i

.

Thus, the equations obtained in Eq. (0.24) are seen to be Hamilton equations
with respect to component J∗1 of almost Clifford structure V ∗ on Clifford
Kähler manifold (R8n, V ∗), and then the triple (R8n, ΦJ∗1 , X) is seen to be a
Hamiltonian mechanical system on Clifford Kähler manifold (R8n, V ∗).

Secondly, suppose that an element of the almost Clifford structure V ∗
and a Liouville form on the standard Clifford Kähler manifold (R8n, V ∗) are
denoted by J∗2 and λJ∗2 = J∗2 (ω), respectively.

we have

λJ∗2 =
1
2
(xidx2n+i − xn+idx4n+i − x2n+idxi + x3n+idx6n+i

+x4n+idxn+i − x5n+idx7n+i − x6n+idx3n+i + x7n+idx5n+i).

Considering

ΦJ∗2 = dxn+i ∧ dx4n+i + dx2n+i ∧ dxi + dx5n+i ∧ dx7n+i + dx6n+i ∧ dx3n+i,

then we calculate

(0.25)
iXΦJ∗2 = Xn+idx4n+i −X4n+idxn+i + X2n+idxi −Xidx2n+i

+X5n+idx7n+i −X7n+idx5n+i + X6n+idx3n+i −X3n+idx6n+i.
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According to Eq.(0.3), if we equal Eq. (0.20) and Eq. (0.25), it follows

(0.26)
X = − ∂H

∂x2n+i

∂
∂xi

+ ∂H
∂x4n+i

∂
∂xn+i

+ ∂H
∂xi

∂
∂x2n+i

− ∂H
∂x6n+i

∂
∂x3n+i

− ∂H
∂xn+i

∂
∂x4n+i

+ ∂H
∂x7n+i

∂
∂x5n+i

+ ∂H
∂x3n+i

∂
∂x6n+i

− ∂H
∂x5n+i

∂
∂x7n+i

.

Considering Eq. (0.22), if Eq. (0.23) and Eq. (0.26) are equaled, we find
equations

(0.27)
dxi
dt = − ∂H

∂x2n+i
, dxn+i

dt = ∂H
∂x4n+i

, dx2n+i

dt = ∂H
∂xi

, dx3n+i

dt = − ∂H
∂x6n+i

,
dx4n+i

dt = − ∂H
∂xn+i

, dx5n+i

dt = ∂H
∂x7n+i

, dx6n+i

dt = ∂H
∂x3n+i

, dx7n+i

dt = − ∂H
∂x5n+i

.

In the end, the equations obtained in Eq. (0.27) are known to be Hamil-
ton equations with respect to component J∗2 of the standard almost Clifford
structure V ∗ on the standard Clifford Kähler manifold (R8n, V ∗), and then
the triple (R8n,ΦJ∗2 , X) is a Hamiltonian mechanical system on the standard
Clifford Kähler manifold (R8n, V ∗).

Thirdly, by J∗3 and λJ∗3 = J∗3 (ω), we denote a component of almost Clifford
structure V ∗and a Liouville form on the standard Clifford Kähler manifold
(R8n, V ∗), respectively.

Then it holds

λJ∗3 =
1
2
(xidx3n+i − xn+idx5n+i − x2n+idx6n+i − x3n+idxi

+x4n+idx7n+i + x5n+idxn+i + x6n+idx2n+i − x7n+idx4n+i).

As known if ΦJ∗3 = −dλJ∗3 is a closed Kähler form on the standard Clifford
Kähler manifold (R8n, V ∗), then ΦJ∗3 is also a symplectic structure on Clifford
Kähler manifold (R8n, V ∗).

Taking into

ΦJ∗3 = dx3n+i ∧ dxi + dxn+i ∧ dx5n+i + dx2n+i ∧ dx6n+i + dx7n+i ∧ dx4n+i,

we find

(0.28)
iXΦJ∗3 = X3n+idxi −Xidx3n+i + Xn+idx5n+i −X5n+idxn+i

+X2n+idx6n+i −X6n+idx2n+i + X7n+idx4n+i −X4n+idx7n+i.

According to Eq.(0.3), if Eq. (0.20) and Eq. (0.28) are equaled, we obtain
a Hamiltonian vector field given by

(0.29)
X = − ∂H

∂x3n+i

∂
∂xi

+ ∂H
∂x5n+i

∂
∂xn+i

+ ∂H
∂x6n+i

∂
∂x2n+i

+ ∂H
∂xi

∂
∂x3n+i

− ∂H
∂x7n+i

∂
∂x4n+i

− ∂H
∂xn+i

∂
∂x5n+i

− ∂H
∂x2n+i

∂
∂x6n+i

+ ∂H
∂x4n+i

∂
∂x7n+i

.

Taking into Eq. (0.22), if we equal Eq. (0.23) and Eq. (0.29), it yields
(0.30)

dxi
dt = − ∂H

∂x3n+i
, dxn+i

dt = ∂H
∂x5n+i

, dx2n+i

dt = ∂H
∂x6n+i

, dx3n+i

dt = ∂H
∂xi

,
dx4n+i

dt = − ∂H
∂x7n+i

, dx5n+i

dt = − ∂H
∂xn+i

, dx6n+i

dt = − ∂H
∂x2n+i

, dx7n+i

dt = ∂H
∂x4n+i

.

Finally, the equations obtained in Eq. (0.30) are obtained to be Hamil-
ton equations with respect to component J∗3 of the almost Clifford structure
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V ∗ on the standard Clifford Kähler manifold (R8n, V ∗), and then the triple
(R8n, ΦJ∗3 , X) is a Hamiltonian mechanical system on the standard Clifford
Kähler manifold (R8n, V ∗).

Conclusion 3. From above, Lagrangian mechanics has intrinsically been
described taking into account a canonical local basis {J1, J2, J3} of V on the
standard Clifford Kähler manifold (R8, V ). The paths of semispray ξ on the
standard Clifford Kähler manifold are the solutions Euler–Lagrange equations
raised in (0.13), (0.16) and (0.17), and also obtained by a canonical local ba-
sis {J1, J2, J3} of vector bundle V on the standard Clifford Kähler manifold
(R8, V ). One can be proved that these equations are very important to ex-
plain the rotational spatial mechanics problems. Formalism of Hamiltonian
mechanics has intrinsically been described with taking into account the basis
{J∗1 , J∗2 , J∗3} of almost Clifford structure V ∗ on the standard Clifford Kähler
manifold (R8n, V ∗). Hamiltonian models arise to be a very important tool since
they present a simple method to describe the model for mechanical systems. In
solving problems in classical mechanics, the rotational mechanical system will
then be easily usable model. Since physical phenomena, as well-known, do not
take place all over the space, a new model for dynamic systems on subspaces is
needed. Therefore, equations ((0.24), (0.27) and (0.30) are only considered to
be a first step to realize how Clifford geometry has been used in solving prob-
lems in different physical area. For further research, the Hamiltonian vector
fields derived here are suggested to deal with problems in electrical, magnetical
and gravitational fields of quantum and classical mechanics of physics.





CHAPTER 4

Mechanical Systems on Clifford Kähler Manifolds

In this chapter, Clifford Kähler analogues of Lagrangian and Hamilton-
ian dynamics in given [20, 21] are introduced. Also, the some geometrical
and physical results over the obtained Clifford Kähler dynamical systems are
discussed.

0.6. Clifford Kähler Manifolds. Now, here we extend and rewrite the
main concepts and structures given in [18, 19] . Let M be a real smooth
manifold of dimension m. Assume that there is a 6-dimensional vector bundle
V consisting of Ji(i = 1, 6) tensors of type (1,1) over M. Such a local basis
{Ji}(i = 1, 6) is named a canonical local basis of the bundle V in a neigh-
borhood U of M . Then V is said to be an almost Clifford structure in M .
The pair (M, V ) is called an almost Clifford manifold with V . Thus, an almost
Clifford manifold M is of dimension m = 8n. If there exists on (M,V ) a global
basis {Ji}(i = 1, 6), then (M,V ) is said to be an almost Clifford manifold; the
basis {Ji}(i = 1, 6) is called a global basis for V .

An almost Clifford connection on the almost Clifford manifold (M,V ) is
a linear connection ∇ on M which preserves by parallel transport the vector
bundle V . This means that if Φ is a cross-section (local-global) of the bundle
V , then ∇XΦ is also a cross-section (local-global, respectively) of V , X being
an arbitrary vector field of M .

If for any canonical basis {Ji}(i = 1, 6) of V in a coordinate neighborhood
U , the identities

g(JiX, JiY ) = g(X, Y ), ∀X, Y ∈ χ(M), (i = 1, 6)

hold, the triple (M, g, V ) is said to be an almost Clifford Hermitian manifold
or metric Clifford manifold denoting by V an almost Clifford structure V and
by g a Riemannian metric and by (g, V ) an almost Clifford metric structure.

Since each Ji(i = 1, 6) is almost Hermitian structure with respect to g,
setting

Φi(X, Y ) = g(JiX, Y ), (i = 1, 6),

for any vector fields X and Y , we see that Φi are 6 local 2-forms.
If the Levi-Civita connection ∇ = ∇g on (M, g, V ) preserves the vector

bundle V by parallel transport, then (M, g, V ) is named a Clifford Kähler
manifold, and an almost Clifford structure Φi of M is said to be a Clifford

29
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Kähler structure. Assume that let

{xi, xn+i, x2n+i, x3n+i, x4n+i, x5n+i, x6n+i, x7n+i} , i = 1, n

be a real coordinate system on (M, V ). Then we determine by
{

∂

∂xi
,

∂

∂xn+i
,

∂

∂x2n+i
,

∂

∂x3n+i
,

∂

∂x4n+i
,

∂

∂x5n+i
,

∂

∂x6n+i
,

∂

∂x7n+i

}

and
{dxi, dxn+i, dx2n+i, dx3n+i, dx4n+i, dx5n+i, dx6n+i, dx7n+i}

the natural bases over R of the tangent space T (M) and the cotangent space
T ∗(M) of M, respectively. The definition of structures {Ji} and {J∗i }(i = 1, 3)
is given in Chapter 3. The expressions of {Ji} (i = 4, 6) are as follows:
(0.31)

J4( ∂
∂xi

) = ∂
∂x4n+i

J4( ∂
∂xn+i

) = − ∂
∂x2n+i

J4( ∂
∂x2n+i

) = ∂
∂xn+i

J4( ∂
∂x3n+i

) = − ∂
∂x7n+i

J4( ∂
∂x4n+i

) = − ∂
∂xi

J4( ∂
∂x5n+i

) = ∂
∂x6n+i

J4( ∂
∂x6n+i

) = − ∂
∂x5n+i

J4( ∂
∂x7n+i

) = ∂
∂x3n+i

J5( ∂
∂xi

) = ∂
∂x5n+i

J5( ∂
∂xn+i

) = − ∂
∂x3n+i

J5( ∂
∂x2n+i

) = − ∂
∂x7n+i

J5( ∂
∂x3n+i

) = ∂
∂xn+i

J5( ∂
∂x4n+i

) = ∂
∂x6n+i

J5( ∂
∂x5n+i

) = − ∂
∂xi

J5( ∂
∂x6n+i

) = − ∂
∂x4n+i

J5( ∂
∂x7n+i

) = ∂
∂x2n+i

J6( ∂
∂xi

) = ∂
∂x6n+i

J6( ∂
∂xn+i

) = − ∂
∂x7n+i

J6( ∂
∂x2n+i

) = − ∂
∂x3n+i

J6( ∂
∂x3n+i

) = ∂
∂x2n+i

J6( ∂
∂x4n+i

) = ∂
∂x5n+i

J6( ∂
∂x5n+i

) = − ∂
∂x4n+i

J6( ∂
∂x6n+i

) = − ∂
∂xi

J6( ∂
∂x7n+i

) = ∂
∂xn+i

.

A canonical local basis{J∗i }(i = 4, 6) of V ∗ of the cotangent space T ∗(M) of
manifold M satisfies the following condition:
(0.32)

J∗4 (dxi) = dx4n+i

J∗4 (dxn+i) = −dx2n+i

J∗4 (dx2n+i) = dxn+i

J∗4 (dx3n+i) = −dx7n+i

J∗4 (dx4n+i) = −dxi

J∗4 (dx5n+i) = dx6n+i

J∗4 (dx6n+i) = −dx5n+i

J∗4 (dx7n+i) = dx3n+i

J∗5 (dxi) = dx5n+i

J∗5 (dxn+i) = −dx3n+i

J∗5 (dx2n+i) = −dx7n+i

J∗5 (dx3n+i) = dxn+i

J∗5 (dx4n+i) = dx6n+i

J∗5 (dx5n+i) = −dxi

J∗5 (dx6n+i) = −dx4n+i

J∗5 (dx7n+i) = dx2n+i

J∗6 (dxi) = dx6n+i

J∗6 (dxn+i) = −dx7n+i

J∗6 (dx2n+i) = −dx3n+i

J∗6 (dx3n+i) = dx2n+i

J∗6 (dx4n+i) = dx5n+i

J∗6 (dx5n+i) = −dx4n+i

J∗6 (dx6n+i) = −dxi

J∗6 (dx7n+i) = dxn+i.

and
J∗24 = J∗25 = J∗26 = −I.

0.7. Clifford Lagrangian Mechanics. In this section, we introduce
Euler-Lagrange equations for quantum and classical mechanics by means of a
canonical local basis {Ji}, i = 1, 6 of V on Clifford Kähler manifold (M, V ).
The Euler-Lagrange equations using basis {J1, J2, J3} of V on (R8n, V ) are
introduced in Chapter 3. We see that they are the same as the equations
obtained by operators J1, J2, J3 of V on Clifford Kähler manifold (M, V ).
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Therefore, here, only we derive Euler-Lagrange equations using operators
J4, J5, J6 of V on Clifford Kähler manifold (M, V ).

Fourth, let J4 take a local basis component on Clifford Kähler manifold
(M, V ).Let semispray be the vector field ξ given by (0.12) in Chapter 3. The
vector field determined by

VJ4 = J4(ξ) = Xi ∂
∂x4n+i

−Xn+i ∂
∂x2n+i

+ X2n+i ∂
∂xn+i

−X3n+i ∂
∂x7n+i

−X4n+i ∂
∂xi

+ X5n+i ∂
∂x6n+i

−X6n+i ∂
∂x5n+i

+ X7n+i ∂
∂x3n+i

,

is named Liouville vector field on Clifford Kähler manifold (M, V ). The maps
explained by T, P : M → R such that

T =
1
2
mi(

.
xi

2+
.
x

2
n+i+

.
x

2
2n+i+

.
x

2
3n+i+

.
x

2
4n+i+

.
x

2
5n+i+

.
x

2
6n+i+

.
x

2
7n+i), P = migh

are said to be the kinetic energy and the potential energy of the system, re-
spectively. Here mi, g and h stand for mass of a mechanical system having m
particles, the gravity acceleration and the distance to the origin of a mechani-
cal system on Clifford Kähler manifold (M, V ), respectively. Then L : M → R
is a map that satisfies the conditions; i) L = T − P is a Lagrangian function,
ii) the function given by EJ4

L = VJ4(L)− L, is energy function.
The operator iJ4 induced by J4 and defined by

iJ4ω(X1, X2, ..., Xr) =
r∑

i=1

ω(X1, ..., J4Xi, ..., Xr),

is called vertical derivation, where ω ∈ ∧rM, Xi ∈ χ(M). The vertical differ-
entiation dJ4 is determined by

dJ4 = [iJ4 , d] = iJ4d− diJ4 .

We saw that the Clifford Kähler form is the closed 2-form given by ΦJ4
L =

−ddJ4
L such that

dJ4
=

∂

∂x4n+i
dxi − ∂

∂x2n+i
dxn+i +

∂

∂xn+i
dx2n+i − ∂

∂x7n+i
dx3n+i

− ∂

∂xi
dx4n+i +

∂

∂x6n+i
dx5n+i − ∂

∂x5n+i
dx6n+i +

∂

∂x3n+i
dx7n+i

determined by operator
dJ4

: F(M) → ∧1M.

Then
ΦJ4

L = − ∂2L
∂xj∂x4n+i

dxj ∧ dxi + ∂2L
∂xj∂x2n+i

dxj ∧ dxn+i − ∂2L
∂xj∂xn+i

dxj ∧ dx2n+i

+ ∂2L
∂xj∂x7n+i

dxj ∧ dx3n+i + ∂2L
∂xj∂xi

dxj ∧ dx4n+i − ∂2L
∂xj∂x6n+i

dxj ∧ dx5n+i

+ ∂2L
∂xj∂x5n+i

dxj ∧ dx6n+i − ∂2L
∂xj∂x3n+i

dxj ∧ dx7n+i − ∂2L
∂xn+j∂x4n+i

dxn+j ∧ dxi

+ ∂2L
∂xn+j∂x2n+i

dxn+j ∧ dxn+i − ∂2L
∂xn+j∂xn+i

dxn+j ∧ dx2n+i

+ ∂2L
∂xn+j∂x7n+i

dxn+j ∧ dx3n+i + ∂2L
∂xn+j∂xi

dxn+j ∧ dx4n+i
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− ∂2L
∂xn+j∂x6n+i

dxn+j ∧ dx5n+i + ∂2L
∂xn+j∂x5n+i

dxn+j ∧ dx6n+i

− ∂2L
∂xn+j∂x7n+i

dxn+j ∧ dx7n+i − ∂2L
∂x2n+j∂x4n+i

dx2n+j ∧ dxi

+ ∂2L
∂x2n+j∂x2n+i

dx2n+j ∧ dxn+i − ∂2L
∂x2n+j∂xn+i

dx2n+j ∧ dx2n+i

+ ∂2L
∂x2n+j∂x7n+i

dx2n+j ∧ dx3n+i + ∂2L
∂x2n+j∂xi

dx2n+j ∧ dx4n+i

− ∂2L
∂x2n+j∂x6n+i

dx2n+j ∧ dx5n+i + ∂2L
∂x2n+j∂x5n+i

dx2n+j ∧ dx6n+i

− ∂2L
∂x2n+j∂x7n+i

dx2n+j ∧ dx7n+i − ∂2L
∂x3n+j∂x4n+i

dx3n+j ∧ dxi

+ ∂2L
∂x3n+j∂x2n+i

dx3n+j ∧ dxn+i − ∂2L
∂x3n+j∂xn+i

dx3n+j ∧ dx2n+i

+ ∂2L
∂x3n+j∂x7n+i

dx3n+j ∧ dx3n+i + ∂2L
∂x3n+j∂xi

dx3n+j ∧ dx4n+i

− ∂2L
∂x3n+j∂x6n+i

dx3n+j ∧ dx5n+i + ∂2L
∂x3n+j∂x5n+i

dx3n+j ∧ dx6n+i

− ∂2L
∂x3n+j∂x7n+i

dx3n+j ∧ dx7n+i − ∂L
∂x4n+j∂x4n+i

dx4n+j ∧ dxi

+ ∂L
∂x4n+j∂x2n+i

dx4n+j ∧ dxn+i − ∂L
∂x4n+j∂xn+i

dx4n+j ∧ dx2n+i

+ ∂L
∂x4n+j∂x7n+i

dx4n+j ∧ dx3n+i + ∂2L
∂x4n+j∂xi

dx4n+j ∧ dx4n+i

− ∂2L
∂x4n+j∂x6n+i

dx4n+j ∧ dx5n+i + ∂2L
∂x4n+j∂x5n+i

dx4n+j ∧ dx6n+i

− ∂2L
∂x4n+j∂x3n+i

dx4n+j ∧ dx7n+i − ∂2L
∂x5n+j∂x4n+i

dx5n+j ∧ dxi

+ ∂2L
∂x5n+j∂x2n+i

dx5n+j ∧ dxn+i − ∂2L
∂x5n+j∂xn+i

dx5n+j ∧ dx2n+i

+ ∂2L
∂x5n+j∂x7n+i

dx5n+j ∧ dx3n+i + ∂2L
∂x5n+j∂xi

dx5n+j ∧ dx4n+i

− ∂2L
∂x5n+j∂x6n+i

dx5n+j ∧ dx5n+i + ∂2L
∂x5n+j∂x5n+i

dx5n+j ∧ dx6n+i

− ∂2L
∂x5n+j∂x3n+i

dx5n+j ∧ dx7n+i − ∂2L
∂x6n+j∂x4n+i

dx6n+j ∧ dxi

+ ∂2L
∂x6n+j∂x2n+i

dx6n+j ∧ dxn+i − ∂2L
∂x6n+j∂xn+i

dx6n+j ∧ dx2n+i

+ ∂2L
∂x6n+j∂x7n+i

dx6n+j ∧ dx3n+i + ∂2L
∂x6n+j∂xi

dx6n+j ∧ dx4n+i

− ∂2L
∂x6n+j∂x6n+i

dx6n+j ∧ dx5n+i + ∂2L
∂x6n+j∂x5n+i

dx6n+j ∧ dx6n+i

− ∂2L
∂x6n+j∂x7n+i

dx6n+j ∧ dx7n+i − ∂2L
∂x7n+j∂x4n+i

dx7n+j ∧ dxi

+ ∂2L
∂x7n+j∂x2n+i

dx7n+j ∧ dxn+i − ∂2L
∂x7n+j∂xn+i

dx7n+j ∧ dx2n+i

+ ∂2L
∂x7n+j∂x7n+i

dx7n+j ∧ dx3n+i + ∂2L
∂x7n+j∂xi

dx7n+j ∧ dx4n+i

− ∂2L
∂x7n+j∂x6n+i

dx7n+j ∧ dx5n+i + ∂2L
∂x7n+j∂x5n+i

dx7n+j ∧ dx6n+i

− ∂2L
∂x7n+j∂x3n+i

dx7n+j ∧ dx7n+i.

Also, we have energy function as follows:
EJ4

L = Xi ∂L
∂x4n+i

−Xn+i ∂L
∂x2n+i

+ X2n+i ∂L
∂xn+i

−X3n+i ∂L
∂x7n+i

−X4n+i ∂L
∂xi

+ X5n+i ∂L
∂x6n+i

−X6n+i ∂L
∂x5n+i

+ X7n+i ∂L
∂x3n+i

− L

By means of Eq. (0.1), we calculate the following expressions
−Xi ∂2L

∂xj∂x4n+i
δj
i dxi + Xi ∂2L

∂xj∂x2n+i
δj
i dxn+i −Xi ∂2L

∂xj∂xn+i
δj
i dx2n+i

+Xi ∂2L
∂xj∂x7n+i

δj
i dx3n+i + Xi ∂2L

∂xj∂xi
δj
i dx4n+i −Xi ∂2L

∂xj∂x6n+i
δj
i dx5n+i
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+Xi ∂2L
∂xj∂x5n+i

δj
i dx6n+i −Xi ∂2L

∂xj∂x3n+i
δj
i dx7n+i −Xn+i ∂2L

∂xn+j∂x4n+i
δn+j
n+i dxi

+Xn+i ∂2L
∂xn+j∂x2n+i

δn+j
n+i dxn+i −Xn+i ∂2L

∂xn+j∂xn+i
δn+j
n+i dx2n+i

+Xn+i ∂2L
∂xn+j∂x7n+i

δn+j
n+i dx3n+i + Xn+i ∂2L

∂xn+j∂xi
δn+j
n+i dx4n+i

−Xn+i ∂2L
∂xn+j∂x6n+i

δn+j
n+i dx5n+i + Xn+i ∂2L

∂xn+j∂x5n+i
δn+j
n+i dx6n+i

−Xn+i ∂2L
∂xn+j∂x7n+i

δn+j
n+i dx7n+i − X2n+i ∂2L

∂x2n+j∂x4n+i
δ2n+j
2n+i dxi

+X2n+i ∂2L
∂x2n+j∂x2n+i

δ2n+j
2n+i dxn+i −X2n+i ∂2L

∂x2n+j∂xn+i
δ2n+j
2n+i dx2n+i

+X2n+i ∂2L
∂x2n+j∂x7n+i

δ2n+j
2n+i dx3n+i + X2n+i ∂2L

∂x2n+j∂xi
δ2n+j
2n+i dx4n+i

−X2n+i ∂2L
∂x2n+j∂x6n+i

δ2n+j
2n+i dx5n+i + X2n+i ∂2L

∂x2n+j∂x5n+i
δ2n+j
2n+i dx6n+i

−X2n+i ∂2L
∂x2n+j∂x7n+i

δ2n+j
2n+i dx7n+i −X3n+i ∂2L

∂x3n+j∂x4n+i
δ3n+j
3n+i dxi

+X3n+i ∂2L
∂x3n+j∂x2n+i

δ3n+j
3n+i dxn+i −X3n+i ∂2L

∂x3n+j∂xn+i
δ3n+j
3n+i dx2n+i

+X3n+i ∂2L
∂x3n+j∂x7n+i

δ3n+j
3n+i dx3n+i + X3n+i ∂2L

∂x3n+j∂xi
δ3n+j
3n+i dx4n+i

−X3n+i ∂2L
∂x3n+j∂x6n+i

δ3n+j
3n+i dx5n+i + X3n+i ∂2L

∂x3n+j∂x5n+i
δ3n+j
3n+i dx6n+i

−X3n+i ∂2L
∂x3n+j∂x7n+i

δ3n+j
3n+i dx7n+i −X4n+i ∂L

∂x4n+j∂x4n+i
δ4n+j
4n+i dxi

+X4n+i ∂L
∂x4n+j∂x2n+i

δ4n+j
4n+i dxn+i −X4n+i ∂L

∂x4n+j∂xn+i
δ4n+j
4n+i dx2n+i

+X4n+i ∂L
∂x4n+j∂x7n+i

δ4n+j
4n+i dx3n+i + X4n+i ∂2L

∂x4n+j∂xi
δ4n+j
4n+i dx4n+i

−X4n+i ∂2L
∂x4n+j∂x6n+i

δ4n+j
4n+i dx5n+i + X4n+i ∂2L

∂x4n+j∂x5n+i
δ4n+j
4n+i dx6n+i

−X4n+i ∂2L
∂x4n+j∂x3n+i

δ4n+j
4n+i dx7n+i −X5n+i ∂2L

∂x5n+j∂x4n+i
δ5n+j
5n+i dxi

+X5n+i ∂2L
∂x5n+j∂x2n+i

δ5n+j
5n+i dxn+i −X5n+i ∂2L

∂x5n+j∂xn+i
δ5n+j
5n+i dx2n+i

+X5n+i ∂2L
∂x5n+j∂x7n+i

δ5n+j
5n+i dx3n+i + X5n+i ∂2L

∂x5n+j∂xi
δ5n+j
5n+i dx4n+i

−X5n+i ∂2L
∂x5n+j∂x6n+i

δ5n+j
5n+i dx5n+i + X5n+i ∂2L

∂x5n+j∂x5n+i
δ5n+j
5n+i dx6n+i

−X5n+i ∂2L
∂x5n+j∂x3n+i

δ5n+j
5n+i dx7n+i −X6n+i ∂2L

∂x6n+j∂x4n+i
δ6n+j
6n+i dxi

+X6n+i ∂2L
∂x6n+j∂x2n+i

δ6n+j
6n+i dxn+i −X6n+i ∂2L

∂x6n+j∂xn+i
δ6n+j
6n+i dx2n+i

+X6n+i ∂2L
∂x6n+j∂x7n+i

δ6n+j
6n+i dx3n+i + X6n+i ∂2L

∂x6n+j∂xi
δ6n+j
6n+i dx4n+i

−X6n+i ∂2L
∂x6n+j∂x6n+i

δ6n+j
6n+i dx5n+i + X6n+i ∂2L

∂x6n+j∂x5n+i
δ6n+j
6n+i dx6n+i

−X6n+i ∂2L
∂x6n+j∂x7n+i

δ6n+j
6n+i dx7n+i −X7n+i ∂2L

∂x7n+j∂x4n+i
δ7n+j
7n+i dxi

+X7n+i ∂2L
∂x7n+j∂x2n+i

δ7n+j
7n+i dxn+i −X7n+i ∂2L

∂x7n+j∂xn+i
δ7n+j
7n+i dx2n+i

+X7n+i ∂2L
∂x7n+j∂x7n+i

δ7n+j
7n+i dx3n+i + X7n+i ∂2L

∂x7n+j∂xi
δ7n+j
7n+i dx4n+i

−X7n+i ∂2L
∂x7n+j∂x6n+i

δ7n+j
7n+i dx5n+i + X7n+i ∂2L

∂x7n+j∂x5n+i
δ7n+j
7n+i dx6n+i

−X7n+i ∂2L
∂x7n+j∂x3n+i

δ7n+j
7n+i dx7n+i + ∂L

∂xj
dxj + ∂L

∂xn+j
dxn+j

+ ∂L
∂x2n+j

dx2n+j + ∂L
∂x3n+j

dx3n+j + ∂L
∂x4n+j

dx4n+j + ∂L
∂x5n+j

dx5n+j

+ ∂L
∂x6n+j

dx6n+j + ∂L
∂x7n+j

dx7n+j = 0.
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By a curve α on M being an integral curve of ξ, we found equations as
follows:
(0.33)

∂
∂t

(
∂L
∂xi

)
+ ∂L

∂x4n+i
= 0, ∂

∂t

(
∂L

∂xn+i

)
− ∂L

∂x2n+i
= 0, ∂

∂t

(
∂L

∂x2n+i

)
+ ∂L

∂xn+i
= 0,

∂
∂t

(
∂L

∂x3n+i

)
− ∂L

∂x7n+i
= 0, ∂

∂t

(
∂L

∂x4n+i

)
− ∂L

∂xi
= 0, ∂

∂t

(
∂L

∂x5n+i

)
+ ∂L

∂x6n+i
= 0,

∂
∂t

(
∂L

∂x6n+i

)
− ∂L

∂x5n+i
= 0, ∂

∂t

(
∂L

∂x7n+i

)
+ ∂L

∂x3n+i
= 0,

such that the equations expressed in Eq. (0.33) are named Euler-Lagrange
equations structured on Clifford Kähler manifold (M, V ) by means of ΦJ4

L and
in the case, the triple (M, ΦJ4

L , ξ) is said to be a mechanical system on Clifford
Kähler manifold (M,V ).

Fifth, we obtain Euler-Lagrange equations for quantum and classical me-
chanics by means of ΦJ5

L on Clifford Kähler manifold (M,V ).
Let J5 be another local basis component on the Clifford Kähler manifold

(M, V ). Let ξ take as in Eq. (0.12) given in Chapter 3. In the case, the
vector field defined by

VJ5 = J5(ξ) = Xi ∂
∂x5n+i

−Xn+i ∂
∂x3n+i

−X2n+i ∂
∂x7n+i

+ X3n+i ∂
∂xn+i

+X4n+i ∂
∂x6n+i

−X5n+i ∂
∂xi

−X6n+i ∂
∂x4n+i

+ X7n+i ∂
∂x2n+i

,

is Liouville vector field on Clifford Kähler manifold (M, V ). The function
given by EJ5

L = VJ5(L)− L is energy function. Then the operator iJ5 induced
by J5 and defined by

iJ5ω(X1, X2, ..., Xr) =
r∑

i=1

ω(X1, ..., J5Xi, ..., Xr)

is vertical derivation, where ω ∈ ∧rM, Xi ∈ χ(M). The vertical differentiation
dJ5 is determined by

dJ5 = [iJ5 , d] = iJ5d− diJ5 .

Taking into consideration J5, the Clifford Kähler form is the closed 2-form
given by ΦJ5

L = −ddJ5L such that

(0.34)
dJ5

= ∂
∂x5n+i

dxi − ∂
∂x3n+i

dxn+i − ∂
∂x7n+i

dx2n+i + ∂
∂xn+i

dx3n+i

+ ∂
∂x6n+i

dx4n+i − ∂
∂xi

dx5n+i − ∂
∂x4n+i

dx6n+i + ∂
∂x2n+i

dx7n+i,

by means of the operator

dJ5 : F(M) → ∧1M.

The closed Clifford Kähler form ΦJ5
L on M is the symplectic structure. So it

yields

(0.35)
EJ5

L = Xi ∂L
∂x5n+i

−Xn+i ∂L
∂x3n+i

−X2n+i ∂L
∂x7n+i

+ X3n+i ∂L
∂xn+i

+X4n+i ∂L
∂x6n+i

−X5n+i ∂L
∂xi

−X6n+i ∂L
∂x4n+i

+ X7n+i ∂L
∂x2n+i

− L.
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Using Eq. (0.1), using (0.12), (0.34) and (0.35), also similar to the above
fourth case we obtain the equations
(0.36)

∂
∂t

(
∂L
∂xi

)
+ ∂L

∂x5n+i
= 0, ∂

∂t

(
∂L

∂xn+i

)
− ∂L

∂x3n+i
= 0, ∂

∂t

(
∂L

∂x2n+i

)
− ∂L

∂x7n+i
= 0,

∂
∂t

(
∂L

∂x3n+i

)
+ ∂L

∂xn+i
= 0, ∂

∂t

(
∂L

∂x4n+i

)
+ ∂L

∂x6n+i
= 0, ∂

∂t

(
∂L

∂x5n+i

)
− ∂L

∂xi
= 0,

∂
∂t

(
∂L

∂x6n+i

)
− ∂L

∂x4n+i
= 0, ∂

∂t

(
∂L

∂x7n+i

)
+ ∂L

∂x2n+i
= 0.

Thus the equations found in Eq. (0.36) are named Euler-Lagrange equations
structured by means of ΦJ5

L on Clifford Kähler manifold (M,V ) and so, the
triple (M, ΦJ5

L , ξ) is called a mechanical system on Clifford Kähler manifold
(M, V ).

Sixth, we present Euler-Lagrange equations for quantum and classical me-
chanics by means of ΦJ6

L on Clifford Kähler manifold (M,V ).
Let J6 be a local basis on Clifford Kähler manifold (M, V ). Let semispray

ξ give as in Eq.(0.12). So, Liouville vector field on Clifford Kähler manifold
(M, V ) is the vector field defined by

VJ6 = J6(ξ) = Xi ∂
∂x6n+i

−Xn+i ∂
∂x7n+i

−X2n+i ∂
∂x3n+i

+ X3n+i ∂
∂x2n+i

+X4n+i ∂
∂x5n+i

−X5n+i ∂
∂x4n+i

−X6n+i ∂
∂xi

+ X7n+i ∂
∂xn+i

.

The function given by EJ6
L = VJ6(L)− L is energy function and found by

EJ6
L = Xi ∂L

∂x6n+i
−Xn+i ∂L

∂x7n+i
−X2n+i ∂L

∂x3n+i
+ X3n+i ∂L

∂x2n+i

+X4n+i ∂L
∂x5n+i

−X5n+i ∂L
∂x4n+i

−X6n+i ∂L
∂xi

+ X7n+i ∂L
∂xn+i

− L.

The function iJ6 induced by J6 and given by

iJ6ω(X1, X2, ..., Xr) =
r∑

i=1

ω(X1, ..., J6Xi, ..., Xr),

is said to be vertical derivation, where ω ∈ ∧rM, Xi ∈ χ(M). The vertical
differentiation dJ6 is determined by

dJ6 = [iJ6 , d] = iJ6d− diJ6 ,

We say the Kähler form is the closed 2-form given by ΦJ6
L = −ddJ6

L such that

dJ6
: F(M) → ∧1M,

dJ6
=

∂

∂x6n+i
dxi − ∂

∂x7n+i
dxn+i − ∂

∂x3n+i
dx2n+i +

∂

∂x2n+i
dx3n+i

+
∂

∂x5n+i
dx4n+i − ∂

∂x4n+i
dx5n+i − ∂

∂xi
dx6n+i +

∂

∂xn+i
dx7n+i.
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Considering Eq. (0.1), similar to the above cases, we calculate the following
equations
(0.37)

∂
∂t

(
∂L
∂xi

)
+ ∂L

∂x6n+i
= 0, ∂

∂t

(
∂L

∂xn+i

)
− ∂L

∂x7n+i
= 0, ∂

∂t

(
∂L

∂x2n+i

)
− ∂L

∂x3n+i
= 0,

∂
∂t

(
∂L

∂x3n+i

)
+ ∂L

∂x2n+i
= 0, ∂

∂t

(
∂L

∂x4n+i

)
+ ∂L

∂x5n+i
= 0, ∂

∂t

(
∂L

∂x5n+i

)
− ∂L

∂x4n+i
= 0,

∂
∂t

(
∂L

∂x6n+i

)
− ∂L

∂xi
= 0, ∂

∂t

(
∂L

∂x7n+i

)
+ ∂L

∂xn+i
= 0.

Thus the equations obtained in Eq. (0.37) infer Euler-Lagrange equations
structured by means of ΦJ6

L on Clifford Kähler manifold (M,V ) and so, the
triple (M, ΦJ6

L , ξ) is called a mechanical system on Clifford Kähler manifold
(M, V ).

0.8. Clifford Hamilton Mechanics. Here, we obtain Hamilton equa-
tions and Hamiltonian mechanical system for quantum and classical mechanics
by means of a canonical local basis {J∗i }(i = 1, 6) of V ∗ on Clifford Kähler
manifold (M,V ∗). The Hamilton equations using basis {J∗1 , J∗2 , J∗3} of V on
(R8n, V ∗) are introduced in Chapter 3. We see that they are the same as the
equations obtained by operators J∗1 , J∗2 , J∗3 of V ∗ on Clifford Kähler manifold
(M, V ∗).

Therefore, here, only we derive Hamilton equations using operators J∗4 , J∗5 , J∗6
of V ∗ on Clifford Kähler manifold (M, V ∗).

Fourth, let (M, V ∗) be a Clifford Kähler manifold. Suppose that a com-
ponent of the almost Clifford structure V ∗and a Liouville form and a 1-form
on Clifford Kähler manifold (M, V ∗) are given by J∗4 and λJ∗4 , respectively.

Let ω be as given by Eq. (0.18) in Chapter 3.

ω =
1
2
(xidxi + xn+idxn+i + x2n+idx2n+i + x3n+idx3n+i

+x4n+idx4n+i + x5n+idx5n+i + x6n+idx6n+i + x7n+idx7n+i),

we have

λJ∗4 = J∗4 (ω) =
1
2
(xidx4n+i − xn+idx2n+i + x2n+idxn+i − x3n+idx7n+i

−x4n+idxi + x5n+idx6n+i − x6n+idx5n+i + x7n+idx3n+i).

It is known that if ΦJ∗4 is a closed Kähler form on Clifford Kähler manifold
(M, V ∗), then ΦJ∗4 is also a symplectic structure on Clifford Kähler manifold
(M, V ∗).

Take into consideration that Hamilton vector field X associated with
Hamilton energy H is given by

X = Xi ∂
∂xi

+ Xn+i ∂
∂xn+i

+ X2n+i ∂
∂x2n+i

+ X3n+i ∂
∂x3n+i

+X4n+i ∂
∂x4n+i

+ X5n+i ∂
∂x5n+i

+ X6n+i ∂
∂x6n+i

+ X7n+i ∂
∂x7n+i

.
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Then

ΦJ∗4 = −dλJ∗4 = dxn+i∧dx2n+i+dx3n+i∧dx7n+i+dx4n+i∧dxi+dx6n+i∧dx5n+i

and
(0.38)
iXΦJ∗4 = ΦJ∗4 (X) = Xn+idx2n+i −X2n+idxn+i + X3n+idx7n+i −X7n+idx3n+i

+X4n+idxi −Xidx4n+i + X6n+idx5n+i −X5n+idx6n+i.

Furthermore, the differential of Hamilton energy is obtained as follows:

(0.39)
dH = ∂H

∂xi
dxi + ∂H

∂xn+i
dxn+i + ∂H

∂x2n+i
dx2n+i + ∂H

∂x3n+i
dx3n+i

+ ∂H
∂x4n+i

dx4n+i + ∂H
∂x5n+i

dx5n+i + ∂H
∂x6n+i

dx6n+i + ∂H
∂x7n+i

dx7n+i.

According to Eq.(0.3), if equaled Eq. (0.38) and Eq. (0.39), the Hamilton
vector field is calculated as follows:

(0.40)
X = − ∂H

∂x4n+i

∂
∂xi

+ ∂H
∂x2n+i

∂
∂xn+i

− ∂H
∂xn+i

∂
∂x2n+i

+ ∂H
∂x7n+i

∂
∂x3n+i

+ ∂H
∂xi

∂
∂x4n+i

− ∂H
∂x6n+i

∂
∂x5n+i

+ ∂H
∂x5n+i

∂
∂x6n+i

− ∂H
∂x3n+i

∂
∂x7n+i

.

Assume that a curve
α : R → M

be an integral curve of the Hamilton vector field X, i.e.,

(0.41) X(α(t)) =
.
α, t ∈ R.

In the local coordinates, it is found that

α(t) = (xi, xn+i, x2n+i, x3n+i, x4n+i, x5n+i, x6n+i, x7n+i)

and

(0.42)
.
α(t) = dxi

dt
∂

∂xi
+ dxn+i

dt
∂

∂xn+i
+ dx2n+i

dt
∂

∂x2n+i
+ dx3n+i

dt
∂

∂x3n+i

+dx4n+i

dt
∂

∂x4n+i
+ dx5n+i

dt
∂

∂x5n+i
+ dx6n+i

dt
∂

∂x6n+i
+ dx7n+i

dt
∂

∂x7n+i
.

Thinking out Eq. (0.41), if equaled Eq. (0.40) and Eq. (0.42), it follows
(0.43)

dxi
dt = − ∂H

∂x4n+i
, dxn+i

dt = ∂H
∂x2n+i

, dx2n+i

dt = − ∂H
∂xn+i

, dx3n+i

dt = ∂H
∂x7n+i

,
dx4n+i

dt = ∂H
∂xi

, dx5n+i

dt = − ∂H
∂x6n+i

, dx6n+i

dt = ∂H
∂x5n+i

, dx7n+i

dt = − ∂H
∂x3n+i

.

Hence, the equations obtained in Eq. (0.43) are shown to be Hamilton equa-
tions with respect to component J∗4 of almost Clifford structure V ∗ on Clif-
ford Kähler manifold (M,V ∗), and then the triple (M, ,ΦJ∗4 , X) is said to be
a Hamiltonian mechanical system on Clifford Kähler manifold (M,V ∗).

Fifth, let (M,V ∗) be a Clifford Kähler manifold. Assume that an element
of the almost Clifford structure V ∗and a Liouville form on Clifford Kähler
manifold (M, V ∗) are determined by J∗5 and λJ∗5 (= J∗5 (ω)), respectively.

we have

λJ∗5 =
1
2
(xidx5n+i − xn+idx3n+i − x2n+idx7n+i + x3n+idxn+i

+x4n+idx6n+i − x5n+idxi − x6n+idx4n+i + x7n+idx2n+i).
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Take into consideration

ΦJ∗5 = −dλJ∗5 = dxn+i∧dx3n+i+dx2n+i∧dx7n+i+dx5n+i∧dxi+dx6n+i∧dx4n+i,

then we find
(0.44)
iXΦJ∗5 = ΦJ∗5 (X) = Xn+idx3n+i −X3n+idxn+i + X2n+idx7n+i −X7n+idx2n+i

+X5n+idxi −Xidx5n+i + X6n+idx4n+i −X4n+idx6n+i.

According to Eq.(0.3), if we equal Eq. (0.39) and Eq. (0.44), it follows

(0.45)
X = − ∂H

∂x5n+i

∂
∂xi

+ ∂H
∂x3n+i

∂
∂xn+i

+ ∂H
∂x7n+i

∂
∂x2n+i

− ∂H
∂xn+i

∂
∂x3n+i

− ∂H
∂x6n+i

∂
∂x4n+i

+ ∂H
∂xi

∂
∂x5n+i

+ ∂H
∂x4n+i

∂
∂x6n+i

− ∂H
∂x2n+i

∂
∂x7n+i

.

Taking Eq. (0.41), if Eqs. (0.42) and (0.45) are equaled, we obtain equations
(0.46)

dxi
dt = − ∂H

∂x5n+i
, dxn+i

dt = ∂H
∂x3n+i

, dx2n+i

dt = ∂H
∂x7n+i

, dx3n+i

dt = − ∂H
∂xn+i

,
dx4n+i

dt = − ∂H
∂x6n+i

, dx5n+i

dt = ∂H
∂xi

, dx6n+i

dt = ∂H
∂x4n+i

, dx7n+i

dt = − ∂H
∂x2n+i

.

In the end, the equations found in Eq. (0.46) are seen to be Hamilton equa-
tions with respect to component J∗5 of the almost Clifford structure V ∗ on
Clifford Kähler manifold (M, V ∗), and then the triple (M, ΦJ∗5 , X) is named a
Hamiltonian mechanical system on Clifford Kähler manifold (M,V ∗).

Sixth, let (M,V ∗) be a Clifford Kähler manifold. By J∗6 , λJ∗6 , we denote a
component of almost Clifford structure V ∗, a Liouville form on Clifford Kähler
manifold (M, V ∗), respectively.

Then it yields

λJ∗6 = J∗6 (ω) =
1
2
(xidx6n+i − xn+idx7n+i − x2n+idx3n+i + x3n+idx2n+i

+x4n+idx5n+i − x5n+idx4n+i − x6n+idxi + x7n+idxn+i).

It is known that if ΦJ∗6 is a closed Kähler form on Clifford Kähler manifold
(M, V ∗), then ΦJ∗6 is also a symplectic structure on Clifford Kähler manifold
(M, V ∗).

Considering

ΦJ∗6 = −dλJ∗6 = dxn+i∧dx7n+i+dx2n+i∧dx3n+i+dx5n+i∧dx4n+i+dx6n+i∧dxi,

we calculate
(0.47)
iXΦJ∗6 = ΦJ∗6 (X) = Xn+idx7n+i −X7n+idxn+i + X2n+idx3n+i −X3n+idx2n+i

+X5n+idx4n+i −X4n+idx5n+i + X6n+idxi −Xidx6n+i.

According to Eq.(0.3), if Eqs. (0.39) and (0.47) are equaled, Hamilton vector
field is found as follows:

(0.48)
X = − ∂H

∂x6n+i

∂
∂xi

+ ∂H
∂x7n+i

∂
∂xn+i

+ ∂H
∂x3n+i

∂
∂x2n+i

− ∂H
∂x2n+i

∂
∂x3n+i

− ∂H
∂x5n+i

∂
∂x4n+i

+ ∂H
∂x4n+i

∂
∂x5n+i

+ ∂H
∂xi

∂
∂x6n+i

− ∂H
∂xn+i

∂
∂x7n+i

.



4. MECHANICAL SYSTEMS ON CLIFFORD KÄHLER MANIFOLDS 39

Considering Eq. (0.41), we equal Eq. (0.42) and Eq. (0.48), it holds

(0.49)
dxi
dt = − ∂H

∂x6n+i
, dxn+i

dt = ∂H
∂x7n+i

, dx2n+i

dt = ∂H
∂x3n+i

, dx3n+i

dt = − ∂H
∂x2n+i

,
dx4n+i

dt = − ∂H
∂x5n+i

, dx5n+i

dt = ∂H
∂x4n+i

, dx6n+i

dt = ∂H
∂xi

, dx7n+i

dt = − ∂H
∂xn+i

.

Finally, the equations calculated in Eq. (0.49) are called to be Hamilton
equations with respect to component J∗6 of the almost Clifford structure V ∗
on Clifford Kähler manifold (M,V ∗), and then the triple (M, ΦJ∗6 , X) is said
to be a Hamiltonian mechanical system on Clifford Kähler manifold (M, V ∗).

Conclusion 4. From above, Lagrangian formalisms has intrinsically been
described taking into account a canonical local basis {Ji}, i = 1, 6 of V on
Clifford Kähler manifold (M, V ). The paths of semispray ξ on Clifford Kähler
manifold are the solutions Euler–Lagrange equations raised in (0.33), (0.36)
and (0.37), and also obtained by a canonical local basis {Ji}, i = 1, 6 of vec-
tor bundle V on Clifford Kähler manifold (M, V ). One may be shown that
these equations are very important to explain the rotational spatial mechanics
problems. Hamilton Formalisms has intrinsically been described with taking
into account the basis {J∗i }, i = 1, 6 of almost Clifford structure V ∗ on Clif-
ford Kähler manifold (M, V ∗). Hamilton models arise to be a very important
tool since they present a simple method to describe the model for dynamical
systems. In solving problems in classical mechanics, the rotational mechanical
system will then be easily usable model. Since a new model for dynamic sys-
tems on subspaces and spaces is needed, equations (0.43), (0.46) and (0.49)
are only considered to be a first step to realize how Clifford geometry has been
used in understanding, modeling and solving problems in different physical
fields.





CHAPTER 5

Mechanical Systems on Quaternion Kähler
Manifolds

This chapter presents the further steps of the previously done studies tak-
ing into consideration analogues of Lagrangian and Hamiltonian mechanics
in given [22, 23]. Presently, considering quaternion Kähler manifolds, we
introduce quaternion Kähler analogue of Lagrangian mechanics. And then a
quaternion Kähler version of Hamilton equations is obtained. Finally, the some
results related to quaternion Kähler Lagrangian and Hamiltonian dynamical
systems are also given.

0.9. Quaternion Kähler Manifolds. Here, we recall some definitions
given in [18]. Let M be an n-dimensional manifold. It has a 3-dimensional
vector bundle V consisting of tensors of type (1,1). The manifold M satisfies
the condition given by:

(a) In any coordinate neighborhood U of M , there exists a local basis
{F,G, H} of V such that

F 2 = G2 = H2 = FGH = −I.

I denotes the identity tensor of type (1,1) in M . Such a local basis {F, G, H}
is called a canonical local basis of the bundle V in U . Then V is said to be
an almost quaternion structure in M , and M with V is an almost quaternion
manifold denoted by (M, V ). An almost quaternion manifold M is of dimen-
sion n = 4m (m ≥ 1). In any almost quaternion manifold (M, V ), there is a
Riemannian metric tensor field g such that

g(φX, Y ) + g(X,φY ) = 0

for any cross-section φ on M and any vector fields X,Y of M. An almost
quaternion structure V fixed with a Riemannian metric g is called an almost
quaternion metric structure. A manifold M endowed with an almost quater-
nion metric structure {g, V } is said to be an almost quaternion metric manifold
denoted by (M, g, V ). Let {F,G, H} be a canonical local basis of V an almost
quaternion manifold (M, g, V ). Since each of F, G and H is almost Hermitian
with respect to g, setting

Φ(X, Y ) = g(FX, Y ), Ψ(X,Y ) = g(GX, Y ), Θ(X, Y ) = g(HX,Y )

for any vector fields X and Y , we see that Φ, Ψ and Θ are local 2-forms.

41
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Assume that the Riemannian connection ∇ of (M, g, V ) satisfies the con-
ditions as follows:

(b) If φ is a cross-section (local or global) of the bundle V , then VXφ is
also a cross-section of V , where X is an arbitrary vector field in M . From
(0.5) we see that the condition (b) is equivalent to the following condition:

(b′) If F, G,H is a canonical local basis of V , then

∇XF = r(X)G− q(X)H, ∇XG = −r(X)F + p(X)H,

∇XH = q(X)F − p(X)G

for any vector field X, where p, q and r are certain local 1-forms. If an almost
quaternion metric manifold M satisfies the condition (b) or (b′), then M is
said to be a quaternion Kähler manifold and an almost quaternion structure
of M is called a quaternion Kähler structure.

Let {xi, xn+i, x2n+i, x3n+i} , i = 1, n be a real coordinate system on a
neighborhood U of M. Note that

{
∂

∂xi
, ∂

∂xn+i
, ∂

∂x2n+i
, ∂

∂x3n+i

}
and {dxi, dxn+i, dx2n+i, dx3n+i}

are natural bases over R of the tangent space T (M) and the cotangent space
T ∗(M) of M, respectively. The standard almost quaternion structure on Rn

is given in [19]. Inspiring of [19], we can determine the existence of a lo-
cal coordinate system connected with integrability of the almost quaternion
structure as follows.

(0.50)

F ( ∂
∂xi

) = ∂
∂xn+i

, F ( ∂
∂xn+i

) = − ∂
∂xi

,

F ( ∂
∂x2n+i

) = ∂
∂x3n+i

, F ( ∂
∂x3n+i

) = − ∂
∂x2n+i

,

G( ∂
∂xi

) = ∂
∂x2n+i

, G( ∂
∂xn+i

) = − ∂
∂x3n+i

,

G( ∂
∂x2n+i

) = − ∂
∂xi

, G( ∂
∂x3n+i

) = ∂
∂xn+i

,

H( ∂
∂xi

) = ∂
∂x3n+i

, H( ∂
∂xn+i

) = ∂
∂x2n+i

,

H( ∂
∂x2n+i

) = − ∂
∂xn+i

, H( ∂
∂x3n+i

) = − ∂
∂xi

.

A canonical local basis{F ∗, G∗, H∗} of V ∗ of the cotangent space T ∗(M) of
manifold M satisfies the condition as follows:

F ∗2 = G
∗2 = H∗2 = F ∗G∗H∗ = −I,

defining by

(0.51)

F ∗(dxi) = dxn+i, F ∗(dxn+i) = −dxi,
F ∗(dx2n+i) = dx3n+i, F ∗(dx3n+i) = −dx2n+i,

G∗(dxi) = dx2n+i, G∗(dxn+i) = −dx3n+i,
G∗(dx2n+i) = −dxi, G∗(dx3n+i) = dxn+i,
H∗(dxi) = dx3n+i, H∗(dxn+i) = dx2n+i,

H∗(dx2n+i) = −dxn+i, H∗(dx3n+i) = −dxi.

So, we say to be a quaternion manifold M denoted by (M,V ∗).
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0.10. Quaternion Lagrangian Mechanics. In this subsection, we ob-
tain Euler-Lagrange equations for quantum and classical mechanics by means
of a canonical local basis {F, G,H} of V on quaternion Kähler manifold
(M, V ).

Firstly, let F take a local basis component on the quaternion Kähler mani-
fold (M, V ), and {xi, xn+i, x2n+i, x3n+i} be its coordinate functions. Let semis-
pray be the vector field ξ determined by

(0.52) ξ = Xi ∂

∂xi
+ Xn+i ∂

∂xn+i
+ X2n+i ∂

∂x2n+i
+ X3n+i ∂

∂x3n+i
,

where Xi =
.
xi, X

n+i =
.
xn+i, X

2n+i =
.
x2n+i, X

3n+i =
.
x3n+iand the dot

indicates the derivative with respect to time t. The vector field defined by

VF = F (ξ) = Xi ∂

∂xn+i
−Xn+i ∂

∂xi
+ X2n+i ∂

∂x3n+i
−X3n+i ∂

∂x2n+i

is called Liouville vector field on the quaternion Kähler manifold (M,V ). The
maps given by T, P : M → R such that T = 1

2mi(
.
xi

2 +
.
x

2
n+i + x2

2n+i +
.
x

2
3n+i), P = migh are called the kinetic energy and the potential energy of the

system, respectively. Here mi, g and h stand for mass of a mechanical system
having m particles, the gravity acceleration and distance to the origin of a
mechanical system on the quaternion Kähler manifold (M,V ), respectively.
Then L : M → R is a map that satisfies the conditions; i) L = T − P is
a Lagrangian function, ii) the function given by EF

L = VF (L) − L, is energy
function.

The operator iF induced by F and given by

iF ω(X1, X2, ..., Xr) =
r∑

i=1

ω(X1, ..., FXi, ..., Xr),

is said to be vertical derivation, where ω ∈ ∧rM, Xi ∈ χ(M). The vertical
differentiation dF is defined by

dF = [iF , d] = iF d− diF ,

where d is the usual exterior derivation. For F , the closed Kähler form is the
closed 2-form given by ΦF

L = −ddF L such that

dF =
∂

∂xn+i
dxi − ∂

∂xi
dxn+i +

∂

∂x3n+i
dx2n+i − ∂

∂x2n+i
d3n+i : F(M) → ∧1M.
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Then

ΦF
L = − ∂2L

∂xj∂xn+i
dxj ∧ dxi + ∂2L

∂xj∂xi
dxj ∧ dxn+i

− ∂2L
∂xj∂x3n+i

dxj ∧ dx2n+i + ∂2L
∂xj∂x2n+i

dxj ∧ dx3n+i

− ∂2L
∂xn+j∂xn+i

dxn+j ∧ dxi + ∂2L
∂xn+j∂xi

dxn+j ∧ dxn+i

− ∂2L
∂xn+j∂x3n+i

dxn+j ∧ dx2n+i + ∂2L
∂xn+j∂x2n+i

dxn+j ∧ dx3n+i

− ∂2L
∂x2n+j∂xn+i

dx2n+j ∧ dxi + ∂2L
∂x2n+j∂xi

dx2n+j ∧ dxn+i

− ∂2L
∂x2n+j∂x3n+i

dx2n+j ∧ dx2n+i + ∂2L
∂x2n+j∂x2n+i

dx2n+j ∧ dx3n+i

− ∂2L
∂x3n+j∂xn+i

dx3n+j ∧ dxi + ∂2L
∂x3n+j∂xi

dx3n+j ∧ dxn+i

− ∂2L
∂x3n+j∂x3n+i

dx3n+j ∧ dx2n+i + ∂2L
∂x3n+j∂x2n+i

dx3n+j ∧ dx3n+i.

Also, we have

EF
L = Xi ∂L

∂xn+i
−Xn+i ∂L

∂xi
+ X2n+i ∂L

∂x3n+i
−X3n+i ∂L

∂x2n+i
− L.

With the use of Eq. (0.1), the following expressions can be obtained:

−Xi ∂2L
∂xj∂xn+i

dxj + Xi ∂2L
∂xj∂xi

dxn+j −Xi ∂2L
∂xj∂x3n+i

dx2n+j + Xi ∂2L
∂xj∂x2n+i

dx3n+j

−Xn+i ∂2L
∂xn+j∂xn+i

dxj + Xn+i ∂2L
∂xn+j∂xi

dxn+j −Xn+i ∂2L
∂xn+j∂x3n+i

dx2n+j

+Xn+i ∂2L
∂xn+j∂x2n+i

dx3n+j −X2n+i ∂2L
∂x2n+j∂xn+i

dxj + X2n+i ∂2L
∂x2n+j∂xi

dxn+j

−X2n+i ∂2L
∂x2n+j∂x3n+i

dx2n+j + X2n+i ∂2L
∂x2n+j∂x2n+i

dx3n+j −X3n+i ∂2L
∂x3n+j∂xn+i

dxj

+X3n+i ∂2L
∂x3n+j∂xi

dxn+j −X3n+i ∂2L
∂x3n+j∂x3n+i

dx2n+j + X3n+i ∂2L
∂x3n+j∂x2n+i

dx3n+j

+ ∂L
∂xj

dxj + ∂L
∂xn+j

dxn+j + ∂L
∂x2n+j

dx2n+j + ∂L
∂x3n+j

dx3n+j = 0

If a curve denoted by α on M being an integral curve of ξ, then we calculate
the following equations:

(0.53)
∂
∂t

(
∂L
∂xi

)
+ ∂L

∂xn+i
= 0, ∂

∂t

(
∂L

∂xn+i

)
− ∂L

∂xi
= 0,

∂
∂t

(
∂L

∂x2n+i

)
+ ∂L

∂x3n+i
= 0, ∂

∂t

(
∂L

∂x3n+i

)
− ∂L

∂x2n+i
= 0,

such that the equations obtained in Eq. (0.53) are said to be Euler-Lagrange
equations structured on quaternion Kähler manifold (M, V ) by means of ΦF

L

and thus the triple (M, ΦF
L , ξ) is said to be a mechanical system on quaternion

Kähler manifold (M,V ).
Secondly, we find Euler-Lagrange equations for quantum and classical me-

chanics by means of ΦG
L on quaternion Kähler manifold (M,V ).

Consider G be another local basis component on the quaternion Kähler
manifold (M, V ). Let ξ take as in Eq. (0.52). In the case, the vector field
given by

VG = G(ξ) = Xi ∂

∂x2n+i
−Xn+i ∂

∂x3n+i
−X2n+i ∂

∂xi
+ X3n+i ∂

∂xn+i

is Liouville vector field on the quaternion Kähler manifold (M, V ). The func-
tion given by EG

L = VG(L) − L is energy function. Then the operator iG
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induced by G and denoted by

iGω(X1, X2, ..., Xr) =
r∑

i=1

ω(X1, ..., GXi, ..., Xr)

is vertical derivation, where ω ∈ ∧rM, Xi ∈ χ(M). The vertical differentiation
dG is defined by

dG = [iG, d] = iGd− diG.

Since taking into considering G, the closed Kähler form is the closed 2-form
given by ΦG

L = −ddGL such that

dG =
∂

∂x2n+i
dxi − ∂

∂x3n+i
dxn+i − ∂

∂xi
dx2n+i +

∂

∂xn+i
d3n+i : F(M) → ∧1M.

Then we have

ΦG
L = − ∂2L

∂xj∂x2n+i
dxj ∧ dxi + ∂2L

∂xj∂x3n+i
dxj ∧ dxn+i + ∂2L

∂xj∂xi
dxj ∧ dx2n+i

− ∂2L
∂xj∂xn+i

dxj ∧ dx3n+i − ∂2L
∂xn+j∂x2n+i

dxn+j ∧ dxi + ∂2L
∂xn+j∂x3n+i

dxn+j ∧ dxn+i

+ ∂2L
∂xn+j∂xi

dxn+j ∧ dx2n+i − ∂2L
∂xn+j∂xn+i

dxn+j ∧ dx3n+i − ∂2L
∂x2n+j∂x2n+i

dx2n+j ∧ dxi

+ ∂2L
∂x2n+j∂x3n+i

dx2n+j ∧ dxn+i + ∂2L
∂x2n+j∂xi

dx2n+j ∧ dx2n+i − ∂2L
∂x2n+j∂xn+i

dx2n+j ∧ dx3n+i

− ∂2L
∂x3n+j∂x2n+i

dx3n+j ∧ dxi + ∂2L
∂x3n+j∂x3n+i

dx3n+j ∧ dxn+i + ∂2L
∂x3n+j∂xi

dx3n+j ∧ dx2n+i

− ∂2L
∂x3n+j∂xn+i

dx3n+j ∧ dx3n+i.

Also, we obtain

EG
L = Xi ∂L

∂x2n+i
−Xn+i ∂L

∂x3n+i
−X2n+i ∂L

∂xi
+ X3n+i ∂L

∂xn+i
− L.

By means of Eq. (0.1), we calculate

−Xi ∂2L
∂xj∂x2n+i

dxj + Xi ∂2L
∂xj∂x3n+i

dxn+j + Xi ∂2L
∂xj∂xi

dx2n+j −Xi ∂2L
∂xj∂xn+i

dx3n+j

−Xn+i ∂2L
∂xn+j∂x2n+i

dxj + Xn+i ∂2L
∂xn+j∂x3n+i

dxn+j + Xn+i ∂2L
∂xn+j∂xi

dx2n+j

−Xn+i ∂2L
∂xn+j∂xn+i

dx3n+j −X2n+i ∂2L
∂x2n+j∂x2n+i

dxj + X2n+i ∂2L
∂x2n+j∂x3n+i

dxn+j

+X2n+i ∂2L
∂x2n+j∂xi

dx2n+j −X2n+i ∂2L
∂x2n+j∂xn+i

dx3n+j −X3n+i ∂2L
∂x3n+j∂x2n+i

dxj

+X3n+i ∂2L
∂x3n+j∂x3n+i

dxn+j + X3n+i ∂2L
∂x3n+j∂xi

dx2n+j −X3n+i ∂2L
∂x3n+j∂xn+i

dx3n+j

+ ∂L
∂xj

dxj + ∂L
∂xn+j

dxn+j + ∂L
∂x2n+j

dx2n+j + ∂L
∂x3n+j

dx3n+j = 0.

By α being an integral curve of ξ, then we obtain the equations:

(0.54)
∂
∂t

(
∂L
∂xi

)
+ ∂L

∂x2n+i
= 0, ∂

∂t

(
∂L

∂xn+i

)
− ∂L

∂x3n+i
= 0,

∂
∂t

(
∂L

∂x2n+i

)
− ∂L

∂xi
= 0, ∂

∂t

(
∂L

∂x3n+i

)
+ ∂L

∂xn+i
= 0.

Thus the equations obtained in Eq. (0.54) are called Euler-Lagrange equations
structured by means of ΦG

L on quaternion Kähler manifold (M, V ) and thus
the triple (M, ΦG

L , ξ) can be called to be a mechanical system on quaternion
Kähler manifold (M,V ).
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Thirdly, we introduce Euler-Lagrange equations for quantum and classical
mechanics by means of ΦH

L on quaternion Kähler manifold (M, V ).
Let H be a local basis on the quaternion Kähler manifold (M,V ).Consider

ξ. It is the semispray given in Eq.(0.52). Therefore, Liouville vector field on
the quaternion Kähler manifold (M, V ) is the vector field given by

VH = H(ξ) = Xi ∂

∂x3n+i
+ Xn+i ∂

∂x2n+i
−X2n+i ∂

∂xn+i
−X3n+i ∂

∂xi
.

The function given by EH
L = VH(L) − L is energy function. The function iH

induced by H and shown by

iHω(X1, X2, ..., Xr) =
r∑

i=1

ω(X1, ..., HXi, ..., Xr),

is said to be vertical derivation, where ω ∈ ∧rM, Xi ∈ χ(M). The vertical
differentiation dH is denoted by

dH = [iH , d] = iHd− diH .

Then the closed Kähler form is the closed 2-form given by ΦH
L = −ddH L such

that

dH =
∂

∂x3n+i
dxi +

∂

∂x2n+i
dxn+i − ∂

∂xn+i
dx2n+i − ∂

∂xi
d3n+i : F(M) → ∧1M

Then we get

ΦH
L = − ∂2L

∂xj∂x3n+i
dxj ∧ dxi − ∂2L

∂xj∂x2n+i
dxj ∧ dxn+i + ∂2L

∂xj∂xn+i
dxj ∧ dx2n+i

+ ∂2L
∂xj∂xi

dxj ∧ dx3n+i − ∂2L
∂xn+j∂x3n+i

dxn+j ∧ dxi − ∂2L
∂xn+j∂x2n+i

dxn+j ∧ dxn+i

+ ∂2L
∂xn+j∂xn+i

dxn+j ∧ dx2n+i + ∂2L
∂xn+j∂xi

dxn+j ∧ dx3n+i − ∂2L
∂x2n+j∂x3n+i

dx2n+j ∧ dxi

− ∂2L
∂x2n+j∂x2n+i

dx2n+j ∧ dxn+i + ∂2L
∂x2n+j∂xn+i

dx2n+j ∧ dx2n+i + ∂2L
∂x2n+j∂xi

dx2n+j ∧ dx3n+i

− ∂2L
∂x3n+j∂x3n+i

dx3n+j ∧ dxi − ∂2L
∂x3n+j∂x2n+i

dx3n+j ∧ dxn+i + ∂2L
∂x3n+j∂xn+i

dx3n+j ∧ dx2n+i

+ ∂2L
∂x3n+j∂xi

dx3n+j ∧ dx3n+i.

Also, we find

EH
L = Xi ∂L

∂x3n+i
+ Xn+i ∂L

∂x2n+i
−X2n+i ∂L

∂xn+i
−X3n+i ∂L

∂xi
− L.

Using Eq. (0.1), we calculate the following expression:

−Xi ∂2L
∂xj∂x3n+i

dxj −Xi ∂2L
∂xj∂x2n+i

dxn+j + Xi ∂2L
∂xj∂xn+i

dx2n+j + Xi ∂2L
∂xj∂xi

dx3n+j

−Xn+i ∂2L
∂xn+j∂x3n+i

dxj −Xn+i ∂2L
∂xn+j∂x2n+i

dxn+j + Xn+i ∂2L
∂xn+j∂xn+i

dx2n+j

+Xn+i ∂2L
∂xn+j∂xi

dx3n+j −X2n+i ∂2L
∂x2n+j∂x3n+i

dxj −X2n+i ∂2L
∂x2n+j∂x2n+i

dxn+j

+X2n+i ∂2L
∂x2n+j∂xn+i

dx2n+j + X2n+i ∂2L
∂x2n+j∂xi

dx3n+j −X3n+i ∂2L
∂x3n+j∂x3n+i

dxj

−X3n+i ∂2L
∂x3n+j∂x2n+i

dxn+j + X3n+i ∂2L
∂x3n+j∂xn+i

dx2n+j + X3n+i ∂2L
∂x3n+j∂xi

dx3n+j

+ ∂L
∂xj

dxj + ∂L
∂xn+j

dxn+j + ∂L
∂x2n+j

dx2n+j + ∂L
∂x3n+j

dx3n+j = 0.
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By means of an integral curve α of ξ, then we find the equations:

(0.55)
∂
∂t

(
∂L
∂xi

)
+ ∂L

∂x3n+i
= 0, ∂

∂t

(
∂L

∂xn+i

)
+ ∂L

∂x2n+i
= 0,

∂
∂t

(
∂L

∂x2n+i

)
− ∂L

∂xn+i
= 0, ∂

∂t

(
∂L

∂x3n+i

)
− ∂L

∂xi
= 0.

Thus the equations given in Eq. (0.55) infer Euler-Lagrange equations struc-
tured by means of ΦH

L on quaternion Kähler manifold (M, V ) and thus the
triple (M, ΦH

L , ξ) is said to be a mechanical system on quaternion Kähler man-
ifold (M, V ).

0.11. Quaternion Hamiltonian Mechanics. Here, we introduce quater-
nion Kähler analogue of Hamilton equations given in (0.4).

Firstly, let (M, V ∗) be a quaternion Kähler manifold. Assume that a
component of almost quaternion structure V ∗, a Liouville form and a 1-form
on (M,V ∗) are shown by F ∗, λF ∗ = F ∗(ω) and ω, respectively.

One puts

(0.56) ω =
1
2
(xidxi + xn+idxn+i + x2n+idx2n+i + x3n+idx3n+i).

Then we have

λF ∗ =
1
2
(xidxn+i − xn+idxi + x2n+idx3n+i − x3n+idx2n+i).

It is concluded that if ΦF ∗ = −dλF ∗ is a closed Kähler form on the quaternion
Kähler manifold (M,V ∗), then ΦF ∗ is also a symplectic structure on (M, V ∗).

Consider that Hamiltonian vector fields XF ∗ , XG∗ , XH∗ associated with
Hamiltonian energy H are given by

(0.57)
XF ∗ = Xi ∂

∂xi
+ Xn+i ∂

∂xn+i
+ X2n+i ∂

∂x2n+i
+ X3n+i ∂

∂x3n+i
,

XG∗ = Y i ∂
∂xi

+ Y n+i ∂
∂xn+i

+ Y 2n+i ∂
∂x2n+i

+ Y 3n+i ∂
∂x3n+i

,

XH∗ = Zi ∂
∂xi

+ Zn+i ∂
∂xn+i

+ XZ2n+i ∂
∂x2n+i

+ Z3n+i ∂
∂x3n+i

.

Then we have
ΦF ∗ = dxn+i ∧ dxi + dx3n+i ∧ dx2n+i

and

(0.58) iXF∗ΦF ∗ = Xn+idxi −Xidxn+i + X3n+idx2n+i −X2n+idx3n+i.

Moreover, the differential of Hamiltonian energy is obtained as follows:

(0.59) dH =
∂H
∂xi

dxi +
∂H

∂xn+i
dxn+i +

∂H
∂x2n+i

dx2n+i +
∂H

∂x3n+i
dx3n+i.

According to Eq. (0.3), by Eq. (0.58) and Eq. (0.59) the Hamiltonian vector
field is found as follows:

(0.60) XF ∗ = − ∂H
∂xn+i

∂

∂xi
+

∂H
∂xi

∂

∂xn+i
− ∂H

∂x3n+i

∂

∂x2n+i
+

∂H
∂x2n+i

∂

∂x3n+i
.

Suppose that a curve
α : I ⊂ R → M
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be an integral curve of the Hamiltonian vector fields XF ∗ , XG∗ , XH∗ , i.e.,

(0.61) XF ∗(α(t)) =
.
α, XG∗(α(t)) =

.
α, XH∗(α(t)) =

.
α, t ∈ I.

In the local coordinates, it is obtained that

α(t) = (xi, xn+i, x2n+i, x3n+i)

and

(0.62)
.
α(t) =

dxi

dt

∂

∂xi
+

dxn+i

dt

∂

∂xn+i
+

dx2n+i

dt

∂

∂x2n+i
+

dx3n+i

dt

∂

∂x3n+i
.

By Eq. (0.60), Eq. (0.61), Eq. (0.62) we have
(0.63)

dxi

dt
= − ∂H

∂xn+i
,

dxn+i

dt
=

∂H
∂xi

,
dx2n+i

dt
= − ∂H

∂x3n+i
,

dx3n+i

dt
=

∂H
∂x2n+i

.

Thus, the equations obtained in Eq. (0.63) are seen to be Hamilton equations
with respect to component F ∗ of the almost quaternion structure V ∗ on the
quaternion Kähler manifold (M, V ∗), and then the triple (M, ΦF ∗ , X) is seen
to be a Hamiltonian mechanical system on (M,V ∗).

Secondly, suppose that an element of almost quaternion structure V ∗and
a Liouville form on (M,V ∗) are denoted by G∗and λG∗ = G∗(ω) respectively.

By (0.51) and (0.56) we calculate

λG∗ =
1
2
(xidx2n+i − xn+idx3n+i − x2n+idxi + x3n+idxn+i).

It is known if ΦG∗ = −dλG∗ is a closed Kähler form on the quaternion Kähler
manifold (M, V ∗), then ΦG∗ is also a symplectic structure on (M, V ∗).

Considering

ΦG∗ = dx2n+i ∧ dxi + dxn+i ∧ dx3n+i,

then we calculate

(0.64) iXG∗ΦG∗ = Y 2n+idxi − Y idx2n+i + Y n+idx3n+i − Y 3n+idxn+i.

Taking account of Eq.(0.3), if we equal Eq. (0.59) and Eq. (0.64), it follows

(0.65) XG∗ = − ∂H
∂x2n+i

∂

∂xi
+

∂H
∂x3n+i

∂

∂xn+i
+

∂H
∂xi

∂

∂x2n+i
− ∂H

∂xn+i

∂

∂x3n+i
.

Considering Eq. (0.61), if Eq. (0.62) and Eq. (0.65) are equaled, we find
equations
(0.66)

dxi

dt
= − ∂H

∂x2n+i
,

dxn+i

dt
=

∂H
∂x3n+i

,
dx2n+i

dt
=

∂H
∂xi

,
dx3n+i

dt
= − ∂H

∂xn+i
.

In the end, the equations obtained in Eq. (0.66) are known to be Hamilton
equations with respect to component G∗ of the almost quaternion structure V ∗
on the quaternion Kähler manifold (M, V ∗), and then the triple (M, ΦG∗ , X)
is a Hamiltonian mechanical system on (M, V ∗).
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Thirdly, by H∗and λH∗ = H∗(ω) we denote a component of almost quater-
nion structure V ∗ and a Liouville form on (M, V ∗), respectively.

By means of (0.51) and (0.56) we find

λH∗ =
1
2
(xidx3n+i + xn+idx2n+i − x2n+idxn+i − x3n+idxi).

It is well-known that if ΦH∗ = −dλH∗ is a closed Kähler form on the quaternion
Kähler manifold (M, V ∗), then ΦH∗ is also a symplectic structure on (M, V ∗).

Taking into

ΦH∗ = dx3n+i ∧ dxi + dx2n+i ∧ dxn+i,

we find

(0.67) iXH∗ΦH∗ = Z3n+idxi − Zidx3n+i + Z2n+idxn+i − Zn+idx2n+i.

By Eq.(0.3), Eq. (0.59) and Eq.(0.67), one obtains a Hamiltonian vector
field given by

(0.68) XH∗ = − ∂H
∂x3n+i

∂

∂xi
− ∂H

∂x2n+i

∂

∂xn+i
+

∂H
∂xn+i

∂

∂x2n+i
+

∂H
∂xi

∂

∂x3n+i
.

Taking into Eq. (0.61), if we equal Eq. (0.62) and Eq. (0.68), it yields
(0.69)

dxi

dt
= − ∂H

∂x3n+i
,

dxn+i

dt
= − ∂H

∂x2n+i
,

dx2n+i

dt
=

∂H
∂xn+i

,
dx3n+i

dt
=

∂H
∂xi

.

Finally, the equations obtained in Eq. (0.69) are obtained to be Hamilton
equations with respect to component H∗ of the almost quaternion structure V ∗
on the quaternion Kähler manifold (M, V ∗), and then the triple (M, ΦH∗ , X)
is a Hamiltonian mechanical system on (M, V ∗).

Conclusion 5. From above, Lagrangian mechanics has intrinsically been
described taking into account a canonical local basis {F, G,H} of V on the
quaternion Kähler manifold (M, V ). The paths of semispray ξ on the quater-
nion Kähler manifold are the solutions Euler–Lagrange equations raised in Eq.
(0.53), Eq. (0.54) and Eq. (0.55), and obtained by a canonical local basis
{F,G, H} of the vector bundle V on the quaternion Kähler manifold (M, V ).
Formalism of Hamiltonian mechanics has intrinsically been described with tak-
ing into account the basis {F ∗, G∗,H∗} of the almost quaternion structure V ∗
on the quaternion Kähler manifold (M, V ∗). The paths of Hamiltonian vec-
tor field on the quaternion Kähler manifold are the solutions Hamilton equa-
tions raised in (0.63), (0.66) and (0.69), and obtained by a canonical local
basis {F ∗, G∗,H∗} of the vector bundle V ∗ on the quaternion Kähler manifold
(M, V ∗).





CHAPTER 6

Mechanical Systems on Para-Quaternion Kähler
Manifolds

In this chapter, we present equations related to Lagrangian and Hamilton-
ian mechanical systems on para-quaternion Kähler manifold given in [24].

The algebra B of split quaternions is a four-dimensional real vector space
with basis {1, i, s, t} given by

i2 = −1, s2 = 1 = t2, is = t = −si.

This carries a natural indefinite inner product given by < p, q >= Repq, where
p = x+iy+su+tv has p = x−iy−su−tv. We have ‖p‖2 = x2+y2−s2−t2, so a
metric of signature (2, 2). This norm is multiplicative, ‖pq‖2 = ‖p‖2 ‖q‖2, but
the presence of elements of length zero means that B contains zero divisors.
The fundamental structures 1, i, s, t are not the only split quaternions with
square ±1. Using the multiplication rules for B, one can calculate

p2 = −1 if and only if p = iy + su + tv, y2 − s2 − t2 = 1,

p2 = +1 if and only if p = iy + su + tv, y2 − s2 − t2 = −1 or p = ±1.

The right B-module Bn=̃R4n inherits the inner product < ξ, η >= Reξ
Tη of

signature (2n, 2n). The automorphism group of (Bn, 〈·, ·〉) is Sp(n,B) = {A ∈
Mn(B) : A

T
A = 1} which is a Lie group isomorphic to Sp(2n,R), the symme-

tries of a symplectic vector space (R2n, ω). Especially, Sp(1, B)=̃SL(2, R) is
the pseudo-sphere of B = R2,2. The Lie algebra of Sp(n,B) is sp(n,B) = {A ∈
Mn(B) : A + A

T = 0}, so sp(1, B) = ImB. The group Sp(n,B) × Sp(1, B)
acts on Bn via

(0.70) (A, p).ξ = Aξp.

For detail see [25] .

0.12. Para-Quaternion Kähler Manifolds. Here, we recall hypersym-
plectic manifolds and para-quaternion Kähler manifolds given in [25]. Let
m = 4n, identify R4n with Bn and consider Ġ = Sp(n,B) ⊂ GL(4n,R). An
Sp(n, B)-structure SpB(M) on M defines a metric g of signature (2n, 2n) by

51
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g(u(v), u(w)) =< v,w >. The right action of i, s and t on Bn define endomor-
phisms F,G and H of TxM satisfying

(0.71) F 2 = −I, G2 = H2 = I, FG = H = −GF,

and the compatibility equations, for X,Y ∈ TxM

(0.72) g(FX, FY ) = g(X, Y ), g(GX, GY ) = −g(X,Y ) = g(HX, HY ),

where I denotes the identity tensor of type (1,1) in M, and g is Riemannian
metric. Using (0.71), we obtain three 2-forms ωF , ωG and ωH given by

ωF (X, Y ) = g(FX, Y ), ωG(X,Y ) = g(GX, Y ), ωH(X, Y ) = g(HX, Y ).

The manifold M is said to be hypersymplectic if the 2-forms ωF , ωG and ωH

are all closed:

dωF = 0, dωG = 0 and dωH = 0.

Now we think of the larger structure group Sp(n,B)Sp(1, B) acting on Bn =
R4n via (0.70). Again we have metric of neutral signature (2n, 2n), but now
we can not distinguish the endomorphisms F, G and H . Instead we have
a bundle Ģ of endomorphisms of TM that locally admits a basis {F, G, H}
satisfying (0.71) and (0.72). {F, G, H} is called a canonical local basis of
the bundle V in any coordinate neighborhood U of M . Then V is called a
para-quaternion structure in M . The pair (M, V ) denotes a para-quaternion
manifold with V . A para-quaternion manifold M is of dimension m = 4n (n ≥
1).A para-quaternion structure V with such a Riemannian metric g is called
a para-quaternion metric structure. A manifold M with a para-quaternion
metric structure {g, V } is called a para-quaternion metric manifold. The triple
(M, g, V ) denotes a para-quaternion metric manifold. If n > 1, we say that
M is para-quaternion Kähler if its holonomy lies in Sp(n, B)Sp(1, B).

Let {xi, xn+i, x2n+i, x3n+i} , i = 1, n be a real coordinate system on a
neighborhood U of M, and let

{
∂

∂xi
, ∂

∂xn+i
, ∂

∂x2n+i
, ∂

∂x3n+i

}
and {dxi, dxn+i, dx2n+i, dx3n+i}

be natural bases over R of the tangent space T (M) and the cotangent space
T ∗(M) of M, respectively. Taking into consideration (0.71), then we can obtain
the expressions as follows:

F (
∂

∂xi
) =

∂

∂xn+i
, F (

∂

∂xn+i
) = − ∂

∂xi
, F (

∂

∂x2n+i
) =

∂

∂x3n+i
,

F (
∂

∂x3n+i
) = − ∂

∂x2n+i
G(

∂

∂xi
) =

∂

∂x2n+i
, G(

∂

∂xn+i
) = − ∂

∂x3n+i
,

G(
∂

∂x2n+i
) =

∂

∂xi
, G(

∂

∂x3n+i
) = − ∂

∂xn+i
,H(

∂

∂xi
) =

∂

∂x3n+i
,

H(
∂

∂xn+i
) =

∂

∂x2n+i
, H(

∂

∂x2n+i
) =

∂

∂xn+i
, H(

∂

∂x3n+i
) =

∂

∂xi
.



6. MECHANICAL SYSTEMS ON PARA-QUATERNION KÄHLER MANIFOLDS 53

A canonical local basis{F ∗, G∗, H∗} of V ∗ of the cotangent space T ∗(M) of
manifold M satisfies the condition as follows:

F ∗2 = −I, G∗2 = H∗2 = I, F ∗G∗ = H∗ = −G∗F ∗,

defining by

F ∗(dxi) = dxn+i, F ∗(dxn+i) = −dxi, F ∗(dx2n+i) = dx3n+i,

F ∗(dx3n+i) = −dx2n+i, G
∗(dxi) = dx2n+i, G∗(dxn+i) = −dx3n+i,

G∗(dx2n+i) = dxi, G∗(dx3n+i) = −dxn+i,H
∗(dxi) = dx3n+i,

H∗(dxn+i) = dx2n+i, H∗(dx2n+i) = dxn+i, H∗(dx3n+i) = dxi.

0.13. Para-Quaternion Lagrangians. Here, we obtain Euler-Lagrange
equations for quantum and classical mechanics by means of a canonical local
basis {F,G, H} of V on para-quaternion Kähler manifold (M, g, V ).

Firstly, let F take a local basis element on the para-quaternion Kähler
manifold (M, g, V ), and {xi, xn+i, x2n+i, x3n+i} be its coordinate functions.
Let semispray be the vector field X determined by

(0.73) X = Xi ∂

∂xi
+ Xn+i ∂

∂xn+i
+ X2n+i ∂

∂x2n+i
+ X3n+i ∂

∂x3n+i
,

where Xi =
.

xi, X
n+i =

.
xn+i, X

2n+i =
.
x2n+i, X

3n+i =
.
x3n+i and the dot

indicates the derivative with respect to time t. The vector field defined by

VF = F (X) = Xi ∂

∂xn+i
−Xn+i ∂

∂xi
+ X2n+i ∂

∂x3n+i
−X3n+i ∂

∂x2n+i

is named Liouville vector field on the para-quaternion Kähler manifold (M, g, V ).
The maps given by T, P : M → R such that T = 1

2mi(
.
xi

2 +
.
x

2
n+i +

.
x

2
2n+i +

.
x

2
3n+i), P = migh are said to be the kinetic energy and the potential energy of

the system, respectively. Here mi, g and h stand for mass of a mechanical sys-
tem having m particles, the gravity acceleration and distance to the origin of a
mechanical system on the para-quaternion Kähler manifold (M, g, V ), respec-
tively. Then L : M → R is a map that satisfies the conditions; i) L = T − P
is a Lagrangian function, ii) the function determined by EF

L = VF (L)− L, is
energy function.

The function iF induced by F and denoted by

iF ω(X1, X2, ..., Xr) =
r∑

i=1

ω(X1, ..., FXi, ..., Xr),

is called vertical derivation, where ω ∈ ∧rM, Xi ∈ χ(M). The vertical differ-
entiation dF is given by

dF = [iF , d] = iF d− diF
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where d is the usual exterior derivation. In the case the closed para-quaternion
Kähler form is the closed 2-form given by ΦF

L = −ddF L such that

dF =
∂

∂xn+i
dxi − ∂

∂xi
dxn+i +

∂

∂x3n+i
dx2n+i − ∂

∂x2n+i
d3n+i : F(M) → ∧1M.

Then we have

ΦF
L = − ∂2L

∂xj∂xn+i
dxj ∧ dxi + ∂2L

∂xj∂xi
dxj ∧ dxn+i

− ∂2L
∂xj∂x3n+i

dxj ∧ dx2n+i + ∂2L
∂xj∂x2n+i

dxj ∧ dx3n+i

− ∂2L
∂xn+j∂xn+i

dxn+j ∧ dxi + ∂2L
∂xn+j∂xi

dxn+j ∧ dxn+i

− ∂2L
∂xn+j∂x3n+i

dxn+j ∧ dx2n+i + ∂2L
∂xn+j∂x2n+i

dxn+j ∧ dx3n+i

− ∂2L
∂x2n+j∂xn+i

dx2n+j ∧ dxi + ∂2L
∂x2n+j∂xi

dx2n+j ∧ dxn+i

− ∂2L
∂x2n+j∂x3n+i

dx2n+j ∧ dx2n+i + ∂2L
∂x2n+j∂x2n+i

dx2n+j ∧ dx3n+i

− ∂2L
∂x3n+j∂xn+i

dx3n+j ∧ dxi + ∂2L
∂x3n+j∂xi

dx3n+j ∧ dxn+i

− ∂2L
∂x3n+j∂x3n+i

dx3n+j ∧ dx2n+i + ∂2L
∂x3n+j∂x2n+i

dx3n+j ∧ dx3n+i.

Also we find energy function as follows:

EF
L = VF (L)− L = Xi ∂L

∂xn+i
−Xn+i ∂L

∂xi
+ X2n+i ∂L

∂x3n+i
−X3n+i ∂L

∂x2n+i
− L

By means of α being an integral curve of X, then we obtain the equations
given by

(0.74)
∂
∂t

(
∂L
∂xi

)
− ∂L

∂xn+i
= 0, ∂

∂t

(
∂L

∂xn+i

)
+ ∂L

∂xi
= 0,

∂
∂t

(
∂L

∂x2n+i

)
− ∂L

∂x3n+i
= 0, ∂

∂t

(
∂L

∂x3n+i

)
+ ∂L

∂x2n+i
= 0,

such that the equations calculated in (0.74) are named Euler-Lagrange equa-
tions constructed on the para-quaternion Kähler manifold (M, g, V ) by means
of ΦF

L and thus the triple (M, ΦF
L , X) is called a mechanical system on the

para-quaternion Kähler manifold (M, g, V ).
Secondly, we introduce Euler-Lagrange equations for quantum and clas-

sical mechanics by means of ΦG
L on the para-quaternion Kähler manifold

(M, g, V ).
Take G. It is another local basis element on the para-quaternion Kähler

manifold (M, g, V ). Let us X which is the semispray in (0.73). In the case,
the vector field determined by

VG = G(X) = Xi ∂

∂x2n+i
−Xn+i ∂

∂x3n+i
+ X2n+i ∂

∂xi
−X3n+i ∂

∂xn+i

is Liouville vector field on the para-quaternion Kähler manifold (M, g, V ). The
operator given by EG

L = VG(L) − L is energy function. Then the function iG
induced by G and given by

iGω(X1, X2, ..., Xr) =
r∑

i=1

ω(X1, ..., GXi, ..., Xr)
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is vertical derivation, where ω ∈ ∧rM, Xi ∈ χ(M). The vertical differentiation
dG is given by

dG = [iG, d] = iGd− diG

where d is the usual exterior derivation. Since taking into consideration G, the
closed para-quaternion Kähler form is the closed 2-form given by ΦG

L = −ddGL
such that

dG =
∂

∂x2n+i
dxi − ∂

∂x3n+i
dxn+i +

∂

∂xi
dx2n+i − ∂

∂xn+i
d3n+i : F(M) → ∧1M.

Then we get

ΦG
L = − ∂2L

∂xj∂x2n+i
dxj ∧ dxi + ∂2L

∂xj∂x3n+i
dxj ∧ dxn+i

− ∂2L
∂xj∂xi

dxj ∧ dx2n+i + ∂2L
∂xj∂xn+i

dxj ∧ dx3n+i

− ∂2L
∂xn+j∂x2n+i

dxn+j ∧ dxi + ∂2L
∂xn+j∂x3n+i

dxn+j ∧ dxn+i

− ∂2L
∂xn+j∂xi

dxn+j ∧ dx2n+i + ∂2L
∂xn+j∂xn+i

dxn+j ∧ dx3n+i

− ∂2L
∂x2n+j∂x2n+i

dx2n+j ∧ dxi + ∂2L
∂x2n+j∂x3n+i

dx2n+j ∧ dxn+i

− ∂2L
∂x2n+j∂xi

dx2n+j ∧ dx2n+i + ∂2L
∂x2n+j∂xn+i

dx2n+j ∧ dx3n+i

− ∂2L
∂x3n+j∂x2n+i

dx3n+j ∧ dxi + ∂2L
∂x3n+j∂x3n+i

dx3n+j ∧ dxn+i

− ∂2L
∂x3n+j∂xi

dx3n+j ∧ dx2n+i + ∂2L
∂x3n+j∂xn+i

dx3n+j ∧ dx3n+i.

Also, we calculate function

EG
L = Xi ∂L

∂x2n+i
−Xn+i ∂L

∂x3n+i
+ X2n+i ∂L

∂xi
−X3n+i ∂L

∂xn+i
− L.

By α an integral curve of X, then we obtain the equations:

(0.75)
∂
∂t

(
∂L
∂xi

)
− ∂L

∂x2n+i
= 0, ∂

∂t

(
∂L

∂xn+i

)
+ ∂L

∂x3n+i
= 0,

∂
∂t

(
∂L

∂x2n+i

)
− ∂L

∂xi
= 0, ∂

∂t

(
∂L

∂x3n+i

)
+ ∂L

∂xn+i
= 0.

Hence the equations introduced in (0.75) are named Euler-Lagrange equations
constructed by means of ΦG

L on the para-quaternion Kähler manifold (M, g, V )
and hence the triple (M, ΦG

L , X) is said to be a mechanical system on the para-
quaternion Kähler manifold (M, g, V ).

Thirdly, we present Euler-Lagrange equations for quantum and classical
mechanics by means of ΦH

L on para-quaternion Kähler manifold (M, g, V ).
Let H be a local basis element on the para-quaternion Kähler manifold

(M, g, V ). Consider X given by (0.73). So, Liouville vector field on the para-
quaternion Kähler manifold (M, g, V ) is the vector field determined by

VH = H(X) = Xi ∂

∂x3n+i
+ Xn+i ∂

∂x2n+i
+ X2n+i ∂

∂xn+i
+ X3n+i ∂

∂xi
.
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The function given by EH
L = VH(L)− L is energy function. The operator iH

induced by H and given by

iHω(X1, X2, ..., Xr) =
r∑

i=1

ω(X1, ..., HXi, ..., Xr),

is named vertical derivation, where ω ∈ ∧rM, Xi ∈ χ(M). The vertical differ-
entiation dH is given by

dH = [iH , d] = iHd− diH ,

Thus, the closed para-quaternion Kähler form is the closed 2-form given by
ΦH

L = −ddH L such that

dH =
∂

∂x3n+i
dxi +

∂

∂x2n+i
dxn+i +

∂

∂xn+i
dx2n+i +

∂

∂xi
d3n+i : F(M) → ∧1M.

Then we find

ΦH
L = − ∂2L

∂xj∂x3n+i
dxj ∧ dxi − ∂2L

∂xj∂x2n+i
dxj ∧ dxn+i

− ∂2L
∂xj∂xn+i

dxj ∧ dx2n+i − ∂2L
∂xj∂xi

dxj ∧ dx3n+i

− ∂2L
∂xn+j∂x3n+i

dxn+j ∧ dxi − ∂2L
∂xn+j∂x2n+i

dxn+j ∧ dxn+i

− ∂2L
∂xn+j∂xn+i

dxn+j ∧ dx2n+i − ∂2L
∂xn+j∂xi

dxn+j ∧ dx3n+i

− ∂2L
∂x2n+j∂x3n+i

dx2n+j ∧ dxi − ∂2L
∂x2n+j∂x2n+i

dx2n+j ∧ dxn+i

− ∂2L
∂x2n+j∂xn+i

dx2n+j ∧ dx2n+i − ∂2L
∂x2n+j∂xi

dx2n+j ∧ dx3n+i

− ∂2L
∂x3n+j∂x3n+i

dx3n+j ∧ dxi − ∂2L
∂x3n+j∂x2n+i

dx3n+j ∧ dxn+i

− ∂2L
∂x3n+j∂xn+i

dx3n+j ∧ dx2n+i − ∂2L
∂x3n+j∂xi

dx3n+j ∧ dx3n+i.

Also we have

EH
L = Xi ∂L

∂x3n+i
+ Xn+i ∂L

∂x2n+i
+ X2n+i ∂L

∂xn+i
+ X3n+i ∂L

∂xi
− L.

Taking α being an integral curve of X, then it follows:

(0.76)
∂
∂t

(
∂L
∂xi

)
− ∂L

∂x3n+i
= 0, ∂

∂t

(
∂L

∂xn+i

)
− ∂L

∂x2n+i
= 0,

∂
∂t

(
∂L

∂x2n+i

)
− ∂L

∂xn+i
= 0, ∂

∂t

(
∂L

∂x3n+i

)
− ∂L

∂xi
= 0.

Thus the equations introduced by (0.76) infer Euler-Lagrange equations con-
structed by means of ΦH

L on the para-quaternion Kähler manifold (M, g, V )
and then the triple (M, ΦH

L , X) is named a mechanical system on the para-
quaternion Kähler manifold (M, g, V ).

0.14. Para-Quaternion Hamiltonians. Here, we present Hamilton equa-
tions and Hamiltonian mechanical systems for quantum and classical mechan-
ics constructed on the para-quaternion Kähler manifold (M, g, V ∗).

Firstly, let (M, g, V ∗) be a para-quaternion Kähler manifold. Suppose that
an element of para-quaternion structure V ∗, a Liouville form and a 1-form on
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para-quaternion Kähler manifold (M, g, V ∗) are shown by F ∗, λF ∗ and ωF ∗ ,
respectively.

Consider

ωF ∗ =
1
2
(xidxi + xn+idxn+i + x2n+idx2n+i + x3n+idx3n+i).

Then we have

λF ∗ = F ∗(ωF ∗) =
1
2
(xidxn+i − xn+idxi + x2n+idx3n+i − x3n+idx2n+i).

It is concluded that if ΦF ∗ is a closed para-quaternion Kähler form on the
para-quaternion Kähler manifold (M, g, V ∗), then ΦF ∗ is also a symplectic
structure on the para-quaternion Kähler manifold (M, g, V ∗).

Take X. It is Hamiltonian vector field associated with Hamiltonian energy
H and determined by (0.73).

Then
ΦF ∗ = −dλF ∗ = dxn+i ∧ dxi + dx3n+i ∧ dx2n+i,

and

(0.77) iXΦF ∗ = ΦF ∗(X) = Xn+idxi−Xidxn+i+X3n+idx2n+i−X2n+idx3n+i.

Furthermore, the differential of Hamiltonian energy is obtained by

(0.78) dH =
∂H
∂xi

dxi +
∂H

∂xn+i
dxn+i +

∂H
∂x2n+i

dx2n+i +
∂H

∂x3n+i
dx3n+i.

With respect to (0.3), if equaled (0.77) and (0.78), the Hamiltonian vector
field is found as follows:

(0.79) X = − ∂H
∂xn+i

∂

∂xi
+

∂H
∂xi

∂

∂xn+i
− ∂H

∂x3n+i

∂

∂x2n+i
+

∂H
∂x2n+i

∂

∂x3n+i
.

Assume that a curve
α : I ⊂ R → M

be an integral curve of the Hamiltonian vector field X, i.e.,

(0.80) X(α(t)) =
.
α, t ∈ I.

In the local coordinates, it is obtained that

α(t) = (xi, xn+i, x2n+i, x3n+i)

and

(0.81)
.
α(t) =

dxi

dt

∂

∂xi
+

dxn+i

dt

∂

∂xn+i
+

dx2n+i

dt

∂

∂x2n+i
+

dx3n+i

dt

∂

∂x3n+i
.

Taking (0.80), if we equal (0.79) and (0.81), it holds
(0.82)

dxi

dt
= − ∂H

∂xn+i
,

dxn+i

dt
=

∂H
∂xi

,
dx2n+i

dt
= − ∂H

∂x3n+i
,

dx3n+i

dt
=

∂H
∂x2n+i
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Hence, the equations introduced in (0.82) are named Hamilton equations with
respect to component F ∗ of the para-quaternion structure V ∗ on the para-
quaternion Kähler manifold (M, g, V ∗), and then the triple (M, ΦF ∗ , X) is said
to be a Hamiltonian mechanical system on para-quaternion Kähler manifold
(M, g, V ∗).

Secondly, assume that a component of para-quaternion structure V ∗, a
Liouville form and a 1-form on the para-quaternion Kähler manifold (M, g, V ∗)
are denoted by G∗, λG∗ and ωG∗ , respectively.

Take

ωG∗ =
1
2
(xidxi + xn+idxn+i − x2n+idx2n+i − x3n+idx3n+i).

Then we calculate

λG∗ = G∗(ωG∗) =
1
2
(xidx2n+i − xn+idx3n+i − x2n+idxi + x3n+idxn+i).

It is well-known if ΦG∗ is a closed para-quaternion Kähler form on the para-
quaternion Kähler manifold (M, g, V ∗), then ΦG∗ is also a symplectic structure
on para-quaternion Kähler manifold (M, g, V ∗).

Let X a Hamiltonian vector field related to Hamiltonian energy H and
given by (0.73).

Taking into consideration

ΦG∗ = −dλG∗ = dx2n+i ∧ dxi + dxn+i ∧ dx3n+i,

then we calculate

(0.83) iXΦG∗ = ΦG∗(X) = X2n+idxi−Xidx2n+i+Xn+idx3n+i−X3n+idxn+i.

According to (0.3), if we equal (0.78) and (0.83), it yields

(0.84) X = − ∂H
∂x2n+i

∂

∂xi
+

∂H
∂x3n+i

∂

∂xn+i
+

∂H
∂xi

∂

∂x2n+i
− ∂H

∂xn+i

∂

∂x3n+i
.

Taking (0.80), if (0.81) and (0.84) are equaled, we find equations
(0.85)

dxi

dt
= − ∂H

∂x2n+i
,

dxn+i

dt
=

∂H
∂x3n+i

,
dx2n+i

dt
=

∂H
∂xi

,
dx3n+i

dt
= − ∂H

∂xn+i

Finally, the equations found in (0.85) are called Hamilton equations with
respect to component G∗ of the para-quaternion structure V ∗ on the para-
quaternion Kähler manifold (M, g, V ∗), and then the triple (M, ΦG∗ , X) is
named a Hamiltonian mechanical system on the para-quaternion Kähler man-
ifold (M, g, V ∗).

Thirdly, by H∗, λH∗ and ωH∗ , we give a element of para-quaternion struc-
ture V ∗, a Liouville form and a 1-form on para-quaternion Kähler manifold
(M, g, V ∗), respectively.

Let

ωH∗ =
1
2
(xidxi + xn+idxn+i − x2n+idx2n+i − x3n+idx3n+i).
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Then we find

λH∗ = H∗(ωH∗) =
1
2
(xidx3n+i + xn+idx2n+i − x2n+idxn+i − x3n+idxi).

We know that if ΦH∗ is a closed para-quaternion Kähler form on the para-
quaternion Kähler manifold (M, g, V ∗), then ΦH∗ is also a symplectic structure
on the para-quaternion Kähler manifold (M, g, V ∗).

Let X a Hamiltonian vector field connected with Hamiltonian energy H
and given by (0.73).

Calculating

(0.86) ΦH∗ = −dλH∗ = dx3n+i ∧ dxi + dx2n+i ∧ dxn+i,

we have
(0.87)

iXΦH∗ = ΦH∗(X) = X3n+idxi −Xidx3n+i + X2n+idxn+i −Xn+idx2n+i.

With respect to (0.3), if we equal (0.78) and (0.87), we find the Hamiltonian
vector field given by

(0.88) X = − ∂H
∂x3n+i

∂

∂xi
− ∂H

∂x2n+i

∂

∂xn+i
+

∂H
∂xn+i

∂

∂x2n+i
+

∂H
∂xi

∂

∂x3n+i
.

Considering (0.80), if (0.81) and (0.88) are equaled, it yields
(0.89)

dxi

dt
= − ∂H

∂x3n+i
,

dxn+i

dt
= − ∂H

∂x2n+i
,

dx2n+i

dt
=

∂H
∂xn+i

,
dx3n+i

dt
=

∂H
∂xi

In the end, the equations introduced in (0.89) are named Hamilton equations
with respect to element H∗ of the para-quaternion structure V ∗ on the para-
quaternion Kähler manifold (M, g, V ∗), and then the triple (M, ΦH∗ , X) is
called a Hamiltonian mechanical system on the para-quaternion Kähler man-
ifold (M, g, V ∗).

Conclusion 6. From above, Lagrangian mechanical systems have intrin-
sically been described taking into account a canonical local basis {F, G,H} of
V on the para-quaternion Kähler manifold (M, g, V ). The paths of semispray
X on the para-quaternion Kähler manifold are the solutions Euler-Lagrange
equations raised in (0.74), (0.75) and (0.76), and introduced by a canonical
local basis {F,G, H} of vector bundle V on the para-quaternion Kähler mani-
fold (M, g, V ). Also, Hamiltonian mechanical systems have intrinsically been
described with taking into account the basis {F ∗, G∗,H∗} of para-quaternion
structure V ∗ on the para-quaternion Kähler manifold (M, g, V ∗). The paths of
Hamilton vector field X on the para-quaternion Kähler manifold are the solu-
tions Hamilton equations raised in (0.82), (0.85) and (0.89), and obtained by a
canonical local basis {F ∗, G∗, H∗} of vector bundle V ∗ on the para-quaternion
Kähler manifold (M, g, V ∗). Lagrangian and Hamiltonian models arise to be a
very important tool since they present a simple method to describe the model
for mechanical systems. One can be proved that the obtained equations are
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very important to explain the rotational spatial mechanical-physical problems.
Therefore, the found equations are only considered to be a first step to real-
ize how para-quaternion geometry has been used in solving problems in dif-
ferent physical area. For further research, the Lagrangian and Hamiltonian
mechanical equations derived here are suggested to deal with problems in elec-
trical, magnetical and gravitational fields of quantum and classical mechanics
of physics.



CHAPTER 7

Mechanical Systems with Constraints

The purpose of this chapter is to make a contribution to the modern de-
velopment of Lagrangian and Hamiltonian formalisms of classical mechanics
in terms of differential-geometric methods on differentiable manifolds. So, we
introduce complex and paracomplex Euler-Lagrange and Hamilton equations
with constraints on the (para) Kähler manifold given in [26, 27].

1. Constrained Complex Mechanical Systems

Assume that (TQ,ΦL) is symplectic manifold and ω = {ω1, ..., ωr} is a
system of constraints on TQ. We call to be a constraint on TQ to a non-
zero 1-form ω = ∧aωa on TQ, such that ∧a are Lagrange multipliers. We
call (TQ,ΦL, EL, ω) a regular Lagrangian system with constraints. The con-
straints ω are said to be classical constraints if the 1-forms ωa, 1 ≤ a ≤ r, are
basic. Then holonomic classical constraints define foliations on the configura-
tion manifold Q, but holonomic constraints also admit foliations on the phase
space of velocities TQ. As real studies, generally a curve α satisfying the Euler
Lagrange equations for Lagrangian energy EL will not satisfy the constraints.
It must be that some additional forces (or canonical constraint forces) act on
the system in addition to the force dEL for a curve α to satisfy the constraints.
It is said that the quartet (TQ, ΦL, EL, ω) defines a mechanical system with
constraints if the vector field ξ given by the equations of motion

(1.1) iξΦL = dEL + ∧aωa, ωa(ξ) = 0,

is a semispray. Then, it is given Euler-Lagrange equations with constraints as
follows:

(1.2)
∂L

∂qi
− d

dt

∂L

∂
.
q
i

= ∧a(ωa)i.

Let M be configuration manifold of real dimension m. A tensor field J on TM
is called an almost complex structure on TM if at every point p of TM, J is
endomorphism of the tangent space Tp(TM) such that J2 = −I. A manifold
TM with fixed almost complex structure J is called almost complex manifold.
Assume that (xi) be coordinates of M and (xi, yi) be a real coordinate system
on a neighborhood U of any point p of TM. Also, let us to be {( ∂

∂xi )p, ( ∂
∂yi )p}

and {(dxi)p, (dyi)p} to natural bases over R of tangent space Tp(TM) and
cotangent space T ∗p (TM) of TM , respectively.

61
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Let TM be an almost complex manifold with fixed almost complex struc-
ture J. The manifold TM is called complex manifold if there exists an open
covering {U} of TM satisfying the following condition: There is a local coor-
dinate system (xi, yi) on each U, such that

(1.3) J(
∂

∂xi
) =

∂

∂yi
, J(

∂

∂yi
) = − ∂

∂xi
.

for each point of U. Let zi = xi+i yi, i=
√−1, be a complex local coordinate

system on a neighborhood U of any point p of TM. We define the vector fields
by

(1.4) (
∂

∂zi
)p =

1
2
{( ∂

∂xi
)p − i(

∂

∂yi
)p}, (

∂

∂zi
)p =

1
2
{( ∂

∂xi
)p + i(

∂

∂yi
)p

and the dual covector fields

(1.5)
(
dzi

)
p

=
(
dxi

)
p
+ i(dyi)p,

(
dzi

)
p

=
(
dxi

)
p
− i(dyi)p

which represent bases of the tangent space Tp(TM) and cotangent space
T ∗p (TM) of TM, respectively. Then the endomorphism J is shown as

(1.6) J(
∂

∂zi
) = i

∂

∂zi
, J(

∂

∂zi
) = −i

∂

∂zi
.

The dual endomorphism J∗ of the cotangent space T ∗p (TM) at any point p of
manifold TM satisfies J∗2 = −I, and is defined by

(1.7) J∗(dzi) = idzi, J∗(dzi) = −idzi.

A Hermitian metric on an almost complex manifold with almost complex
structure J is a Riemannian metric g on TM such that

(1.8) g(JX, JY ) = g(X, Y ),

for any vector fields X, Y on TM. An almost complex manifold TM with a
Hermitian metric is called an almost Hermitian manifold. If, moreover, TM
is a complex manifold, then TM is called a Hermitian manifold.

Let further TM be a 2m-dimensional real almost Hermitian manifold with
almost complex structure J and Hermitian metric g. The triple (TM, J, g)
may be named an almost Hermitian structure. We denote by χ(TM) the set
of complex vector fields on TM and by ∧1(TM) the set of complex 1-forms
on TM. Let (TM, J, g) be an almost Hermitian structure. The 2-form defined
by

(1.9) Φ(X,Y ) = g(X, JY ), ∀X, Y ∈ χ(TM)

is called the Kähler form of (TM, J, g).
An almost Hermitian manifold is called almost Kähler if its Kähler form Φ

is closed. If, moreover, TM is Hermitian, then TM is called a Kähler manifold.
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1.1. Complex Lagrangians. Let J be an almost complex structure on
the Kähler manifold and (zi, zi) its complex coordinates. We call to be the
semispray to the vector field ξ given by

(1.10) ξ = ξi ∂

∂zi
+ ξ

i ∂

∂zi
, ξi =

.
z

i = zi, ξ
i =

.
ξ
i
=

..
z

i =
.
z

i
.

The vector field V = Jξ is called Liouville vector field on the Kähler manifold.
We call the kinetic energy and the potential energy of system the maps given by
T, P : TM → C such that T = 1

2mi(zi)2 = 1
2mi(

.
z

i)2, P = migh, respectively,
where mi is mass of a mechanic system having m particles, g is the gravity
acceleration and h is the origin distance of the a mechanic system on the
Kähler manifold. Then it may be said to be Lagrangian function the map
L : TM → C such that L = T − P and also the energy function associated L
the function given by EL = V (L)− L.

The vertical derivation operator iJ defined by

(1.11) iJω(Z1, Z2, ..., Zr) =
r∑

i=1

ω(Z1, ..., JZi, ..., Zr),

where ω ∈ ∧rTM, Zi ∈ χ(TM). The exterior differentiation dJ is defined by

(1.12) dJ = [iJ , d] = iJd− diJ ,

where d is the usual exterior derivation.
For almost complex structure J , the closed Kähler form is the closed 2-form

given by

(1.13) ΦL = −ddJL,

such that
dJ : F(TM) → ∧1TM.

By means of (1.1), complex Euler-Lagrange equations on Kähler manifold TM
is found the following as:

(1.14) i
∂

∂t

(
∂L

∂zi

)
− ∂L

∂zi
= 0, i

∂

∂t

(
∂L

∂
.
z

i

)
+

∂L

∂
.
z

i
= 0.

1.2. Constrained Complex Lagrangians. Let J be an almost complex
structure on the Kähler manifold and (zi, zi) its complex coordinates. Assume
to be semispray to the vector field ξ given as:

(1.15) ξ = ξL + ∧aωa = ξi ∂

∂zi
+ ξ

i ∂

∂zi
+ ∧aωa, 1 ≤ a ≤ r,

The vector field determined by

(1.16) V = JξL = iξi ∂

∂zi
− iξ

i ∂

∂zi
,
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is called Liouville vector field on the Kähler manifold TM . The closed 2-form
given by ΦL = −ddJL such that

(1.17) dJ = i
∂

∂zi
dzi − i

∂

∂zi
dzi : F(TM) → ∧1TM.

is found to be

(1.18)
ΦL = i ∂2L

∂zj∂zi dzi ∧ dzj + i ∂2L
∂zj∂zi dzi ∧ dzj

+i ∂2L
∂zj∂zi dzj ∧ dzi + i ∂2L

∂zj∂zi dzj ∧ dzi.

Let ξ be the semispray given by (1.15) and

(1.19)
iξΦL = iξi ∂2L

∂zj∂zi dzj − iξi ∂2L
∂zj∂zi δ

j
i dzi + iξi ∂2L

∂zj∂zi dzj − iξ
i ∂2L
∂zj∂zi δ

j
i dzi

+iξi ∂2L
∂zj∂zi δ

j
i dzi − iξ

i ∂2L
∂zj∂zi dzj + iξ

i ∂2L
∂zj∂zi δ

j
i dzi−iξ

i ∂2L
∂zj∂zi dzj .

Since the closed Kähler form ΦL on TM is symplectic structure, we obtain

(1.20) EL = iξi ∂L

∂zi
− iξ

i ∂L

∂zi
− L

and hence

(1.21)
dEL + ∧aωa = iξi ∂2L

∂zj∂zi dzj − iξ
i ∂2L
∂zj∂zi dzj − ∂L

∂zj dzj

+iξi ∂2L
∂zj∂zi dzj − iξ

i ∂2L
∂zj∂zi dzj − ∂L

∂zj dzj + ∧aωa.

With respect to (1.1), if (1.19) and (1.21) are equalized, we conclude the
equation as follows:

(1.22)
−iξi ∂2L

∂zj∂zi dzj − iξ
i ∂2L
∂zj∂zi dzj + ∂L

∂zj dzj

+iξi ∂2L
∂zj∂zi dzj+iξ

i ∂2L
∂zj∂zi dzj + ∂L

∂zj dzj = ∧aωa

Now, let the curve α : C → TM be integral curve of ξ, which satisfies equations

(1.23)
−i

[
ξj ∂2L

∂zj∂zi +
.
ξ
i

∂2L

∂
.
z

j
∂zi

]
dzj + ∂L

∂zj dzj

+i
[
ξj ∂2L

∂zj∂
.
z

i +
.
ξ
j

∂2L

∂
.
z

j
∂

.
z

i

]
d

.
z

j + ∂L

∂
.
z

j d
.
z

j = ∧aωa

where ωa = (ωa)j dzj + (
.
ωa)jd

.
z

jand the dots mean derivatives with respect
to the time. We infer the equations

(1.24)
∂L

∂zi
− i

∂

∂t

(
∂L

∂zi

)
= ∧a(ωa)i,

∂L

∂
.
z

i
+ i

∂

∂t

(
∂L

∂
.
z

i

)
= ∧a(

.
ωa)i.

Thus, by complex Euler-Lagrange equations with constraints we may call the
equations obtained in (1.24) on Kähler manifold TM. Then the quartet (TM,ΦL, ξ, ω)
is named mechanical system with constraints.
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2. Constrained Paracomplex Mechanical Systems

In this section, as a contribution to the modern development of Lagrangian
and Hamiltonian systems of classical mechanics, we present paracomplex anal-
ogous of some topics in the geometric theory of constraints [9, 28, 29].

Let (T ∗Q,Φ,H) be a Hamiltonian system on symplectic manifold T ∗Q
with closed symplectic form Φ. Let us consider a Hamiltonian system (T ∗Q,Φ,H)
together with a system ω of constraints on T ∗Q. So, it is called (T ∗Q,Φ,H, ω)
to be a Hamiltonian system with constraints. In general, a curve α satisfying
the Hamiltonian equations for energy H does not satisfy the constraints. For
a curve α satisfying the constraints, some additional forces must act on the
system in addition to the force dH. So, the dynamical equations of motion
become

(2.1) iZΦ = dH + ∧aωa, ωa(Z) = 0,

where Z is a vector field on T ∗Q. From (2.1), Hamilton equations with con-
straints is given by:

(2.2)

dqi

dt = (∂H
∂pi

+ ∧a(Ba)i),
dpi
dt = −(∂H

∂qi
+ ∧a(Aa)i),

(Aa)i
dqi

dt + (Ba)i
dpi

dt = 0,

where 1 ≤ i ≤ m, 1 ≤ a ≤ s.
It is well known that (para)Kähler manifolds play an essential role in var-

ious areas of mathematics and mathematical physics, in particular, in the
theory of dynamical systems, algebraic geometry, the geometry of Einstein
manifolds, quantum mechanics, quantum field theory, and in the theory of su-
perstrings and nonlinear sigma-models, too. For example, it was shown in [30]
that the reflector space of an Einstein self-dual non-Ricci flat 4-manifold as well
as the reflector space of a paraquaternionic Kähler manifold admit both Nearly
para-Kähler and almost para-Kähler structures. Wade [31] showed that gen-
eralized paracomplex structures are in one-to-one correspondence with pairs
of transversal Dirac structures on a smooth manifold. In [32], it was given a
representation of the quadratic Dirac equation and the Maxwell equations in
terms of the three-dimensional universal complex Clifford algebra C3,0. Baylis
and Jones introduced in [33] that a R3,0 Clifford algebra has enough structure
to describe relativity as well as the more usual R1,3 Dirac algebra or the R3,1

Majorana algebra. In [34], Baylis represented relativistic space-time points
as paravectors and applies these paravectors to electrodynamics. Tekkoyun
[9] generalized the concept of Hamiltonian dynamics with constraints to com-
plex case. In the above studies; although paracomplex geometry, complex
mechanical systems with constraints, Lagrangian and Hamiltonian mechan-
ics were given in a tidy and nice way, they have not dealt with constrained
paracomplex mechanical systems.
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2.1. Paracomplex Geometry. An almost product structure J on a tan-
gent bundle TM of m-real dimensional configuration manifold M is a (1,1)
tensor field J on TM such that J2 = I. Here, the pair (TM, J) is called an al-
most product manifold. An almost paracomplex manifold is an almost product
manifold (TM, J) such that the two eigenbundles TT+M and TT−M asso-
ciated to the eigenvalues +1 and −1 of J , respectively, have the same rank.
The dimension of an almost paracomplex manifold is necessarily even. Equiv-
alently, a splitting of the tangent bundle TTM of tangent bundle TM , into
the Whitney sum of two subbundles on TT±M of the same fiber dimension is
called an almost paracomplex structure on TM. From physical point of view,
this splitting means that a reference frame has been chosen. Obviously, such
a splitting is broken under reference frame transformations. An almost para-
complex structure on a 2m-dimensional manifold TM may alternatively be
defined as a G-structure on TM with structural group GL(n,R)×GL(n,R).

A paracomplex manifold is an almost paracomplex manifold (TM, J) such
that G- structure defined by tensor field J is integrable. Let (xi) and (xi, yi) be
a real coordinate system of M and TM, and {( ∂

∂xi )p, ( ∂
∂yi )p} and {(dxi)p, (dyi)p}

natural bases over R of tangent space Tp(TM) and cotangent space T ∗p (TM)
of TM, respectively. Then, J can be denoted as

J(
∂

∂xi
) =

∂

∂yi
, J(

∂

∂yi
) =

∂

∂xi
.

Let zi = xi+j yi, j2 = 1, be a paracomplex local coordinate system of TM.
The vector and covector fields are defined, respectively, as follows:

(
∂

∂zi
)p =

1
2
{( ∂

∂xi
)p − j(

∂

∂yi
)p}, (

∂

∂zi
)p =

1
2
{( ∂

∂xi
)p + j(

∂

∂yi
)p},

(
dzi

)
p

=
(
dxi

)
p
+ j(dyi)p,

(
dzi

)
p

=
(
dxi

)
p
− j(dyi)p.

The above equations represent the bases of tangent space Tp(TM) and cotan-
gent space T ∗p (TM) of TM , respectively. Then the following results can be
easily obtained, respectively:

(2.3) J(
∂

∂zi
) = −j

∂

∂zi
, J(

∂

∂zi
) = j

∂

∂zi
,

(2.4) J∗(dzi) = −jdzi, J∗(dzi) = jdzi.

Here, J∗ stands for the dual endomorphism of cotangent space T ∗p (TM) of
manifold TM satisfying J∗2 = I .

An almost para-Hermitian manifold (TM, g, J) is a differentiable manifold
TM endowed with an almost product structure J and a pseudo-Riemannian
metric g, compatible in the sense that

g(JX, Y ) + g(X, JY ) = 0, ∀X, Y ∈ χ(TM).
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An almost para-Hermitian structure on a differentiable manifold TM is
G-structure on TM whose structural group is the representation of the parau-
nitary group U(n,A) given in [14]. A para-Hermitian manifold is a manifold
with an integrable almost para-Hermitian structure (g, J). 2-covariant skew
tensor field Φ defined by Φ(X,Y ) = g(X, JY ) is so-called as fundamental 2-
form. An almost para-Hermitian manifold (TM, g, J), such that Φ is closed,
is so-called as an almost para-Kähler manifold.

A para-Hermitian manifold (TM, g, J) is said to be a para-Kähler manifold
if Φ is closed. Also, by means of geometric structures, one may show that
(T ∗M, g, J) is a para-Kähler manifold.

2.2. Paracomplex Lagrangian Systems. In this subsection, some para-
complex fundamental concepts and para-Euler-Lagrange equations for classical
mechanics structured on para-Kähler manifold TM introduced in [7] can be
recalled.

Let J be an almost paracomplex structure on the para-Kähler manifold
and (zi, zi) its coordinates. Let a second order differential equation be vector
field ξL given by:

(2.5) ξL = ξi ∂

∂zi
+ ξ

i ∂

∂zi
,

Then vector field V = JξL is called a para-Liouville vector field on the para-
Kähler manifold TM . The mappings given by T, P : TM → A such that
T = 1

2mi(
.
z

i)2, P = migh can be called as the kinetic energy and the potential
energy of system, respectively, where mi is mass of a mechanical system, g is
the gravity and h is the distance of the mechanical system on the para-Kähler
manifold to the origin. Then we call map L : TM → A such that L = T − P
as para-Lagrangian function and the function given by EL = V (L)−L as the
para-energy function associated with L.

The operator iJ induced by J and shown as

iJω(Z1, Z2, ..., Zr) =
r∑

i=1

ω(Z1, ..., JZi, ..., Zr)

is said to be vertical derivation, where ω ∈ ∧rTM, Zi ∈ χ(TM). The vertical
differentiation dJ is defined as follows:

dJ = [iJ , d] = iJd− diJ ,

where d is the usual exterior derivation. For almost paracomplex structure J
determined by (2.3), the closed para-Kähler form is the closed 2-form given
by ΦL = −ddJL such that

dJ = −j
∂

∂zi
dzi + j

∂

∂zi
dzi : F(TM) → ∧1TM.
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Paracomplex-Euler-Lagrange equations on para-Kähler manifold TM are shown
by

(2.6) j
∂

∂t

(
∂L

∂zi

)
+

∂L

∂zi
= 0, j

∂

∂t

(
∂L

∂zi

)
− ∂L

∂zi
= 0.

Thus, the triple (TM,ΦL, ξ) is called a paracomplex-mechanical system.

2.3. Paracomplex Hamiltonian Systems. Here, we consider paracomplex-
Hamilton equations for classical mechanics structured on para-Kähler manifold
T ∗M introduced in [7]. Let T ∗M be any para-Kähler manifold and (zi, zi)
its coordinates. { ∂

∂zi
|p, ∂

∂zi
|p} and {dzi|p, dzi|p} be bases over paracomplex

number A of tangent space Tp(TM) and cotangent space T ∗p (TM) of TM.
Assume that J∗ is an almost paracomplex structure given by J∗(dzi) = −jdzi,
J∗(dzi) =jdzi and λ is a para-Liouville form given by λ = J∗(ω) = 1

2 j(zidzi −
zidzi) such that paracomplex 1-form ω = 1

2(zidzi+zidzi) on T ∗M. If Φ = −dλ
is closed para-Kähler form, then Φ is also a para-symplectic structure on T ∗M .

Let T ∗M be para-Kähler manifold with closed para-Kähler form Φ. Then
para-Hamiltonian vector field ZH on T ∗M with closed form Φ can be given
by:

(2.7) ZH = −j
∂H

∂zi

∂

∂zi
+ j

∂H

∂zi

∂

∂zi
.

According to (2.4), para-Hamiltonian equations on para-Kähler manifold T ∗M
are denoted by equations of

(2.8)
dzi

dt
= −j

∂H

∂zi
,

dzi

dt
= j

∂H

∂zi
.

Example 1. A central force field f(ρ) = Aρα−1(α 6= 0, 1) acts on a body
with mass m in a constant gravitational field. Then let us find out the para-
Lagrangian and para-Hamiltonian equations of the motion by assuming the
body always on the vertical plane.

The para-Lagrangian and para-Hamiltonian functions of the system are,
respectively,

L =
1
2
m

.
z

.
z − A

α
(
√

zz)α − jmg
(z − z)

√
zz

(z + z)
√

1− (z−z)2

(z+z)2

,

H =
1
2
m

.
z

.
z +

A

α
(
√

zz)α + jmg
(z − z)

√
zz

(z + z)
√

1− (z−z)2

(z+z)2

.

Then, using (2.6) and (2.8), the so-called para-Lagrangian and para-Hamiltonian
equations of the motion on the para-mechanical systems, can be obtained, re-
spectively, as follows:
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L1 : j
∂

∂t
S − S = 0, L2 : j

∂

∂t
U + U = 0,

such that

S = − A

2z
(
√

zz)α − j
mg(z − z)z

2
√

zz(z + z)W
− j

mg
√

zz

(z + z)W

+j
mg
√

zz(z − z)
(z + z)2W

+ j
mg
√

zz(z − z)(− (z−z)
(z+z)2

+ (z−z)2

(z+z)3
)

(z + z)W 3
,

U = − A

2z
(
√

zz)α − j
mg(z − z)z

2
√

zz(z + z)W
+ j

mg
√

zz

(z + z)W

+j
mg
√

zz(z − z)
(z + z)2W

+ j
mg
√

zz(z − z)( (z−z)
(z+z)2

+ (z−z)2

(z+z)3
)

(z + z)W 3

and

H1 :
dz

dt
= −j(

A

2z
(
√

zz)α + j
mg(z − z)z

2
√

zz(z + z)W
− j

mg
√

zz

(z + z)W

−j
mg
√

zz(z − z)
(z + z)2W

− j
mg
√

zz(z − z)( (z−z)
(z+z)2

+ (z−z)2

(z+z)3
)

(z + z)W 3
),

H2 :
dz

dt
= j(

A

2z
(
√

zz)α + j
mg(z − z)z

2
√

zz(z + z)W
+ j

mg
√

zz

(z + z)W

−j
mg
√

zz(z − z)
(z + z)2W

− j
mg
√

zz(z − z)(− (z−z)
(z+z)2

+ (z−z)2

(z+z)3
)

(z + z)W 3
).

where W =
√

1− (z−z)2

(z+z)2
.

2.4. Constrained Paracomplex Lagrangians. In this subsection, we
obtain para-Euler-Lagrange equations with constraints for classical mechanics
structured on para-Kähler manifold TM .

Let J be an almost paracomplex structure on the para-Kähler manifold
and (zi, zi) its coordinates. Let us take a second order differential equation to
the vector field ξ given by:

(2.9) ξ = ξL + ∧aωa = ξi ∂

∂zi
+ ξ

i ∂

∂zi
+ ∧aωa, 1 ≤ a ≤ r,

The vector field V = JξL calculated by

−jξi ∂

∂zi
+ jξ

i ∂

∂zi
,
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is para-Liouville vector field on the para-Kähler manifold TM . The closed
2-form expressed by ΦL = −ddJL is found to be:

ΦL = −j
∂2L

∂zj∂zi
dzj ∧ dzi + j

∂2L

∂zj∂zi
dzj ∧ dzi

−j
∂2L

∂zj∂zi
dzj ∧ dzi − j

∂2L

∂zj∂zi
dzj ∧ dzi,

where
dJ = −j

∂

∂zi
dzi + j

∂

∂zi
dzi : F(TM) → ∧1TM.

If ξ is a second order differential equation defined by (1.1), then we have
(2.10)

iξΦL = −jξi ∂2L
∂zj∂zi δ

j
i dzi + jξi ∂2L

∂zj∂zi dzj + jξ
i ∂2L
∂zj∂zi δ

j
i dzi − jξi ∂2L

∂zj∂zi dzj

−jξi ∂2L
∂zj∂zi δ

j
i dzi + jξ

i ∂2L
∂zj∂zi dzj − jξ

i ∂2L
∂zj∂zi δ

j
i dzi + jξ

i ∂2L
∂zj∂zi dzj .

Since closed para-Kähler form ΦL on TM is para-symplectic structure, we find

EL = −jξi ∂L

∂zi
+ jξ

i ∂L

∂zi
− L

and hence

(2.11)
dEL + ∧aωa = −jξi ∂2L

∂zj∂zi dzj + jξ
i ∂2L
∂zj∂zi dzj − ∂L

∂zj dzj

−jξi ∂2L
∂zj∂zi dzj + jξ

i ∂2L
∂zj∂zi dzj − ∂L

∂zj dzj + ∧aωa.

According to (1.1), if (2.10) and (2.11) are equal to each other, then the
following equation can be obtained:

+jξi ∂2L
∂zj∂zi dzj + jξ

i ∂2L
∂zj∂zi dzj + ∂L

∂zj dzj

−jξi ∂2L
∂zj∂zi dzj − jξ

i ∂2L
∂zj∂zi dzj + ∂L

∂zj dzj = ∧aωa

Now, let curve α : A → TM be integral curve of ξ, which satisfies equations
of

+j
[
ξj ∂2L

∂zj∂zi +
.
ξ
i

∂2L

∂
.
z

j
∂zi

]
dzj + ∂L

∂zj dzj

−j
[
ξj ∂2L

∂zj∂
.
z

i +
.
ξ
j

∂2L

∂
.
z

j
∂

.
z

i

]
d

.
z

j + ∂L

∂
.
z

j d
.
z

j = ∧aωa,

where the dots mean derivatives with respect to time and ωa = (ωa)i dzi+(
.
ωa)i

d
.
z

i
.
This refers to equations of

(2.12)
∂L

∂zi
+ j

∂

∂t

(
∂L

∂zi

)
= ∧a(ωa)i,

∂L

∂
.
z

i
− j

∂

∂t

(
∂L

∂
.
z

i

)
= ∧a(

.
ωa)i.

Thus, the equations obtained in (2.12) on para-Kähler manifold TM are so-
called as constrained paracomplex Euler-Lagrange equations. Then the quartet
(TM,ΦL, ξ, ω) is named constrained paracomplex mechanical system.
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2.5. Constrained Paracomplex Hamiltonians. Here, we conclude para-
complex Hamiltonian equations with constraints on para-Kähler manifold T ∗M .
Similar to (0.3), the vector fields on T ∗M satisfying the condition

(2.13) iZaΦ = ωa, 1 ≤ a ≤ s,

can be represented by Za.

Proposition 5. Let T ∗M be para-Kähler manifold with closed para-Kähler
form Φ. Let us consider vector field Za on T ∗M given by:

(2.14) Za = −j(Ba)i
∂

∂zi
+ j(Aa)i

∂

∂zi
.

Proof. Let T ∗M be para-Kähler manifold with form Φ. Consider that
vector field Za is given by

Za = (Za)i
∂

∂zi
+ (Za)i

∂

∂zi
.

From (2.13), iZaΦ can be calculated as

(2.15) iZa(−dλ) = j(Z̄a)idzi − j(Za)idzi.

Moreover, we set

(2.16) ωa = (Aa)idzi + (Ba)idzi

According to (2.13), if (2.15) and (2.16) are equal to each other, proof finishes.
¤

Now, with the case of (0.3), (2.1) and (2.13); one may easily deduce

(2.17) Z = ZH + ∧aZa.

Hence, by means of (2.8), (2.14) and (2.17) we obtain the following vector field

(2.18) Z = −j(
∂H

∂zi
+ ∧a(Ba)i)

∂

∂zi
+ j(

∂H

∂zi
+ ∧a(Aa)i)

∂

∂zi
.

Suppose that curve
α : I ⊂ A → T ∗M

be an integral curve of paracomplex vector field Z given by (2.18), i.e.,

Z(α(t)) =
.
α(t), t ∈ I.

In the local coordinates, for α(t) = (zi(t), zi(t)), we have

.
α(t) =

dzi

dt

∂

∂zi
+

dzi

dt

∂

∂zi
.
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Then we reach the following equations

(2.19)

dzi
dt = −j(∂H

∂zi
+ ∧a(Ba)i),

dzi
dt = j(∂H

∂zi
+ ∧a(Aa)i),

(Aa)i
dzi
dt + (Ba)i

dzi
dt = 0,

which are so-called as constrained paracomplex Hamiltonian equations on para-
Kähler manifold T ∗M . Here 1 ≤ a ≤ s. Then the quartet (T ∗M, Φ,H, ω) is
named constrained paracomplex mechanical system.

Conclusion 7. Finally, considering the above, complex analogous of the
geometrical and mechanical meaning of constraints given in [2, 29] may be
explained as follows.

1) Let ω be a system of constraints on Kähler manifold TM. Then it may
be defined a distribution D on ω as follows.

(2.20) D(x) = {ξ ∈ TxTM | ωa(ξ) = 0, for all a, 1 ≤ a ≤ r}
Thus D is (2m− r) dimensional distribution on TM. In this case, a system of
complex constraints ω is called holonomic, if the distribution D is integrable;
otherwise we call ω anholonomic. Hence, ω is holonomic if and only if the
ideal ρ of ∧TM generated by ω is a differential ideal. Obviously (1.24) holds
for holonomic as well as anholonomic constraints. For a system of holonomic
constraints, the motion lies on a specific leaf of the foliation defined by D.

2) From (1.1) it is obtained equalities of

(2.21) 0 = (iξΦ)(ξ) = dEL(ξ) = ξ(EL),

Therefore, the Lagrangian energy EL on Kähler manifold TM for a solution
α(t) of (1.24) is conserved.

Considering the above, paracomplex analogous of the geometrical and me-
chanical meaning of constraints given in [2, 9, 28, 29] can be explained as
follows:

3) Let ω be a system of constraints on para-Kähler manifold TM or T ∗M.
Then it may be defined a distribution D or D∗on ω as follows:

(2.22) D(x) = {ξ ∈ TxTM | ωa(ξ) = 0, for all a, 1 ≤ a ≤ r}
D∗(x) = {Z ∈ TxT ∗M)| ωa(Z) = 0, for all a, 1 ≤ a ≤ s}

Thus D or D∗ is (2m−r) or (2m−s)-dimensional distribution on TM or T ∗M.
In this case, a system of paracomplex constraints ω is paraholonomic, if the
distribution D or D∗ is integrable; otherwise ω is paraanholonomic. Hence,
ω is paraholonomic if and only if the ideal ρ of ∧TM or ∧T ∗M generated by
ω is a differential ideal, i.e., dρ ⊂ ρ. Obviously, (2.12) and (2.19) hold both
paraholonomic and paraanholonomic constraints. The motion for a system of
paraholonomic constraints lies on a specific leaf of the foliation defined by D
or D∗.
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4) From (1.1) and (2.1), the following equalities can be obtained:

(2.23) 0 = (iξΦ)(ξ) = dEL(ξ) = ξ(EL),
0 = (iZω)(Z) = dH(Z) = Z(H).

So, Lagrangian energy EL and Hamiltonian energy H of (2.12) and (2.19) for
a solution α(t) are, respectively, conserved.





CHAPTER 8

Mechanical Systems on Distributions

As well-known Lagrangian distribution on symplectic manifolds are used
in geometric quantization and a connection on a symplectic manifold is an
important structure to obtain a deformation quantization [35].

In this chapter, by means of an almost product structure, we present Euler-
Lagrange and Hamilton equations given in [36]. They are related to mechan-
ical systems on the horizontal and vertical distributions of the bundles used
in obtaining geometric quantization.

1. Manifolds, Bundles and Distributions

Here, we extend some definitions introduced in [37]. Let TM be tangent
bundle of a manifold M of dimension n. Denote by x a point of M such that
ϕ(x) = (xi). Given the projection π : TM → M , π(u) = x. Let (xi, yi) be a real
coordinate system on a neighborhood (U,ϕ) of any point u of TM . Then we
respectively define by ( ∂

∂xi ,
∂

∂yi ) and (dxi, dyi) the natural bases over R of the
tangent space TuTM and the cotangent space T ∗u (TM) at the point u ∈ TM,
respectively. And also F(TM)− and F(T ∗M)− linear mappings (named to be
almost tangent structures) J : χ(TM) → χ(TM) and J∗ : χ(TM) → χ(TM)
are given as follows:

J(
∂

∂xi
) =

∂

∂yi
, J(

∂

∂yi
) = 0,

and
J∗(dxi) = dyi, J∗(dyi) = 0.

Consider that the tangent space Vu to the fibre π−1(x) in the point u ∈ TM
is locally spanned by { ∂

∂y1 , .., ∂
∂yn }. The mapping given by V : u ∈ TM →

Vu ⊂ TuTM provides a regular distribution generated by the adapted basis
{ ∂

∂yi }. So, V is an integrable distribution on TM . And then one says that V

is the vertical distribution on TM . Let N be a nonlinear connection on TM .
N is characterized by v, h vertical and horizontal projectors. Assume that
the vertical projector v : χ(TM) → χ(TM) is defined by v(X) = X, ∀X ∈
χ(V TM); v(X) = 0, ∀X ∈ χ(HTM). Similarly, the mapping given by H:
u ∈ TM → Hu ⊂ TuTM provides a regular distribution determined by the
adapted basis { δ

δxi }. Therefore, H is an integrable distribution on TM . Finally
we call to be H the horizontal distribution on TM . Suppose that there is
a F(TM)−linear mapping h : χ(TM) → χ(TM), for which h2 = h, Ker

75
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h = χ(V TM). If XH and XV are horizontal and vertical components of vector
field X, respectively, then any vector field X ∈ χ(TM) can be uniquely given
by

X = hX + vX = XH + XV

such that

XH = Xi(
∂

∂xi
−N i

j(x, y)
∂

∂yj
), XV = XiN i

j(x, y)
∂

∂yj

where N i
j are a local coefficients of a nonlinear connection N on TM.

A local basis adapted to the horizontal and vertical distribution denoted
by HTM and V TM is ( δ

δxi ,
∂

∂yi ). Then (dxi, δyi) is dual basis of ( δ
δxi ,

∂
∂yi )

basis. Let P be an almost product structure on TM. So, we have

P (X) = X, ∀X ∈ χ(HTM); P (X) = −X, ∀X ∈ χ(V TM)
P ∗(ω) = ω, ∀ω ∈ χ(HT ∗M); P ∗(ω) = −ω,∀ω ∈ χ(V T ∗M),

where P ∗ is the dual structure of P. Also, we have
δ

δxi
=

∂

∂xi
−N i

j(x, y)
∂

∂yj
.

and
δyi = dyi + N i

j(x, y)dxj .

Taking into consideration the operators h, v, P, P ∗, J, J∗constructed on the
distributions HTM , V TM, HT ∗M , V T ∗M of bundles TM and T ∗M of M ,
one writes the following equalities:

h + v = I, P = 2h− I, P = h− v, P = I − 2v,
JP = J, PJ = −J, J∗P ∗ = J∗, P ∗J∗ = −J∗,
h( δ

δxi ) = δ
δxi , h( ∂

∂yi ) = 0, v( δ
δxi ) = 0, v( ∂

∂yi ) = ∂
∂yi ,

P ( δ
δxi ) = δ

δxi , P ( ∂
∂yi ) = − ∂

∂yi ,

P ∗(dxi) = dxi, P ∗(δyi) = −δyi.

1.1. Lagrangian Mechanical Systems on Distributions. Here, we
present Euler-Lagrange equations for classical mechanics structured by means
of almost product structure P under the consideration of the basis { δ

δxi ,
∂

∂yi }
on distributions HTM and V TM of tangent bundle TM of manifold M. Let
(xi, yi) be local coordinates. Also, let semispray be the vector field X given
by

X = Xi δ

δxi
+

.
X

i ∂

∂yi
,

.
X

i
= XiN i

j

where the dot indicates the derivative with respect to time t. Then the vector
field given by

V = P (X) = Xi δ

δxi
−

.
X

i ∂

∂yi

is called Liouville vector field on the bundle TM . The maps given by T,P :
TM → R such that T = 1

2mi(
.
x

i)2,P = migh are called the kinetic energy and
the potential energy of the mechanical system, respectively. Where mi is the
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mass of a mechanical system having m particles, g is the gravity acceleration
and h is the distance to the origin of a mechanical system on the tangent
bundle TM . Then L : TM → R is a map that satisfies the conditions: i)
L = T−P is a Lagrangian function, ii) the function given by EL = V (L)−L
is a Lagrangian energy. The operator iP shown by

iP ω(X1, X2, ..., Xr) =
r∑

i=1

ω(X1, ..., P (Xi), ..., Xr)

is said to be vertical derivation, where ω ∈ ∧rTM, Xi ∈ χ(TM). The vertical
differentiation dP is given by

dP = [iP , d] = iP d− diP ,

where d is the usual exterior derivation. It is well known that the closed
fundamental form is the closed 2-form given by ΦL = −ddP L such that

dP : F(TM) → T ∗M.

Then we have

ΦL = −( δ
δxj dxj + ∂

∂yj δyj)( δL
δxi dxi − ∂L

∂yi δy
i)

= δ2L
δxjδxi dxj ∧ dxi − δ(∂L)

δxj∂yi dxj ∧ δyi − ∂(δL)
∂yjδxi δy

j ∧ dxi + ∂2L
∂yj∂yi δy

j ∧ δyi.

and
(1.1)

iXΦL = −Xi δ2L
δxjδxi δ

j
i dxi + Xi δ2L

δxjδxi dxj + Xi δ(∂L)
δxj∂yi δ

j
i δy

i −
.

X
i δ(∂L)
δxj∂yi dxj

−
.

X
i ∂(δL)
∂yjδxi δ

j
i dxi + Xi ∂(δL)

∂yjδxi δy
j +

.
X

i
∂2L

∂yj∂yi δ
j
i δy

i −
.

X
i

∂2L
∂yj∂yi δy

j .

Because the closed 2-form ΦL is in the symplectic structure, one obtains

EL = V (L)− L = Xi δL

δxi
−

.
X

i ∂L

∂yi
− L

and hence

(1.2)
dEL = Xi δ2L

δxjδxi dxj −
.

X
i δ(∂L)
δxj∂yi dxj − δL

δxj dxj

+Xi ∂(δL)
∂yjδxi δy

j −
.

X
i

∂2L
∂yj∂yi δy

j − ∂L
∂yj δyj

By means of (0.1), (1.1), (1.2) we find

−Xi δ2L
δxjδxi dxj −

.
X

i ∂(δL)
∂yjδxi dxj + δL

δxj dxj

+Xi δ(∂L)
δxj∂yi δy

j +
.

X
i

∂2L
∂yj∂yi δy

j + ∂L
∂yj δyj = 0.

Taking a curve α : R → TM being an integral curve of X, i.e. X(α(t)) = dα(t)
dt ,

then we introduce the equations given by

(1.3)
d

dt
(
δL

δxi
)− δL

δxi
= 0,

d

dt
(
∂L

∂yi
) +

∂L

∂yi
= 0.
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Thus the equations obtained by (1.3) are shown to be Euler-Lagrange equa-
tions on HTM horizontal and V TM vertical distributions, and then the triple
(TM,ΦL, X) is named to be a mechanical system with taking into account
almost product structure P especially and the basis { δ

δxi ,
∂

∂yi } on the distri-
butions HTM and V TM .

2. Hamiltonian Mechanical Systems on Distributions

Now, here we obtain Hamiltonian equations for classical mechanics con-
structed on the distributions HT ∗M and V T ∗M. By P ∗, λ and ω we denote an
almost product structure, a Liouville form and a 1-form on T ∗M , respectively.
Then we can write

ω =
1
2
(yidxi + xiδyi)

and
λ = P ∗(ω) =

1
2
(yidxi − xiδyi).

As φ is a closed 2- form on T ∗M, then φH is also a symplectic structure on
T ∗M . If Hamiltonian vector field XH is given by

XH = Xi δ

δxi
+ Y i ∂

∂yi
,

then we have
φH = −dλ = −δyi ∧ dxi

and

(2.1) iXH
φ = −Y idxi + Xiδyi.

Besides, the differential of Hamiltonian energy is

(2.2) dH =
δH

δxi
dxi +

∂H

∂yi
δyi.

By (0.3), (2.1), (2.2), one finds

(2.3) XH =
∂H

∂yi

δ

δxi
− δH

δxi

∂

∂yi
.

Consider that a curve
α: I ⊂ R → T ∗M

be an integral curve of the Hamiltonian vector field XH , i.e.,

(2.4) XH(α(t)) =
dα(t)

dt
, t ∈ I.

Then we can write the equations

α(t) = (xi(t), yi(t))

and

(2.5)
dα(t)

dt
=

dxi

dt

δ

δxi
+

dyi

dt

∂

∂yi
,



2. HAMILTONIAN MECHANICAL SYSTEMS ON DISTRIBUTIONS 79

in the local coordinates. Using (2.3), (2.4), (2.5), one gets the result equations
as follows:

(2.6)
dxi

dt
=

∂H

∂yi
,

dyi

dt
= −δH

δxi
.

Thus, the equations (2.6) are named to be Hamilton equations on the hori-
zontal distributionHT ∗M and vertical distribution V T ∗M, and then the triple
(T ∗M, φH , XH) is seen to be a Hamiltonian mechanical system with the use of
almost product structure P ∗ and basis { δ

δxi ,
∂

∂yi } on the distributions HT ∗M
and V T ∗M .

Conclusion 8. Lagrangian and Hamiltonian dynamics have intrinsically
been described with almost product structure and taking into account the ba-
sis { δ

δxi ,
∂

∂yi } and dual basis (dxi, δyi) on distributions of tangent and cotan-
gent bundles TM and T ∗M of manifold M . As is well known, geometry of
Lagrangians and Hamiltonians introduces a model for relativity, Gauge the-
ory, electromagnetism, quantum mechanics, analytical mechanics and classical
fields theory. These geometrical models determine the characteristics proper-
ties of these physical fields. Therefore we say that the equations (1.3) and
(2.6) especially can be used in the above fields.





CHAPTER 9

Bi-Para Mechanical Systems on Lagrangian
Distributions

Some works in paracomplex geometry are used for mathematical models.
These works can be the papers numbered as [14, 38, 39, 40] at the end of
this document. The first reference is a well-known survey about paracomplex
geometry. In the second reference the authors study the paraholomorphic
functions and manifolds modelled over the paracomplex numbers. The last
reference is the classical paper about paracomplex structures of Kaneyuki and
Kozai. As known, Lagrangian foliations on symplectic manifolds are used in
geometric quantization and a connection on a symplectic manifold is an impor-
tant structure to obtain a deformation quantization. A para-Kähler manifold
M is said to be endowed with an almost bi-para-Lagrangian structure (a bi-
para-Lagrangian manifold) if M has two transversal Lagrangian distributions
(involutive transversal Lagrangian distributions) D1 and D2 [35].

In this chapter, equations related to bi-para-mechanical systems on the
bi-Lagrangian manifold given in [41] and used in obtaining geometric quanti-
zation have been presented.

1. Bi-Para-Complex Geometry

An almost bi-para-complex structure on a differentiable manifold is given
by two tensor fields F and P of type (1, 1) verifying F 2 = P 2 = 1, F ◦ P +
P ◦ F = 0 (see [35]). The name of bi-para-complex manifold is due to the
existence of two almost paracomplex structures on M , the tensor fields F and
P . Note that P ◦ F is an almost complex structure.

If the G-structure defined by the almost bi-para-complex structure is in-
tegrable then for every point p ∈ M there exists an open neighborhood U of
p and local coordinates (U ; x1 , ..., xn, y1, ..., yn) such that

F (∂/∂xi) = ∂/∂yi, F (∂/∂yi) = ∂/∂xi,

P (∂/∂xi) = ∂/∂xi, P (∂/∂yi) = −∂/∂yi,∀i = 1, ..., n,

(see [42]). The existence of these kind of local coordinates on M permit
to construct holomorphic local coordinates, (U ; z1, ..., zn), zk = xk + iyk, k =
1, ..., n, or paraholomorphic local coordinates, (U ; z1, ..., zn), zk = xk +jyk, k =
1, ..., n, where i2 = −1 and j2 = 1 (see [38, 40]).

81
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A para-Kähler manifold (M, g, J) always posses two transversal distribu-
tions defined by the eigenspaces associated to the +1 and −1 eigenvalues of
J . Moreover, these distributions are involutive Lagrangian distributions if one
considers the symplectic form Φ defined by

Φ(X, Y ) = g(JX, Y ), ∀X, Y ∈ χ(M).

Let (xi, yi) be a real coordinate system on a neighborhood U of any point p
of M, and let {( ∂

∂xi )p, ( ∂
∂yi )p} and {(dxi

)
p
,
(
dyi

)
p
} be natural bases over R of

the tangent space Tp(M) and the cotangent space T ∗p (M) of M, respectively.
Then the definitions can be given by

J(
∂

∂xi
) =

∂

∂yi
, J(

∂

∂yi
) =

∂

∂xi
.

Let zi = xi + jyi, j2 = 1, also be a para-complex local coordinate system on
a neighborhood U of any point p of M. The vector fields can then be shown:

(
∂

∂zi
)p =

1
2
{( ∂

∂xi
)p − j(

∂

∂yi
)p}, (

∂

∂zi
)p =

1
2
{( ∂

∂xi
)p + j(

∂

∂yi
)p}.

And the dual covector fields are:
(
dzi

)
p

=
(
dxi

)
p
+ j(dyi)p,

(
dzi

)
p

=
(
dxi

)
p
− j(dyi)p,

which represent the bases of the tangent space Tp(M) and cotangent space
T ∗p (M) of M , respectively. Then the following expression can be found

J(
∂

∂zi
) = −j

∂

∂zi
, J(

∂

∂zi
) = j

∂

∂zi
.

The dual endomorphism J∗ of the cotangent space T ∗p (M) at any point p of
manifold M satisfies that J∗2 = I, and is defined by

J∗(dzi) = −jdzi, J∗(dzi) = jdzi.

Let V A be a commutative group (V, +) endowed with a structure of unitary
module over the ring A of para-complex numbers. Let V R denote the group
(V, +) endowed with the structure of real vector space inherited from the
restriction of scalars to R. The vector space V R will then be called the real
vector space associated to V A. Setting

J(u) = ju, P+(u) = e+u, P−(u) = e−u, u ∈ V A,

the expressions

J2 = 1V , P+2 = P+, P−2 = P−, P+ ◦ P− = P− ◦ P+ = 0
P+ + P− = 1V , P+ − P− = J,
P− = (1/2)(1V − J), P+ = (1/2)(1V + J),
j2 = 1, e+2 = e+, e−2 = e−, e+ ◦ e− = e− ◦ e+ = 0,
e+ + e− = 1, e+ − e− = j, e− = (1/2)(1− j), e+ = (1/2)(1 + j).
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can be written. Also, it is found that

J( ∂
∂xi ) = ∂

∂yi = j ∂
∂xi , J( ∂

∂yi ) = ∂
∂xi = j ∂

∂yi ,

P∓( ∂
∂zi ) = −e∓ ∂

∂zi , P∓( ∂
∂zi ) = e∓ ∂

∂zi ,

P ∗∓(dzi) = −e∓dzi, P ∗∓(dzi) = e∓dzi.

If the manifold (M, g, J = P+ − P−) satisfies the following conditions simul-
taneously then the manifold is an almost para-Hermitian manifold. The first
condition can be written as follows:

(1.1) g(X, Y ) + g(X,Y ) = 0 ⇔ g(X, Y ) = 0, ∀X,Y ∈ χ(D1).

Because P+ and P− are the projections over D1 and D2 respectively, then
(P+−P−)(X) = P+X−P−X = P+X = X, (P+−P−)(Y ) = P+Y −P−Y =
P+Y = Y. Analogously we can write the second condition as follows

(1.2) g(X, Y ) + g(X,Y ) = 0 ⇔ g(X, Y ) = 0, ∀X,Y ∈ χ(D2).

Let X = X1 + X2, Y = Y1 + Y2 be vector fields on M such that X1, Y1 ∈ D1

and X2, Y2 ∈ D2. Then

g(JX, Y ) = g(JX1 + JX2, Y1 + Y2) = g(X1 −X2, Y1 + Y2)
= g(X1, Y1)− g(X2, Y1) + g(X1, Y2)− g(X2, Y2)
= −g(X2, Y1) + g(X1, Y2),

g(X, JY ) = g(X1 + X2, JY1 + JY2) = g(X1 + X2, Y1 − Y2)
= g(X1, Y1) + g(X2, Y1)− g(X1, Y2)− g(X2, Y2)
= g(X2, Y1)− g(X1, Y2),

and hence g(JX, Y )+g(X,JY ) = −g(X2, Y1)+g(X1, Y2)+g(X2, Y1)−g(X1, Y2) =
0, for all vector fields X, Y on M . If the conditions (1.1) and (1.2) are true
then D1 and D2 Lagrangian distributions respect to the 2- form Φ(X, Y ) =
g(JX, Y ).Therefore, if the almost paracomplex structure J is integrable then
(M, g, J) is para-Kähler manifold, or equivalently, (M, Φ, D1, D2) is a bi-
Lagrangian manifold.

2. Bi-Para-Lagrangians

In this section, bi-para-Euler-Lagrange equations and a bi-para-mechanical
system can be obtained for classical mechanics structured under the consider-
ation of the basis {e+, e−} on bi-Lagrangian manifold.

Let (P+, P−) be an almost bi-para-complex structure on the bi-Lagrangian
manifold, and (zi, zi) be its paracomplex structures. Let semispray be the
vector field ξ given by

ξ = e+(ξi+ ∂
∂zi + ξ

i+ ∂
∂zi ) + e−(ξi− ∂

∂zi + ξ
i− ∂

∂zi );
zi = zi+e+ + zi−e−; żi = żi+e+ + żi−e− = ξi+e+ + ξi−e−;
zi = zi+e+ + zi−e−; ż

i = ż
i+

e+ + ż
i−

e− = ξ
i+

e+ + ξ
i−

e−;
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where the dot indicates the derivative with respect to time t. The vector field
denoted by V = (P+ − P−)(ξ) and given by

(P+ − P−)(ξ) = e+(−ξi+ ∂

∂zi
+ ξ

i+ ∂

∂zi
) + e−(ξi− ∂

∂zi
− ξ

i− ∂

∂zi
)

is called bi -para-Liouville vector field on the bi-Lagrangian manifold. The
maps given by T, P : M → A such that T = 1

2mi(zi)2 = 1
2mi(żi)2, P =

migh are called the kinetic energy and the potential energy of the system,
respectively. Here mi, g and h stand for mass of a mechanical system having
m particles, the gravity acceleration and distance to the origin of a mechanical
system on the bi-Lagrangian manifold, respectively. Then L : M → A is a map
that satisfies the conditions; i) L = T − P is a bi-para-Lagrangian function,
ii) the function given by EL = V (L)− L is a bi-para-energy function.

The operator i(P+−P−) induced by P+ − P− and shown by

iP+−P−ω(Z1, Z2, ..., Zr) =
r∑

i=1

ω(Z1, ..., (P+ − P−)Zi, ..., Zr)

is said to be vertical derivation, where ω ∈ ∧rM, Zi ∈ χ(M). The vertical
differentiation d(P+−P−) is defined by

d(P+−P−) = [i(P+−P−), d] = i(P+−P−)d− di(P+−P−)

where d is the usual exterior derivation. For an almost para-complex structure
P+ − P−, the closed para-Kähler form is the closed 2-form given by ΦL =
−dd

(P+−P−)
L such that

d
(P+−P−)

= e+B − e−B : F(M) → ∧1M

where

B = − ∂

∂zi
dzi +

∂

∂zi
dzi.

Then
ΦL = e+C − e−C

where

C =
∂2L

∂zj∂zi
dzj ∧ dzi− ∂2L

∂zj∂zi
dzj ∧ dzi

+
∂2L

∂zj∂zi
dzj ∧ dzi − ∂2L

∂zj∂zi
dzj ∧ dzi.

Let ξ be the second order differential equation satisfying Eq. (0.1) and

iξΦL = e+[ξi+ ∂2L
∂zj∂zi δ

j
i dzi − ξi+ ∂2L

∂zj∂zi dzj − ξi+ ∂2L
∂zj∂zi δ

j
i dzi + ξ

i+ ∂2L
∂zj∂zi dzj

−ξi+ ∂2L
∂zj∂zi dzj + ξ

i+ ∂2L
∂zj∂zi δ

j
i dzi − ξ

i+ ∂2L
∂zj∂zi δ

j
i dzi + ξ

i+ ∂2L
∂zj∂zi dzj ]

+e−[−ξi− ∂2L
∂zj∂zi δ

j
i dzi + ξi− ∂2L

∂zj∂zi dzj + ξi− ∂2L
∂zj∂zi δ

j
i dzi − ξ

i− ∂2L
∂zj∂zi dzj

+ξi− ∂2L
∂zj∂zi dzj − ξ

i− ∂2L
∂zj∂zi δ

j
i dzi + ξ

i− ∂2L
∂zj∂zi δ

j
i dzi − ξ

i− ∂2L
∂zj∂zi dzj ].
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Since the closed para-Kähler form ΦL on M is the para-symplectic structure,
EL is written as follows:

EL = e+(−ξi+ ∂L
∂zi + ξ

i+ ∂L
∂zi ) + e−(ξi− ∂L

∂zi − ξ
i− ∂L

∂zi )− L

and thus

dEL = −ξi+ ∂2L
∂zj∂zi dzje+ + ξ

i+ ∂2L
∂zj∂zi dzje+−ξi+ ∂2L

∂zj∂zi dzje+

+ξ
i+ ∂2L

∂zj∂zi dzje+ − ∂2L
∂zj dzi + ξi− ∂2L

∂zj∂zi dzje− − ξ
i− ∂2L

∂zj∂zi dzje−

+ξi− ∂2L
∂zj∂zi dzje− − ξ

i− ∂2L
∂zj∂zi dzje− − ∂2L

∂zj dzi.

With the use of Eq. (0.1), the following expression can be obtained:

ξi+ ∂2L
∂zj∂zi dzje+ − ξi+ ∂2L

∂zj∂zi dzje+ + ξ
i+ ∂2L

∂zj∂zi dzje+ − ξ
i+ ∂2L

∂zj∂zi dzje+

−ξi− ∂2L
∂zj∂zi dzje− + ξi− ∂2L

∂zj∂zi dzje− − ξ
i− ∂2L

∂zj∂zi dzje− + ξ
i− ∂2L

∂zj∂zi dzje−

+∂2L
∂zj dzi + ∂2L

∂zj dzi = 0.

If a curve denoted by α : A → M is considered to be an integral curve of ξ,
then the equations given in the following are

(e+ − e−)(
[
ξi+ ∂

∂zji + ξ
i+ ∂

∂zj

]
e+ +

[
ξi− ∂

∂zj + ξ
i− ∂

∂zj

]
e−)( ∂L

∂zi )dzj

(e+ − e−)(−
[
ξi+ ∂

∂zji + ξ
i+ ∂

∂zj

]
e+ −

[
ξi− ∂

∂zj + ξ
i− ∂

∂zj

]
e−)( ∂L

∂zi )dzj

+ ∂L
∂zj dzj + ∂L

∂zj dzj = 0.

Then the following equations are found:

(2.1) (e+ − e−) ∂
∂t

(
∂L
∂zi

)
+ ∂L

∂zi = 0, (e+ − e−) ∂
∂t

(
∂L
∂zi

)
− ∂L

∂zi = 0.

Thus the equations obtained in Eq. (2.1) are seen to be a bi-para-Euler-
Lagrange equations on the distributions D1 and D2, and then the triple (M, ΦL, ξ)
is seen to be a bi -para-mechanical system with taking into account the basis
{e+, e−} on the bi-Lagrangian manifold (M, Φ, D1, D2).

3. Bi-Para-Hamiltonians

Here, bi-para-Hamilton equations and bi-para-Hamiltonian mechanical sys-
tem for classical mechanics structured on the bi-Lagrangian manifold (M, Φ, D1, D2)
are derived.

Let (zi, zi) be paracomplex coordinates. Let { ∂
∂zi
|p, ∂

∂zi
|p} and {dzi|p, dzi|p}

be bases over para-complex number A of tangent space Tp(M) and cotan-
gent space T ∗p (M) of M, respectively. Assume that an almost bi-para-complex
structure, a bi-para-Liouville form and a bi-para-complex 1-form on the dis-
tributions D1 and D2 are shown by P ∗+ − P ∗−, λ and ω, respectively. Then
ω = 1

2 [(zidzi + zidzi)e+ + (zidzi + zidzi)e−] and λ = (P ∗+ − P ∗−)(ω) =
1
2 [(zidzi−zidzi)e+−(zidzi−zidzi)e−]. It is concluded that if Φ is a closed para-
Kähler form on the bi-Lagrangian manifold, then Φ is also a para-symplectic
structure on the bi-Lagrangian manifold.
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Consider that bi-para-Hamiltonian vector field ZH associated with bi-para-
Hamiltonian energy H is given by

ZH = (Zi
∂

∂zi
+ Zi

∂

∂zi
)e+ + (Zi

∂

∂zi
+ Zi

∂

∂zi
)e−.

Then
Φ = −dλ = (e+ − e−)(dzi ∧ dzi),

and

(3.1) iZH
Φ = Φ(ZH) = (Zidzi−Zidzi)e+ + (−Zidzi+Zidzi)e−.

Moreover, the differential of bi-para-Hamiltonian energy is obtained as follows:

(3.2) dH = (
∂H

∂zi
dzi +

∂H

∂zi
dzi)e+ + (

∂H

∂zi
dzi +

∂H

∂zi
dzi)e−.

By means of Eq.(0.1), using Eq. (3.1) and Eq. (3.2), the bi-para-Hamiltonian
vector field is found to be

(3.3) ZH = (−∂H

∂zi

∂

∂zi
+

∂H

∂zi

∂

∂zi
)e+ + (

∂H

∂zi

∂

∂zi
− ∂H

∂zi

∂

∂zi
)e−.

Suppose that a curve
α : I ⊂ A → M

be an integral curve of the bi-para-Hamiltonian vector field ZH , i.e.,

(3.4) ZH(α(t)) = α̇(t), t ∈ I.

In the local coordinates, it is obtained that

α(t) = (zi(t), zi(t))

and

(3.5) α̇(t) = (
dzi

dt

∂

∂zi
+

dzi

dt

∂

∂zi
)e+ + (

dzi

dt

∂

∂zi
+

dzi

dt

∂

∂zi
)e−.

Under the consideration of Eqs. (3.3), (3.4), (3.5), the following results can
be obtained:

(3.6)
dzi

dt
= −(e+ − e−)

∂H

∂zi
,

dzi

dt
= (e+ − e−)

∂H

∂zi
.

Hence, the equations obtained in Eq. (3.6) are seen to be bi -para Hamilton
equations on the bi-Lagrangian manifold (M, Φ, D1, D2), and then the triple
(M, Φ, ZH) is seen to be a bi-para-Hamiltonian mechanical system with the
use of basis {e+, e−} on the bi-Lagrangian manifold (M, Φ, D1, D2).

Conclusion 9. This chapter has shown to exist physical proof of the math-
ematical equality given by M = D1 ⊕D2. Also, formalisms of Lagrangian and
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Hamiltonian mechanics have intrinsically been described with taking into ac-
count the basis {e+, e−} on the bi-Lagrangian manifold (M, Φ, D1, D2). Bi-
para-Lagrangian and bi-para-Hamiltonian models arise to be a very impor-
tant tool since they present a simple method to describe the model for bi-para-
mechanical systems. In solving problems in classical mechanics, the bi-para-
complex mechanical system will then be easily usable model. With the use
of the corresponding approach, thus, a differential equation resulted in me-
chanics is seen to have a non-trivial solution. J. W. Moffat’s theory using
paracomplex geometry in gravitational field of physics has been a controversial
one. Since physical phenomena, as well-known, do not take place all over the
space, a new model for dynamical systems on subspaces is needed. Therefore,
equations (2.1) and (3.6) are only considered to be a first step to realize how
bi-para-complex geometry has been used in solving problems in different phys-
ical area. For further research, bi-para-complex Lagrangian and Hamiltonian
vector fields derived here are suggested to deal with problems in electrical, mag-
netical and gravitational fields of physics.
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[8] M. Tekkoyun, A. Görgülü, Higher Order Complex Lagrangian and Hamiltonian Me-
chanics Systems, Physics Letters A, Vol.357, (2006), 261-269.

[9] M. Tekkoyun, A Note On Constrained Complex Hamiltonian Mechanics, Differential
Geometry-Dynamical Systems (DGDS), Vol.8, No.1 , (2006), 262-267.

[10] M. Tekkoyun, G. Cabar, Complex Lagrangians and Hamiltonians, Journal of Arts and
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