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Abstract

We study deformations of Cartan framed null curves in the Minkowski 3-space
which preserve the torsion.
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§1. Preliminaries

In classical differential geometry of spatial curves, it is known that a spatial curve
whose binormals are the binormals of another curve, is a plane curve [4, p. 161, Ex.
14]. However, in the case of null curves, we shall show a very different situation that
every Cartan framed null curve admits deformations preserving its binormal directions
and torsion.

Our results may be considered as an analogue of Bäcklund transformations be-
tween constant torsion curves in Euclidean 3-space introduced by A. Calini and
T. Ivey.

Let E3
1 be a Minkowski 3-space with the natural Lorentz metric

〈·, ·〉 = −dx2
1 + dx2

2 + dx2
3,

in terms of natural coordinates. The vector product operation of E3
1 is defined by (cf.

[5])
x× y = (x3y2 − x2y3, x3y1 − x1y3, x1y2 − x2y1),

for x = (x1, x2, x3), y = (y1, y2, y3) ∈ E3
1.

Definition. A parametrized curve γ = γ(s) in Minkowski 3-space E3
1 is said to

be a null curve if its tangent vector field is null, i.e.,

〈γ′, γ′〉 = 0, γ′ 6= 0.
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Proposition. Let γ(s) be a nongeodesic null curve. Then there exists a unique
frame field (A,B, C) such that

d
ds

(A,B, C) = (A,B, C)





0 0 −τ
0 0 −κ
κ τ 0





with A = dγ/ds, 〈A, A〉 = 〈B, B〉 = 0, 〈A,B〉 = 1 and C is defined by C = A × B.
The functions κ and τ are called the curvature and torsion of γ respectively. The
frame field (A, B,C) is called the Cartan frame of γ. A null curve together with its
Cartan frame is called a Cartan framed null curve.

Proof. Put A(s) = γ′. From the assumption, γ′ and γ′′ are linearly independent
and hence γ′′ is spacelike, i.e., 〈γ′′, γ′′〉 > 0. Thus there exists a unique section (vector
field) B(s) of the orthogonal compliment γ′′(s)⊥ of γ′′(s) such that

〈A(s), B(s)〉 = 1, 〈B(s), B(s)〉 = 0.

We define the vector field C(s) along γ by C(s) = A(s) × B(s). Then we have
〈A(s), C(s)〉 = 〈B(s), C(s)〉 = 0 and 〈C(s), C(s)〉 = 1. Moreover, there exist functions
κ(s) and τ(s) which satisfy

A′(s) = γ′′(s) = κ(s)C(s), B′(s) = τ(s)C(s).

Uniqueness follows from the construction we have done. 2

We call the vector fields A,B and C a tangent vector field, a binormal vector field
and a (principal) normal vector field of γ, respectively.

Remark. Our expression for dC/ds differs from the one given in [3] because we
specify 〈A,B〉 = 1 rather than 〈A,B〉 = −1 [6]. Note that null geodesics are regarded
as Cartan framed null curve with zero curvature.

A Cartan framed null curve with τ = 0 is called a generalized null cubic [3]. In
particular a generalized null cubic with constant κ is actually a cubic curve.

It is easy to check that the vanishing of κ or τ is invariant under reparametrization.

Example (cf. [7]). Let φ and ψ be functions satisfying φ′ = (ψ′)2. Then the
curve

γ(s) =
(

1√
2

(

s +
φ(s)

2

)

,
1√
2

(

s− φ(s)
2

)

, ψ(s)
)

is a Cartan framed null curve with frame

A =
(

1√
2

(

1 +
φ′ (s)

2

)

,
1√
2

(

1− φ′ (s)
2

)

, ψ′ (s)
)

,

B =
(

− 1√
2
,

1√
2
, 0

)

, C =
(

ψ′(s)√
2

,−ψ′(s)√
2

, 1
)

.

Direct computation shows that the curvature and torsion of γ are

κ(s) = ψ′′(s), τ = 0.
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Thus γ is a generalized null cubic.
In particular, in case that κ is constant, then

φ(s) =
κ2

3
s3 + bκs2 + b2s + c, ψ(s) =

κ
2
s2 + as + b,

where a, b, c are constants. In case that κ is constant, clearly γ is a cubic curve.

§2. The main result
We shall prove the following result for Cartan framed null curves in Lorentzian

geometry.
Theorem. Let (γ;A,B,C)(s) be a Cartan framed null curve. Assume that there

exists a Cartan framed null curve (γ̄; Ā, B̄, C̄)(s̄) such that the binormal direction of
γ̄ coincides with that of γ. Then the torsions at the corresponding points coincide,
i.e., τ(s) = τ̄(s̄).

Conversely, let curve (γ;A,B, C)(s) be a Cartan framed null curve. Then there
exists a Cartan framed null curve (γ̄; Ā, B̄, C̄)(s̄) such that the binormal direction of
γ and γ̄ coincide and τ(s) = τ̄(s̄) .

Proof. Let γ = γ(s) be a Cartan framed null curve with frame (A, B,C) Assume
that there exists a Cartan framed null curve γ̄ with frame (Ā, B̄, C̄) such that B̄ is in
the B-direction. Then γ̄ can be parametrized as

γ̄(s̄(s)) = γ(s) + u(s)B(s)(2.1)

for some function u(s) 6= 0 and some parametrization s̄ = s̄(s). Thus without loss of
generality, we may assume that

B̄(s̄(s)) = a(s)B(s),(2.2)

for some function a(s) 6= 0. Differentiating (2.1) by s, we have

ds̄
ds

Ā(s̄(s)) = A(s) + u′(s)B(s) + u(s)τ(s)C(s).

From the conditions of a Cartan frame
{

〈Ā(s̄(s)), Ā(s̄(s))〉 = 0,

〈Ā(s̄(s)), B̄(s̄(s))〉 = 1,

we obtain
2u′(s) + (u(s)τ(s))2 = 0(2.3)

and
a(s) =

ds̄
ds

.

Thus, from (2.3), the function u is completely determined by the torsion:

1
u(s)

=
1
2

∫

τ(s)2ds + c
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for some constant c. Note that C(s) × B(s) = −B(s). The principal normal C̄ of γ̄
is given by

C̄(s̄(s)) = Ā(s̄(s))× B̄(s̄(s)) = C(s)− u(s)τ(s)B(s).(2.4)

Differentiating (2.2) by s and using (2.4), we obtain

a(s)τ̄(s̄(s)){C(s)− u(s)τ(s)B(s)} =
da
ds

(s)B(s) + a(s)τ(s)C(s).

Comparing the Frenet equations of both curves, we have

τ̄(s̄(s)) = τ(s),
da
ds

(s) = −a(s)u(s)τ(s)2.(2.5)

Thus the torsion at the corresponding points are coincide. From (2.5), we have Since
u 6= 0, we have τ = 0. Thus γ is a generalized null

a(s) = a0u(s)2, a0 ∈ R∗.

Differentiating (2.4), we get the following relation:

a(s)2κ̄(s̄) = u(s)τ ′(s).

Conversely, for every Cartan framed null curve, define a null curve γ̄(s̄) by

γ̄(s̄) := γ(s) + u(s)B(s), 1/u(s) =
∫

τ(s)2ds + 2/u0,(2.6)

s̄(s) := a0

∫

u(s)2ds.

Then γ̄ is a Cartan framed null curve framed by

Ā(s̄) =
d
ds

γ̄(s̄), B̄(s̄) =
ds̄
ds

B(s), C̄(s̄) = Ā(s̄)× B̄(s̄).

Clearly γ and γ̄ have common binormal directions. 2

Corollary. Let γ be a Cartan framed null curve and γ̄ is the Cartan framed null
curve defined by (2.6). If 〈A, γ̄ − γ〉 is constant. Then γ is a generalized null cubic.
In this case γ̄ is congruent to γ.

Proof. The constancy of u implies that τ = 0 and the constancy of B (See (2.1)).
Thus γ̄ differs from γ only by translation by constant vector uB. Namely γ̄ is con-
gruent to the original curve γ. 2

Our result seems to be better comparing with Bäcklund transformation for con-
stant torsion curves investigated in [1]:

Theorem ([1]) Let γ(s) be a unit speed curve in Euclidean 3-space with non-zero
constant torsion τ . Denote by (T, N, B) the Frenet frame field of γ and κ, τ the
curvature and torsion of γ, respectively (See Appendix). Then, for any constant λ
and a solution β to the ordinary differential equation:

dβ
ds

= λ sin β − κ,
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the curve γ̄(s) defined by

γ̄(s) := γ(s) +
2λ

λ2 + τ2 (cos βT + sin βN)

is a curve of constant same torsion τ with arclength parameter s.
The new curve γ̄(s) is called the Bäcklund transformation of γ.
Remark. In p. 66 of [2], Duggal and Bejancu claimed that · · · “locally, for any

null curve of a 3-dimensional Lorentzian manifold we find a Cartan frame such that
it is a generalized null cubic”.

They considered the following procedure:
Define a new frame field F̄ = (Ā(s), B̄(s), C̄(s)) by

Ā(s) := A(s), B̄(s) := −f(s)
2

A(s) + B(s) + f(s)C(s), C̄(s) := C(s)− f(s)A(s),

where f is a solution to
df
ds

+
κ(s)
2

f(s)2 + τ(s) = 0.

Then the new frame has zero torsion τ̄ = 0. However this frame F̄ is not a Cartan
frame because of uniqueness of Cartan frame. We can check that F̄ is not the Cartan
frame by straightforward computation. In fact, the new frame satisfies

d
ds

(Ā, B̄, C̄) = (Ā, B̄, C̄)





k̄0 0 −τ̄
0 −k̄0 −κ̄
κ̄ τ̄ 0





with
k̄0 = f(s)κ(s), κ̄(s) = κ(s), τ̄ = 0.

Thus (γ, F̄ ) is not a generalized null cubic.

§3. Appendix
In this Appendix, we give a proof of the following classical result:
Theorem. Let γ = γ(s) be a curve parametrized by the arclength parameter in

Euclidean 3-space. If the binormals of γ are the binormals of another curve, then γ
is a plane curve.

Proof. Let us denote by (T, N, B) the Frenet frame field of γ. Namely, T = γ′, N
is the principal normal vector field and B is the binormal vector field. Assume that
γ̄ = γ̄(s̄) is a curve whose binormal direction coincides with that of γ. We denote by
(T̄ , N̄ , B̄) the Frenet frame field of γ̄; then B̄(s̄) = ±B(s).

The curve γ̄ is parametrized by s as

γ̄(s̄(s)) = γ(s) + u(s)B(s)(3.7)

for some function u(s) 6= 0 and parametrization s̄ = s̄(s). Differentiating (3.7) by s,
we get

γ̄′ = T − uτN + u′B.
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Since the binormal direction of γ̄ coincides with that of γ, 〈γ̄′, B〉 = 0. Thus we have
u′ = 0. Hence u is constant. Note that the arclength parameter s̄ of γ̄ is related to s
by

ds̄
ds

=
√

1 + (uτ)2.

The Frenet frame field of γ̄ is given by

T̄ =
T − uτN

√

1 + (uτ)2
, N̄ = ± uτT + N

√

1 + (uτ)2
, B̄ = ±B.

Since B̄ = ±B, by computing B′ and B̄′, we have

τ̄ N̄ = ± τ
√

1 + (uτ)2
N.

Comparing the both hand sides of this equation, we have

τ τ̄u = 0, τ = ±τ̄ .

Thus we have τ = τ̄ = 0, and hence s̄ = s, and γ is a plane curve. Note that since B
and u are constant, γ̄ differs from γ only by translation, and therefore γ̄ is congruent
to the original curve. 2
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