Infinitesimal holomorphically projective transformations on tangent bundles with complete lift connection

Izumi Hasegawa and Kazunari Yamauchi

Dedicated to Professor Shigeyoshi Fujimura on his sixtieth birthday

Abstract

Let \((M, g)\) be a Riemannian manifold and \(TM\) its tangent bundle with complete lift connection and adapted almost complex structure. We determine the infinitesimal holomorphically projective transformation on \(TM\). Furthermore, if \(TM\) admits a non-affine infinitesimal holomorphically projective transformation, then \(M\) and \(TM\) are locally flat.

Key words: infinitesimal holomorphically projective transformation, complete lift connection, adapted almost complex structure.

§1. Introduction

Let \(M\) be an \(n\)-dimensional manifold and \(TM\) its tangent bundle. We denote by \(\mathfrak{T}_r^s(M)\) the set of all tensor fields of type \((r, s)\) on \(M\). Similarly, we denote by \(\mathfrak{T}_r^s(TM)\) the corresponding set on \(TM\).

Let \(\nabla\) be an affine connection on \(M\). A vector field \(V\) on \(M\) is called an infinitesimal projective transformation if there exists a 1-form \(\Omega\) on \(M\) such that

\[(L_V \nabla)(X, Y) = \Omega(X)Y + \Omega(Y)X\]

for any \(X, Y \in \mathfrak{T}_0^1(M)\), where \(L_V\) is the Lie derivation with respect to \(V\). In this case \(\Omega\) is called the associated 1-form of \(V\). Especially, if \(\Omega = 0\), then \(V\) is called an infinitesimal affine transformation.

Next let \((M, J)\) be an almost complex manifold with affine connection \(\nabla\). A vector field \(V\) on \(M\) is called an infinitesimal holomorphically projective transformation if there exists a 1-form \(\Omega\) on \(M\) such that

\[(L_V \nabla)(X, Y) = \Omega(X)Y + \Omega(Y)X - \Omega(JX)JY - \Omega(JY)JX\]

for any \(X, Y \in \mathfrak{T}_0^1(M)\). In this case \(\Omega\) is also called the associated 1-form of \(V\). Especially, if \(\Omega = 0\), then \(V\) is the infinitesimal affine transformation. S. Ishihara [3] has

\[\text{© Balkan Society of Geometers, Geometry Balkan Press 2005.}\]
introduced the notion of infinitesimal holomorphically projective transformation, and S. Tachibana and S. Ishihara [6] investigated infinitesimal holomorphically projective transformations on Kaehlerian manifolds. In [1] we have proved that (1) an infinitesimal holomorphically projective transformation is infinitesimal isometry on a compact Kaehlerian manifold with non-positive constant scalar curvature and (2) a compact Kaehlerian manifold M with constant scalar curvature is holomorphically isometric to a complex projective space with Fubini-Study metric if M admits a non-isometric infinitesimal holomorphically projective transformation.

It is well-known that there are several lift connections of ∇ on TM ([7, 8]). In our previous paper [2], we study the infinitesimal holomorphically projective transformation on TM with horizontal lift connection and proved the following:

Theorem A. Let (M, g) be a Riemannian manifold and TM its tangent bundle with horizontal lift connection and adapted almost complex structure. A vector field $\tilde{\Omega}$ on TM if and only if there exist $\varphi, \psi \in \mathfrak{X}^0(M)$, $B = (B^h)$, $D = (D^h) \in \mathfrak{X}_0^1(M)$, $A = (A^h_i)$, $C = (C^h_i)$ that satisfy

\begin{align*}
(1) & \quad (\tilde{\nabla}^h, \tilde{\nabla}^h) = (B^h + y^a A^h_a + 2\varphi y^h - y^h y^a \psi_a, D^h + y^a C^h_a + 2\psi y^h + y^h y^a \Phi_a), \\
(2) & \quad (\tilde{\nabla}^h_i, \tilde{\nabla}^h_i) = (\partial_i \psi, \partial_i \varphi) = (\psi_i, \Phi_i), \\
(3) & \quad \nabla_j \Phi_i = 0, \quad \nabla_j \psi_i = 0, \\
(4) & \quad \nabla_j A^h_i = \Phi_j \delta^h_i - \Phi_i \delta^h_j, \\
(5) & \quad \nabla_j C^h_i = \psi_i \delta^h_j - \psi_j \delta^h_i - K_{ajj}^h B^a, \\
(6) & \quad L_B \Gamma^h_{ji} = \nabla_j \nabla_i B^h + K_{ajj}^h B^a = \psi_j \delta^h_i + \psi_i \delta^h_j, \\
(7) & \quad \nabla_j \nabla_i D^h = -\Phi_i \delta^h_j - \Phi_j \delta^h_i, \\
(8) & \quad A^h_\delta K_{ajj}^h + 2\varphi K_{ajj}^h = 0, \\
(9) & \quad \psi_i K_{ajj}^h = 0,
\end{align*}

where $(\tilde{\nabla}^h, \tilde{\nabla}^h) := \tilde{\nabla}^a E^a + \tilde{\nabla}^a E^a = \tilde{\nabla}$, $(\tilde{\nabla}^h_i, \tilde{\nabla}^h_i) := \tilde{\nabla}^a dx^a + \tilde{\nabla}^a dy^a = \tilde{\nabla}$, ∇ denotes the Riemannian connection on M, Γ^h_{ji} the coefficients of ∇ and $K = (K_{ajj}^h)$ the Riemannian curvature tensor of (M, g) defined by $K_{ajj}^h := \partial_k \Gamma^h_{ji} - \partial_j \Gamma^h_{ki} + \Gamma^h_{ji} \Gamma^h_{ka} - \Gamma^h_{ki} \Gamma^h_{ja}$.

Theorem B. Let (M, g) be a complete Riemannian manifold and TM its tangent bundle with horizontal lift connection and adapted almost complex structure. If TM admits a non-affine infinitesimal holomorphically projective transformation, then M and TM are locally flat.

Let (M, g) be a Riemannian manifold and ∇ its Riemannian connection. The horizontal lift connection of ∇ does not coincide with the Riemannian connection of horizontal lift metric of g to TM with respect to ∇. Two connections coincide if and only if M is locally flat. On the other hand the complete lift connection of
∇ is the Riemannian connection of complete lift metric of \(g \). Here, since \(g \) satisfies \(\nabla g = 0 \), the complete lift metric of \(g \) coincides with the horizontal lift metric of \(g \) (see [7, 8]). Moreover, in the case of horizontal lift connection it is necessary to assume that \(M \) is complete to prove Theorem B, but not necessary in the case of complete lift connection (see Theorem 2 stated below). Therefore, in this paper we investigate the case of complete lift connection and prove the following:

Theorem 1. Let \((M, g)\) be a Riemannian manifold and \(TM \) its tangent bundle with complete lift connection and adapted almost complex structure. A vector field \(\tilde{V} \) is an infinitesimal homoloromorphically projective transformation with associated 1-form \(\Omega \) on \(TM \) if and only if there exist \(\varphi, \psi \in \mathcal{T}_0^1(M) \), \(A = (A_i^h), C = (C_i^h) \in \mathcal{T}_1^1(M) \) satisfying

\[
\begin{align*}
(1) & \quad (\tilde{V}^h, \tilde{V}_h) = (B^h + y^a A_a^h + 2\varphi y^h - y^b y^a \Psi_a, \quad D^h + y^a C_a^h + 2\psi y^h + y^b y^a \Phi_a), \\
(2) & \quad (\tilde{\Omega}_i, \tilde{\Omega}_i) = (\partial_i \psi, \partial_i \varphi) = (\Psi_i, \Phi_i), \\
(3) & \quad \nabla_j \Phi_i = 0, \quad \nabla_j \Psi_i = 0, \\
(4) & \quad \nabla_j A_i^h = \Phi_j \delta_i^h - \Phi_i \delta_j^h, \\
(5) & \quad \nabla_j C_i^h = \Psi_i \delta_j^h - \Psi_j \delta_i^h - K_{a ji}^h B_a, \\
(6) & \quad L_B \Gamma_{ji}^h = \nabla_j \nabla_i B^h + K_{a ji}^h B_a = \Psi_i \delta_j^h + \Psi_j \delta_i^h, \\
(7) & \quad L_D \Gamma_{ji}^h = \nabla_j \nabla_i D^h + K_{a ji}^h D_a = -\Phi_j \delta_i^h - \Phi_i \delta_j^h, \\
(8) & \quad A_k^h K_{a ji}^h + 2\varphi K_{k ji}^h = 0, \\
(9) & \quad \Psi_i K_{a ji}^h = 0, \quad \Phi_i K_{a ji}^h = 0, \\
(10) & \quad B^a \nabla_a K_{k ji}^h = K_{k ji}^h C_{a}^h - K_{a ji}^h C_{k}^a - K_{k ai}^h \nabla_j B^a - K_{k ja}^h \nabla_i B^a,
\end{align*}
\]

where \((\tilde{V}^h, \tilde{V}_h) := \tilde{V}^a E_a + \tilde{V}_a E_a = \tilde{V} \) and \((\tilde{\Omega}_i, \tilde{\Omega}_i) := \tilde{\Omega}_a dx^a + \tilde{\Omega}_a dy^a = \tilde{\Omega} \).

Theorem 2. Let \((M, g)\) be a Riemannian manifold and \(TM \) its tangent bundle with complete lift connection and adapted almost complex structure. If \(TM \) admits a non-affine infinitesimal homoloromorphically projective transformation, then \(M \) and \(TM \) are locally flat.

In the present paper everything will be always discussed in the \(C^\infty \)-category, and manifolds will be assumed to be connected and dimension \(n > 1 \).

The authors would like to express their hearty thanks to the referee for the valuable suggestions.

§2. Preliminaries

In this section we shall give some definitions and formulae on \(TM \) for later use (for details, see [7, 8]). Let \((M, g)\) be a Riemannian manifold, \(\nabla \) the Riemannian connection of \(g \) and \(\Gamma_{ji}^h \) the coefficients of \(\nabla \), i.e., \(\Gamma_{ji}^h \partial_h := \nabla_{ij} \partial_h \), where \(\partial_h = \frac{\partial}{\partial x^h} \) and \((x^h)\) is the local coordinates of \(M \).
Adapted frame of TM

We define a local frame $\{E_i, \bar{E}_i\}$ of TM as follows:

\[(2.1)\quad E_i := \partial_i - y^b \Gamma^a_{ib} \partial_a \quad \text{and} \quad \bar{E}_i := \partial_i,\]

where (x^h, y^h) is the induced coordinates of TM derived from the local coordinates (x^h) of M and $\partial_i := \frac{\partial}{\partial x^i}$. This frame $\{E_i, \bar{E}_i\}$ is called the adapted frame of TM.

Then $\{dx^h, \delta y^h\}$ is the dual frame of $\{E_i, \bar{E}_i\}$, where $\delta y^h := dy^h + y^b \Gamma^h_{ab} dx^a$.

By the definition of the adapted frame, we have the following

Lemma 1 The Lie brackets of the adapted frame of TM satisfy the following identities:

1. $[E_j, E_i] = y^b K_{ij}^b E_a$
2. $[E_j, \bar{E}_i] = \Gamma^a_{ji} \bar{E}_a$
3. $[\bar{E}_j, E_i] = 0$
4. $[\bar{E}_j, \bar{E}_i] = 0$

Complete lift connection of ∇

Let $X = X^a \partial_a$ be a vector field on M. Then the complete lift X^C of X is defined by

\[(2.2)\quad X^C := X^a E_a + y^b \nabla_b X^a E_{\bar{a}},\]

There exists a unique affine connection $\tilde{\nabla}$ on TM which satisfies

\[(2.3)\quad \tilde{\nabla}_{X^C} Y^C = (\nabla_X Y)^C\]

for any $X, Y \in \mathfrak{T}_0(M)$. This affine connection is called the complete lift connection of ∇ to TM. Then we have

\[(2.4)\quad \tilde{\nabla}_{E^j} E_i = \Gamma^a_{ji} E_a, \quad \tilde{\nabla}_{\bar{E}^j} \bar{E}_i = 0, \quad \tilde{\nabla}_{E^j} \bar{E}_i = 0.\]

Adapted almost complex structure on TM

Let $X = X^a \partial_a$ be a vector field on M. Then the vertical lift X^V and the horizontal lift X^H of X with respect to ∇ are defined as follows:

\[(2.5)\quad X^H := X^a E_a \quad \text{and} \quad X^V := X^a \bar{E}_a.\]

We now define a tensor field J of type $(1,1)$ on TM by

\[(2.6)\quad JX^H := X^V, \quad JX^V := -X^H\]

for any $X \in \mathfrak{T}_0(M)$, i.e.,

\[JE_i = \bar{E}_i \quad \text{and} \quad J\bar{E}_i = -E_i.\]

Then we obtain

\[J^2 = -I.\]
Therefore J is an almost complex structure on TM. This almost complex structure is called the adapted almost complex structure. It is known that J is integrable if and only if M is locally flat.

§ 3. Proofs of Theorems

Proof of Theorem 1.

Here we prove only the necessary condition because it is easy to prove the sufficient condition. Let \tilde{V} be an infinitesimal holomorphically projective transformation with the associated 1-form $\tilde{\Omega}$ on TM.

\begin{equation}
(L_{\tilde{V}} \tilde{\nabla})(\tilde{X}, \tilde{Y}) = \tilde{\Omega}(\tilde{X})\tilde{Y} + \tilde{\Omega}(\tilde{Y})\tilde{X} - \tilde{\Omega}(J\tilde{X})J\tilde{Y} - \tilde{\Omega}(J\tilde{Y})J\tilde{X}
\end{equation}

for any $\tilde{X}, \tilde{Y} \in \mathfrak{T}_0^1(TM)$.

From $(L_{\tilde{V}} \tilde{\nabla})(E_i, E_j) = \tilde{\Omega}_j E_i + \tilde{\Omega}_i E_j - \tilde{\Omega}_i E_j$, we obtain

\begin{equation}
\partial_j \partial_i \tilde{V}^h = -\tilde{\Omega}_j \delta_i^h - \tilde{\Omega}_i \delta_j^h
\end{equation}

and

\begin{equation}
\partial_j \partial_i \tilde{V}^h = \tilde{\Omega}_j \delta_i^h + \tilde{\Omega}_i \delta_j^h.
\end{equation}

From (3.2), there exist $\varphi \in \mathfrak{T}_0^0(M), \Psi = (\Psi_i) \in \mathfrak{T}_1^0(M), B = (B^h) \in \mathfrak{T}_0^1(M)$ and $A = (A_i^h) \in \mathfrak{T}_1^1(M)$ satisfying

\begin{equation}
\tilde{\psi} = -\varphi + y^a \Psi_a,
\end{equation}

\begin{equation}
\tilde{\Omega}_i = \partial_i \tilde{\psi} = \Psi_i
\end{equation}

and

\begin{equation}
\tilde{V}^h = B^h + y^a A_i^h + 2\varphi y^h - y^a \Psi_a y^h,
\end{equation}

where $\tilde{\psi} := -\frac{1}{n+1} \partial_a \tilde{V}^a$.

Similarly, from (3.3), there exist $\psi \in \mathfrak{T}_0^0(M), \Phi = (\Phi_i) \in \mathfrak{T}_1^0(M), D = (D^h) \in \mathfrak{T}_0^1(M)$ and $C = (C_i^h) \in \mathfrak{T}_1^1(M)$ satisfying

\begin{equation}
\tilde{\phi} = \psi + y^a \Phi_a,
\end{equation}

\begin{equation}
\tilde{\Omega}_i = \partial_i \tilde{\phi} = \Phi_i
\end{equation}

and

\begin{equation}
\tilde{V}^h = D^h + y^a C_i^h + 2\psi y^h + y^a \Phi_a y^h,
\end{equation}

where $\tilde{\phi} := \frac{1}{n+1} \partial_a \tilde{V}^a$.

Next, from (3.1) we have

\[(3.10) \quad (L_\Phi \bar{\nabla})(E_j, \ E_i) = \Phi_j E_i + \Phi_i E_j + \Psi_j E_i + \Psi_i E_j,\]

or

\[(L_\Phi \bar{\nabla})(E_j, \ E_i) = \Phi_j E_i + \Phi_i E_j + \Psi_j E_i + \Psi_i E_j,\]

from which, we get

\[
(\Phi_j \delta^a_i + \Phi_i \delta^a_j)E_a + (\Psi_j \delta^a_i + \Psi_i \delta^a_j)E_a
= \{(\nabla_j A_i^a + 2 \delta^a_i \partial_j \varphi) - y^b(\delta^a_b \nabla_j \Psi_i + \delta^a_i \nabla_j \Psi_b)\}E_a
+ \{(K_{bji}^a B^b + \nabla_j C_i^a + 2 \delta^a_i \partial_j \psi) + y^b(A_i^c K_{cji}^a - A_i^c K_{jbc}^a + 4 \varphi K_{bji}^a + \delta^a_i \nabla_j \Phi_i + \delta^a_i \nabla_j \Phi_b) + y^c y^b(\Psi_i K_{jeb}^a - 2 \Psi_i K_{bji}^a)\}E_a.
\]

Comparing both hands of the above equation, we obtain

\[
\Phi_i = \partial_i \varphi, \quad \nabla_j \Phi_i = 0,
\Psi_i = \partial_i \psi, \quad \nabla_j \Psi_i = 0,
\]

\[(3.12) \quad \nabla_j A_i^h = \Phi_i \delta_j^h - \Phi_j \delta_i^h,
\nabla_j C_i^h = \Psi_i \delta_j^h - \Psi_j \delta_i^h - K_{aji}^h B^a,
A_i^c K_{aji}^h = -2 \varphi K_{kji}^h, \quad \Psi_i K_{kji}^h = 0.
\]

Lastly, from \((L_\Phi \bar{\nabla})(E_j, \ E_i) = \Psi_j E_i + \Psi_i E_j - \Phi_j E_i - \Phi_i E_j,\) we obtain

\[
(\Psi_j \delta^a_i + \Psi_i \delta^a_j)E_a - (\Phi_j \delta^a_i + \Phi_i \delta^a_j)E_a
= (L_B \Gamma_{ji}^h)E_a + (L_D \Gamma_{ji}^h)
+ y^b(B^c \nabla_c K_{bji}^a - K_{bji}^c C_i^c + K_{cji}^a C_i^c + K_{bci}^a \nabla_j B^c + K_{bcj}^a \nabla_i B^c)
+ y^c y^b(\Phi_i K_{bji}^a + \Psi_i K_{bji}^a - \Phi_j K_{bji}^a - \Phi_i K_{cji}^a B^c)
+ 2 \varphi \nabla_c K_{bji}^a + 2 \varphi \nabla_j K_{cji}^a + A_i^d \nabla_d K_{kji}^a + A_i^d \nabla_j K_{dib}^a)\}E_a,
\]

from which, we get the following important information:

\[(3.13) \quad L_B \Gamma_{ji}^h = \Psi_j \delta_i^h + \Psi_i \delta_j^h.
\]

\[(3.14) \quad L_D \Gamma_{ji}^h = -\Phi_j \delta_i^h - \Phi_i \delta_j^h.
\]

(That is, \(B\) and \(D\) are infinitesimal projective transformations on \(M\).)

\[(3.15) \quad B^a \nabla_a K_{kji}^h = K_{kji}^a C_i^h - K_{a/ji}^h C_k^a - K_{kai}^h \nabla_j B^a - K_{kja}^h \nabla_i B^a.
\]

\[(3.16) \quad \Phi_i K_{kji}^h = 0.
\]

This completes the proof.
Proof of Theorem 2.

Let \tilde{V} be a non-affine infinitesimal holomorphically projective transformation on TM. Using (3) in Theorem 1, we have $\nabla_i ||\Phi||^2 = \nabla_i ||\Psi||^2 = 0$. Therefore, $||\Phi||$ and $||\Psi||$ are constant on M. Suppose that M is not locally flat, then $\Phi = \Psi = 0$ by virtue of (9) in Theorem 1, that is, \tilde{V} is an infinitesimal affine transformation. This is a contradiction. Therefore M is locally flat.

In this case, TM is also locally flat, because the Riemannian curvature tensor of ∇ is the complete lift of K ([7, 8]).

References

Authors' addresses:

Izumi Hasegawa
Department of Mathematics, Hokkaido University of Education
5-3-1-5, Ainosato, Kita-ku, Sapporo 002-8502, Japan
e-mail: hasegawa@sap.hokkyodai.ac.jp

Kazunari Yamauchi
Department of Mathematics, Asahikawa Medical College
2-1-1-1, Midorigaoka-Higashi, Asahikawa 078-8510, Japan
e-mail: yamauchi@asahikawa-med.ac.jp