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Abstract. The main purpose of this article is to introduce a compre-
hensive, unified theory of the geometry of all connections. We show that
one can study a connection via a certain, closely associated second-order
differential equation. One of the most important results is our extended
Ambrose-Palais-Singer correspondence. We extend the theory of geodesic
sprays to certain second-order differential equations, show that locally dif-
feomorphic exponential maps can be defined for all, and give a full theory
of (possibly nonlinear) covariant derivatives for (possibly nonlinear) con-
nections. In the process, we introduce vertically homogeneous connections.
Unlike homogeneous connections, these complete our theory and allow us
to include Finsler spaces in a completely consistent manner.
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1 Introduction

In modern geometry, there are various kinds of connections for a given manifold M
with a bundle structure over it. For example:

• A Cartan connection may be considered as a version of the general concept of
a principal connection, in which the geometry of the principal bundle is tied
to the geometry of the base manifold [15, 37]. Cartan connections describe
the geometry of manifolds modelled on homogeneous spaces. Under certain
technical conditions, they can be related to the remaining types [37].

• A general connection on any fibre bundle E →→ M is a splitting of TE into
the natural vertical bundle and a horizontal bundle [23]. If the splitting is
equivariant for the structure group (or, more generally, some subgroup) G, then
it defines an Ehresmann G-connection [23, 34].

• A principal connection is an Ehresmann G-connection on a principal G-bundle
(P,M,G) [23, 34].
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• A linear connection on a vector bundle (E,M, V, GL(V )) over M with model
fiber V is associated to a principal connection on the frame bundle with group
GL(V ) [23, 34]. All others are nonlinear, among which are the affine connections
with G = An. It is unfortunate that in the extant literature on nonlinear
connections, for example [28, 5, 39, 40, 22] all written well after [23], a nonlinear
connection is defined to be a particular highly restricted type of connection on
TM − 0.

• A Koszul connection is a linear operator of the type of a covariant derivative on
a vector bundle. It gives rise to a linear connection on the vector bundle [34].

We are only concerned with finite-dimensional real vector bundles E (vector spaces
V ), so GL(V ) ∼= GL(n,R) = GLn with n = dim V . Moreover, our only direct
concern is when E = TM , so the principal bundle is LM , the bundle of linear frames,
n = dim M , and the connections are G-connections for a suitable subgroup G ≤ GLn.
All pseudo-Riemannian connections are linear connections of this last type [32, 34].

Since the fundamental work of Ehresmann [23], we have had a consistent terminol-
ogy for connections on a manifold M . A connection on M is a splitting TTM = V ⊕H
where V is the natural vertical bundle and H is a complementary subbundle, the
horizontal bundle. In this article, we continue our study of smooth general connec-
tions on the tangent bundle TM of a smooth, paracompact, connected manifold M .
We shall use “nonlinear” in the original sense of Ehresmann.

Let us note that Bucataru and Miron [14] recently defined a completely different
kind of nonlinear connection via a generalization of the Koszul procedure. They
begin with the assumption that parallel transport is to be linear, construct from that
a nonlinear covariant derivative operator, and thence a nonlinear connection. We
do not begin with that, or any other such, assumption; instead, we begin with an
arbitrary (smooth) nonlinear connection, and then construct a nonlinear covariant
derivative operator via an extension of the connector procedure (Def. 4.2).

The geodesic spray in pseudo-Riemannian geometry, the integral curves of which
are the geodesics of the Levi-Civita connection, has played an important role; see,
for example, [12, 11]. Riemannian geometry has been a main thread of mathematics
over the last century [10], and Finsler geometry has recently undergone somewhat of
a revival [3].

Second-order differential equations (SODEs) are an important class of vector fields
on the tangent bundle. Our principal motivation for this work was the desire to
make a comprehensive theory of the geometry of nonlinear connections and SODEs
which would include (pseudo)Riemannian geodesic sprays and analogues for Finsler-
like spaces as examples. Moreover, such a theory would also apply to the geometry of
principal symbols of PDOs [33] and to stability problems around linear connections;
e.g., [8, 9].

Section 2 contains our notation, conventions, and a summary of our earlier article
[18]. In Section 3 we present the new exponential maps defined by SODEs. Section 4
describes the relations among (possibly nonlinear) connections, certain SODEs (qua-
sisprays), the associated (possibly nonlinear) covariant derivatives, and geodesics. It
also contains the various parts of our extended Ambrose-Palais-Singer (APS) corre-
spondence. In Section 5 we provide a simple example using Finsler spaces. Finally,
Section 6 begins with the extension of the main results of [9] to SODEs, using our
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new, extended construction of exponential maps. It also includes the extension of the
main stability result of [8, 18] to all SODEs.

The authors thank CONACYT (Project 25749) and FAI for travel and support
grants, Wichita State University and Universidad Autónoma de San Luis Potośı for
hospitality during the progress of this work, and J. Hebda and A. Helfer for helpful
conversations. Del Riego also thanks M. Mezzino for writing a Mathematica package
for her use.

2 Review and definitions

A second-order differential equation (SODE) on a manifold M is defined as a pro-
jectable section of the second-order tangent bundle TTM →→ TM [12, 11, 13]. Recall
that an integral curve of a vector field on TM is the canonical lift of its projection
if and only if the vector field is projectable [12]. For a curve c in M with tangent
vector field ċ, this ċ is the canonical lift of c to TM and c̈ is the canonical lift of ċ to
TTM . Then each projectable vector field S on TM determines a second-order differ-
ential equation on M by c̈ = S ◦ ċ, and each such curve with ċ(s0) = v0 ∈ Tc(s0)M
is a solution with initial condition v0. Solutions are preserved under translations of
parameter, they exist for all initial conditions by the Cauchy theorem, and, as our
manifolds are assumed to be Hausdorff, each solution will be unique provided we take
it to have maximal domain; i.e., to be inextendable [12, 17, 27].

There are two vector bundle structures on TTM over TM , denoted here by πT

and π∗. Let J be the canonical involution on TTM , so it isomorphically exchanges
the two vector bundle structures on TTM . We denote the fixed set of J by fixJ and
observe that it is a fiber subbundle, but not a vector subbundle, of TTM .

Definition 2.1. A section S of TTM over TM is a SODE when JS = S, or equiva-
lently, when S ∈ Γ(fixJ). The space of all SODEs is denoted by DE2(M), and those
vanishing on the 0-section of TM by QSpray(M).

Thus a SODE can be expressed locally as S : (x, y) 7→ (x, y, y, S(x, y)).

Remark 2.1. If desired, one may work with jet spaces using J1(R 0,M) ∼= TM and
J2(R 0, M) ∼= fixJ , where the notation indicates jets with fixed source 0 ∈ R and target
any point in M .

The vertical bundle V = ker(π∗ : TTM →→ TM) is a vector subbundle with
respect to both vector bundle structures on TTM . In induced local coordinates,
elements of V look like (x, y, 0, Y ). We observe that there is a natural isomorphism
fixJ ∼= V of fiber subbundles of TTM . Thus we can transport the vector bundle
structure of V to fixJ and give the latter a vector bundle structure. Note carefully
that this does not make fixJ a vector subbundle of TTM but does allow us to regard
DE2(M) as a vector space isomorphic to Γ(V ) with QSpray(M) as a closed subspace,
so that both are Fréchet nuclear spaces [38].

We briefly digress to consider the notion of homogeneity for functions. Consider
the equation f(ax) = amf(x). In projective geometry, for example, one usually
requires this to hold only for a 6= 0. We shall call this projectively homogeneous of
degree m. In other areas, such as Euler’s Theorem in analysis, one further restricts
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to a > 0. We shall call this positively homogeneous of degree m. Finally, in order
that homogeneity of degree 1 coincide with linearity, one must allow all scalars a ∈ R
(including zero). We shall call this completely homogeneous of degree m. By h(m) we
shall mean complete homogeneity on TM and projective homogeneity on TM − 0.

The difference between projective homogeneity and complete homogeneity is mi-
nor; essentially, it is just the difference between working on TM −0 and on TM . The
difference between positive homogeneity and the other two is more significant. For
example, the inward-going and outward-going radial geodesics of the Finsler-Poincaré
plane in [4] have different arclengths.

Elsewhere [29], projectable vector fields on TM − 0 are called semisprays and
the name sprays (confusingly) used for those that are h(2) on TM − 0. We will
associate a SODE to each (possibly nonlinear) connection in the role of a geodesic
spray (see Theorems 4.1 and 4.8), so we shall use the name “quasispray” to reflect
this new, extended role (and to distinguish ours from all the others; e.g., [35]). We do,
however, explicitly consider only smooth SODEs defined on the entire tangent bundle
TM ; others [3, 4, 29] use only the reduced tangent bundle with the 0-section removed.
In general, one usually requires SODEs to be at least C0 across the zero-section when
possible; e.g., for Finsler spaces. Most of our results are easily seen to hold mutatis
mutandis in these cases as well; any un-obvious exceptions will be noted specifically.

Several important results concerning quadratic sprays [2, 12, 22, 29] rely on the
facts that each such spray S determines a unique torsion-free linear connection Γ,
and conversely, every quadratic spray S arises from a linear connection Γ the torsion
of which can be assigned arbitrarily. The solution curves of the differential equation
c̈ = SΓ ◦ ċ for a connection-induced spray are precisely the geodesics of that (linear)
connection. These solution curves are not only preserved under translations, as is
true in general, but also under affine transformations of the parameter s 7→ as + b for
constants a, b with a 6= 0. The latter also holds for some special SODEs.

In the general case, a (possibly nonlinear) connection Γ gives rise to a quasispray
S (see Proposition 4.1), but the correspondence has not been studied before. We
shall extend most of the preceding features of the quadratic spray–linear connection
correspondence to the general setting. One of our ultimate goals is to determine just
how well nonlinear connections can be studied via their quasisprays.

We continue with the principal definitions. Let S be a SODE on M .

Definition 2.2. We say that a curve c : (a, b) → M is a geodesic of S or an S-geodesic
if and only if the natural lifting ċ of c to TM is an integral curve of S.

This means that if c̈ is the natural lifting of ċ to TTM , then c̈ = S(ċ) is the
S-geodesic equation.

Definition 2.3. We say that S is pseudoconvex if and only if for each compact
K ⊆ M there exists a compact K ′ ⊆ M such that each S-geodesic segment with both
endpoints in K lies entirely within K ′.

If we wish to work directly with the integral curves of S, we merely replace “in”
and “within” by “over”.

Definition 2.4. We say that S is disprisoning if and only if no inextendable S-
geodesic is contained in (or lies over) a compact set of M .
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In relativity theory, such inextendable geodesics are said to be imprisoned in com-
pact sets; hence our name for the negation of this property.

Following this definition, we make a convention: all S-geodesics are always to be
regarded as extended to the maximal parameter intervals (i.e., to be inextendable)
unless specifically noted otherwise. When the SODE S is clear from context, we refer
simply to geodesics. Note that no SODE can be disprisoning on a compact manifold.
However, Corollary 6.2 may be used to obtain results about compact manifolds for
which the universal covering is noncompact.

We refer to [18] for motivation, further general results, and to [19] for more exam-
ples.

3 Exponential maps

Let S be a SODE on M . We define the generalized exponential maps (plural!) expε

of S as follows. First let p ∈ M , v ∈ TpM , and c be the unique S-geodesic such that

c̈ = S(ċ), c(0) = p, ċ(0) = v.

Define expε
p(v) = c(ε) for all v ∈ TpM for which this makes sense. From the

existence of flows (e.g., [27, p. 175]), it follows that this is well defined for all ε in some
open interval (−εp, εp), which in general depends on p, and for all v in some open
neighborhood Up of 0 ∈ TpM , which in general depends on the choice of ε ∈ (−εp, εp).
This defines expε

p at each p ∈ M .

Remark 3.1. On TM−0, it is frequently convenient to define expε
p(0) = p. One must

then investigate the regularity near 0 in each case; e.g., in Finsler-related examples it
usually turns out to be C1.

Next, choose a smooth function ε : M → R such that ε(p) ∈ (−εp, εp) for every
p ∈ M . (The smoothness of ε is for our later convenience: we want expε

p to be smooth
in ε as well as in all other parameters.) Then the global map expε is defined pointwise
by (expε)p = expε(p)

p . The domain of expε is a tubular neighborhood of the 0-section
in TM and the graph of ε lies in a tubular neighborhood of the 0-section in the trivial
line bundle R×M .

We have an example, given to us by J. Hebda, to show that it is possible that
εp < 1 for every open neighborhood of 0 ∈ TpM .

Example 3.2. Consider the SODE on R given by ẍ(t) = π(1 + ẋ(t)2). To integrate,
we rewrite this as

dẋ

1 + ẋ2
= π dt

and obtain arctan ẋ = π t + C1 . Thus

ẋ(t) = tan(π t + C1), ẋ(0) = tan C1

so x(t) = log
∣∣sec (π t + C1)

∣∣ + C2 . For C1 ≥ 0, x cannot be continued beyond

πt + C1 =
π

2
,

t =
1
2
− C1

π
< 1 .
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Therefore the usual exponential map of this SODE is not defined (i.e., at t = ε = 1)
for all C1 ≥ 0.

The closer the graph of ε gets to the 0-section of R ×M , the larger the tubular
neighborhood of the 0-section in TM gets.

Proposition 3.3. For ε1 < ε2, we have dom(expε1) ⊃ dom(expε2), attaining all of
TM for ε = 0 when exp0 = π. ¤

This puts the bundle projection TM →→ M in the interesting position of being
a member of a one-parameter family of maps, all of whose other members are local
diffeomorphisms. (This is reminiscent of singular perturbations.)

Theorem 3.4. For every ε such that 0 < |ε| < εp, the generalized exponential
map expε

p is a diffeomorphism of an open neighborhood of 0 ∈ TpM with an open
neighborhood of p ∈ M .

Proof. This follows from the flow theorems in ODE (e.g., [27, pp. 175, 302]) and a
slight generalization of the usual argument (e.g., [13, p. 116f ]). Note that for v ∈ TpM ,
expε

p v = πΦ(ε, v) where Φ is the local flow of S. Then on the 0-section of TM , the
induced tangent map (π, expε)∗ in block form is given by ( 0 A

I I ), where A is invertible.
(When S is nice so that ε = 1, then A = I as in the usual proof.) ¤

If desired, one could use the construction in the proof of Theorem 4.4 in [20] to
obtain a more explicit form for this A.

For reference, we record the following obvious result.

Lemma 3.5. ε is a geodesic parameter; i.e., the curve obtained by fixing v and varying
ε is a geodesic through p. ¤

Now consider another parameter a as in expε
p(av) . In general, a will not be a geodesic

parameter; i.e., the curve obtained by fixing ε and v and varying a is not a geodesic
through p. See Fig. 1 and Fig. 2 for a comparison. Also note that these a-parameter
curves are the exponentials of radial lines in TpM .

Fig. 1. Curves expε
p(av) — Each black curve is a geodesic with 0 < ε < 3 and a and

v fixed. From shortest to longest in each plume, a steps in increments of 0.05 from
0.05 to 1. In each plume, v is constant. There are three implicit a-parameter curves
readily located, one along the endpoints of each of the three plumes.
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Fig. 2. Curves expε
p(av) — This is one plume from Figure 1. Each black curve is a

geodesic and each gray (blue) curve is an a-parameter curve. The new Jacobi fields
are along the black curves but tangent to the gray curves.

The a-parameter curves are interesting: they are the integral curves for our new
Jacobi vector fields. These were mentioned in [19] and will be studied in more detail
in a subsequent article. For now, we have the following example.

Example 3.6. In R2, consider the SODE given by Si(x, y) = yi for i = 1, 2. The
geodesics are easily found to be c(t) = vet + p where v is the initial velocity and p
is the initial position. We can use the usual exponential map since these curves are
always defined for t = 1. Thus we obtain expp(v) = c(1) = v e + p, regarding both v
and p as vectors in R2.

For the a-curves, we have expp(a v) = av e+ p, showing the difference between the
two types quite clearly: the geodesics have exponential growth in velocity, while the
a-curves have only linear growth.

Finally, note that we could just as well define exponential-like maps based on the
a-curves and they would share most of the properties of our new exponential maps.

4 Connections and their quasisprays

A (general) connection on a manifold M is a subbundle H of the second tangent
bundle πT : TTM →→ TM which is complementary to the vertical bundle V , so

(4.1) TTM = H ⊕ V .

The space of all connections on M is denoted by EConn(M), since this definition is
due to Ehresmann [23].

Recall there are two vector bundle structures on TTM over TM , denoted here by
πT and π∗. While V is always a subbundle with respect to both [34, pp. 18,20], H is
a subbundle with respect to π∗ if and only if the connection is linear [11, p. 32].

Also recall that quadratic sprays correspond to linear connections. In terms of the
horizontal bundle H , linearity is expressed as

Hav = a∗Hv

for a ∈ R considered as a map TM → TM and v ∈ TM . Thus one has

(4.2) Hav = a∗am−1Hv

as the second defining equation, together with (4.1), of a connection that is h(m).
Here is the SODE induced by a connection. We shall call it the geodesic quasispray

associated to the connection and its geodesics the geodesics of the connection.
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Theorem 4.1. For each connection H , there is an induced SODE S given by

S(v) = π∗
∣∣−1

Hv
(v) ,

where π : TM →→ M is the natural projection and v ∈ TM . We write H ` S to
denote this relationship.

Proof. As in the first paragraph of Poor’s proof of 2.93 [34, p. 95], it is easily verified
that S so defined is a SODE. Indeed, S is a section of π∗ by construction, and S is a
section of πT because H is a subbundle with respect to πT . ¤

It is clear that this S is horizontal, so compatible with the given connection, and
that it vanishes on the 0-section of TM . This latter means that constant curves,
c(t) = p ∈ M for all t, are degenerate S-geodesics, a familiar property of geodesic
sprays. Accordingly, we shall refer to any SODE which vanishes on the 0-section of
TM as a quasispray.

Unfortunately, when the connection is homogeneous this SODE is not. In or-
der to avoid this problem, we must consider a new type of partial homogeneity for
connections.

Definition 4.1. A connection H on TM is vertically homogeneous of degree m,
denoted by vh(m), if and only if

(4.3) Hav = a∗am−1
V Hv

where aV denotes scalar multiplication by a in the vertical bundle V .

Note that homogeneity and vertical homogeneity coincide only for m = 1, the
linear connections.

Connections may also be seen as sections of the bundle GH(TTM) of all possible
horizontal spaces, a subbundle of the Grassmannian bundle Gn(TTM). To see what
structure GH(TTM) has, consider R2n = Rn ⊕ Rn as the model fiber of TTM and
regard the first summand as horizontal, the second as vertical. With GL2n as the
structure group of TTM , we want the subgroup AH that preserves the vertical space
and maps any one horizontal space into another. This can be conceived as occurring
in two steps. First, we may apply any automorphisms of the vertical and horizontal
spaces separately. Second, we may add vertical components to horizontal vectors to
obtain the new horizontal space.

(
I 0

gln I

)
·
(

GLn 0
0 GLn

)
.

Our group AH is thus found to be a semidirect product entirely analogous to an affine
group. The action is transitive and the right-hand factor is the isotropy group of a
fixed horizontal space, so the model fiber for GH(TTM) is the resulting homogeneous
space. The induced operation on representatives being given by

(
I 0
A I

)
·
(

I 0
B I

)
=

(
I 0

A + B I

)
,
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it follows that GH(TTM) is an affine bundle (bundle of affine spaces, vs. vector
spaces). Thus a connection, being a section of this bundle, provides a choice of
distinguished point in each fiber, hence a vector bundle structure on this affine bundle.

If we wish to consider only those connections compatible with a given quasispray,
we just replace arbitrary elements of gln with those having a first column comprised
entirely of zeros. Note that this yields an affine subbundle GS

H(TTM) of GH(TTM),
with fibers being pencils of possible horizontal spaces.

Theorem 4.2 (extended APS). Given a quasispray S on M , there exists a com-
patible general connection H in TTM .

Since the fibers of GS
H(TTM) are contractible, this is an easy exercise in obstruc-

tion theory [21, Ch. 8]; however, an explicit construction is desirable to provide a con-
crete representation for our extension of the Ambrose-Palais-Singer correspondence,
and we gave a detailed proof in [20].

For the convenience of the reader, we provide a brief sketch of the proof. It mostly
follows the usual outline [34, proof of Thm. 2.98, pp. 97ff ], but (as noted earlier) the
exponential maps do not map radial lines in the tangent space into geodesics in the
base, so considerable extra care is required to use correct pre-images of geodesics
instead.

These connections will be our “standard”—our generalization of torsion-free linear
connections; viz. equation (4.7), Definition 4.6 and after. In light of this, and the fact
that when applied to pseudo-Riemannian geodesic sprays this construction yields the
Levi-Civita connection, we shall call them LC connections; cf. Poor [34, 2.104 and
3.29].

Remark 4.3. Note that the space of connections EConn(M) fibers trivially over the
space of quasisprays QSpray(M) since the latter has a vector space structure, albeit
not one compatible with that of all vector fields on TM .

Remark 4.4. Recall that any SODE on TM−0 is called a semispray. This is justified
by the fact that any construction such as ours that produces a compatible connection
over TM from a quasispray there also produces one over TM − 0 from every SODE
there. In particular, this means that for a SODE on TM that is not a quasispray, the
restriction of this SODE to TM − 0 is a semispray with a compatible connection over
TM − 0 even though the original SODE did not have one over TM . Such SODEs do
not seem to have been noted before, and further study of them is clearly warranted.

Here is an alternative, axiomatic characterization of a connection in terms of the
horizontal projection H.

C1 H is a smooth section of End(TTM) over TM .

C2 H2 = H.

C3 kerH = V .

Then H = imH is the horizontal bundle. Vertical homogeneity is expressed with an
optional axiom.

Ch H is vh(m) if and only if Hava∗ = a∗am−1
V Hv for all v ∈ TM and a ∈ R

(v ∈ TM − 0 and a 6= 0 for m < 0).
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Homogeneous connections may be similarly axiomatized.
There is a natural vector bundle map K : V → TM respecting πT which is an

isomorphism on fibers, a version of canonical parallel translation of a vector space.
Using this, we define a connection map or connector for an arbitrary connection and
thence a covariant derivative.

Definition 4.2. For a connection H , define the associated connector κ : TTM →
TM : z 7→ K(z −Hvz) for z ∈ TvTM .

Proposition 4.5. The connector κ is a vector bundle map respecting πT but not π∗
in general. It respects π∗ if and only if the connection is linear.

Proof. As in Poor [34, p. 72f ], mutatis mutandis. ¤

According to Besse [11, p. 32f ], a symmetric connector (connection) is invariant
under the natural involution J of TTM . Clearly this is possible only for linear
connections.

Now we are ready for the main event. Let V and U be a vector fields on M with
Vp = v and Up = u.

Definition 4.3. The covariant derivative associated to the connection H is the
operator defined by

∇UV = κ(V∗U) = K(V∗U −HV V∗U)

and is tensorial in U but nonlinear (in general) in V .

This last comes from the general lack of respect for the π∗ structure by H , H, and κ.

Example 4.6. We always have ∇0V = 0. For all vh(m) connections, ∇UaV =
K(a∗V∗U −HaV a∗V∗U) = aK(V∗U − am−1

V HV V∗U), and similarly for homogeneous
ones. So (vertically) homogeneous connections do not differ significantly from linear
ones. In particular, ∇U0 = 0 for all U for all (vertically) homogeneous connections; in
fact, they all have the same horizontal spaces along the 0-section of TM , namely the
subspaces tangent to it (i.e., those in the image of 0∗ : TM → TTM). We call all such
connections sharing this property 0-preserving; they differ minimally from (vertically)
homogeneous (including linear) connections. In contrast, connections with ∇U0 6= 0
for even some U are much farther from linear; we call them strongly nonlinear. See
Figure 1 for a schematic view.

As usual, X denotes the vector fields on M . There is also a natural vector bundle
map J : π∗TM → V which is an isomorphism on fibers, another version of canonical
parallel translation on a vector space.

Theorem 4.7. There is a bijective correspondence between general connections H
and our (possibly nonlinear) covariant derivatives ∇ on TM .

Proof. It suffices to show that we can reconstruct H from its associated covariant
derivative ∇. For each u ∈ TpM , define

Hu = {U∗v − Ju∇vU | U ∈ X, Up = u, v ∈ TpM}
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Figure 1: Each set of connections is closed with empty interior in the next: linear in
homogeneous, linear in vertically homogeneous, linear and homogeneous in 0-preserving,
linear and vertically homogeneous in 0-preserving, linear and homogeneous and vertically
homogeneous in 0-preserving, 0-preserving in the whole. The strongly nonlinear connections
may be visualized as a 3-d cloud containing the 0-preserving ones.

and form the subbundle H in TTM in the obvious way. It is easy to see that
H is complementary to V as required, hence a connection. That H is smooth is
straightforward. Finally, H = H from this construction and the construction of ∇
from H [20]. ¤

Compare [34, p. 77, proof of 2.58]. Thus as usual, we may refer indifferently to H
or its associated ∇ as the connection.

Generalized connection coefficients may be introduced through

(4.4) (KHV V∗U)k = Γk
i (V )U i ,

making manifest the tensoriality in U . Here is an example of their use. Observe that
(KV∗U)k = U i∂iV

k so that

(4.5) (∇UV )k = U i∂iV
k − Γk

i (V )U i

is the covariant derivative.
We find the usual relation between the two notions of geodesic.

Theorem 4.8. A curve c is a geodesic of H if and only if ∇ċ ċ = 0.

Proof. ∇ċ ċ = κ(ċ∗ċ) = K(ċ∗ċ − Hċ ċ∗ċ) = K(ċ∗ċ − S(ċ)) by the construction of S
in Theorem 4.1. Now all we have to do is identify ċ∗ċ as c̈ and recall that K is an
isomorphism on fibers. ¤

If we are given the geodesic equation of H in the form

(4.6) c̈ k = Γk
i (ċ)ċi,

then

(4.7) S
k(ċ) = Γk

i (ċ)ċi
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gives the quasispray S induced by the connection H . Using these connection coeffi-
cients, we obtain the LC connection associated to S by our extended APS construc-
tion; see also Theorem 4.10.

Curvature is readily handled. Let H be a connection on M . The horizontal lift
of a vector field U on M is defined as usual and denoted by Ū .

Definition 4.4. Given vector fields U and V on M , the curvature operator R(U, V ) :
TM → TM is defined by

R(U, V )w = κ
(
[V̄, Ū ]w

)

for all w ∈ TM . It is tensorial in the first two arguments, but nonlinear (in general)
in the third.

The arguments are reversed on the right in order to obtain the usual formula in
terms of the associated covariant derivative,

R(U, V )W = ∇U∇V W −∇V∇UW −∇[U,V ]W ,

as one may verify readily. It is also easy to check that this curvature vanishes if and
only if H is integrable, thus justifying our definition.

Torsion is considerably more obscure. Consider two (possibly nonlinear) connec-
tions H and H on TM with corresponding (possibly nonlinear) covariant derivatives
∇ and ∇.

Definition 4.5. Given two covariant derivatives ∇ and ∇, define the difference op-
erator D = ∇−∇.

We think of D as having two arguments, D(U, V ) = ∇UV − ∇UV . It is always
tensorial in U , but is nonlinear (in general) in V .

We define the covariant differential as usual via (∇V )U = ∇UV . As an operator,
∇V is still linear in its argument U .

Lemma 4.9. For all v ∈ TM , Hv = {z − JvD(π∗z, v) | z ∈ Hv}.
Proof. Let v ∈ TpM , z ∈ Hv, V ∈ X such that (∇V )p = 0 and Vp = v. Thus if
u = π∗z ∈ TpM , then z = V∗u ∈ Hv. Now

κ̄V∗u = ∇uV = ∇uV +D(u, V ) = D(u, V ) = κ̄JvD(u, V ) ,

so κ̄ (z − JvD(u, v)) = 0 and z − JvD(u, v) ∈ Hv.
Since π∗ is an isomorphism of the horizontal spaces Hv and Hv with TpM and

π∗z = π∗ (z − JvD(u, v)), this yields all of Hv. ¤

Compare this next result with [34, Prop. on p. 99].

Theorem 4.10. Two connections on TM have the same geodesic quasispray if and
only if their associated difference operator is alternating (vanishes on the diagonal of
TM ⊕ TM).

Proof. For each v ∈ TM , Sv = π∗
∣∣−1

Hv
(v) while Sv = π∗

∣∣−1

Hv
(v) = π∗

∣∣−1

Hv
(v)−JvD(v, v).

Therefore S = S if and only if D(v, v) = 0 for all v ∈ TM . ¤



General connections, exponential maps 71

For linear connections, D is bilinear and alternating is equivalent to antisymmetric
(or, skewsymmetric). In general, of course, this does not hold.

The familiar formula for torsion T (U, V ) = ∇UV −∇V U − [U, V ] is not linear (let
alone tensorial) in either argument. Thus the usual trick to get a torsion-free linear
connection, replacing ∇ by ∇ = ∇− 1

2T , will not work for our nonlinear connections.
Indeed, ∇ and ∇ seem to have the same geodesics and ∇ is formally torsion-free, but
the new ∇ is not one of our nonlinear covariant derivatives: ∇UV is not tensorial in
U .

A replacement T for torsion must also be alternating in order for it to play the
same role in general that torsion does for linear connections. For then, given such a
T , ∇ = ∇ + T is another nonlinear covariant derivative of our type with the same
geodesics as ∇; or, with the same geodesic spray as ∇.

What we shall do is one of the classic mathematical gambits: turn a theorem into
a definition.

Definition 4.6. We define the LC connections constructed in the proof of Theorem
4.2 to be the torsion-free connections.

Equivalently, we are regarding the usual torsion formula as derived from the dif-
ference operator (difference tensor in the linear case) construction [34, pp. 99–100].
See also Poor [34, pp. 101–102] for the relation to the classic Ambrose-Palais-Singer
correspondence and compare to [34, 2.104].

Now we may construct the torsion of a (possibly nonlinear) connection H with cor-
responding (possibly nonlinear) covariant derivative ∇. By Theorem 4.1, H induces
a (unique) quasispray S. Use the proof of Theorem 4.2 to construct the connection
Ĥ from S. By Theorem 4.7 there is a unique covariant derivative ∇̂ corresponding
to Ĥ . Let D = ∇− ∇̂ be the difference operator, so ∇̂ = ∇−D is torsion-free.

Definition 4.7. Using the preceding notations, the (generalized) torsion of ∇ is
defined by T = 2D = 2

(
∇− ∇̂

)
.

The factor of two here and the subtraction order make verification that this reduces
to classical torsion in the linear case immediate, and preserves the traditional formula
∇̂ = ∇− 1

2T for the associated torsion-free connection. See Poor [34, 2.105] for how
this fits into the classical APS correspondence.

5 Finsler spaces

For the benefit of those readers not familiar with Finsler geometry, we offer a few
introductory and historical remarks.

Finsler spaces are manifolds whose tangent spaces carry a norm (rather than an
inner product; cf. Banach vs. Hilbert spaces) that varies smoothly with the base point.
Although Riemann actually defined such spaces in his 1854 Habilitationsvortrag, the
modern name comes from P. Finsler’s thesis of 1918 in which he studied the variational
problem in regular metric spaces.

Geometric objects on a Finsler space depend not only on the base point but
also on the fiber component. Classically, a Finsler metric is given by a fundamental
function F which is continuous on TM , smooth and positive on TM−0, and positively
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homogeneous of degree one in the fiber component. An orthogonal structure on the
vertical bundle is defined by the vertical Hessian of the square of the fundamental
function. A differentiable manifold M with a Finsler metric is called a Finsler space.
One modern variation is to consider only a subset of TM as the domain of F , with
appropriate changes to the rest of the definition.

We define the Finsler functions L, the basic function, and the traditional F , the
fundamental function, following two of the seemingly overlooked but prescient papers
of Beem [6, 7].

We require L to be h(2) and note that it corresponds to F 2, but to get pseudo-
Riemannian structures we must require only that L be real valued, not strictly pos-
itive, else we could not have spacelike, timelike, and null geodesics, as first observed
by Beem [6]. We also require that L be continuous on TM and smooth on TM − 0,
following tradition.

Then we use |L| 12 as the correspondent to F ; e.g., in the first variation formula
(viz. [32, Chapt. 10]) to obtain non-null geodesics. We shall see later how to obtain
the null geodesics.

The vertical Hessian

(5.1) gij(y) =
1
2

∂2

∂yi∂yj
L(y)

is traditionally assumed positive definite, which perforce yields only Riemannian en-
tities, such as the traditional orthogonal structure on the vertical bundle V (TM −0).
We shall merely assume it is nondegenerate, allowing pseudo-Riemannian entities.
Together with our relaxed condition on L, this gives us pseudo-Finsler (or indefinite
Finsler) structures as first defined by Beem around 1969 [6].

The traditional geodesic coefficient is [4]

Gi(y) =
1
2
gil(y)

[
∂

∂xk∂yl
L(y)yk − ∂

∂xl
L(y)

]
.

To be consistent with our conventions, we take the negative of this for our geodesic
coefficients,

(5.2) Gi(x, y) = −Gi(x, y)

where we have restored the explicit x and y dependence. These components Gi then
make up a semispray function G with accompanying h(1) geodesic semispray G. In
induced local coordinates,

G : (x, y) 7→ (x, y, y, G(x, y)) .

The traditional Finsler geodesic equations are

c̈i + Gi(ċ) = 0 .

In our notation and conventions, this becomes

(5.3) c̈ = G(ċ) .
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The traditional nonlinear connection coefficients are

N i
j =

∂

∂yj
Gi.

Converting to our notation and formalism, we obtain the vh(0) nonlinear connection
on TM − 0 given locally by

(5.4) Γi
j(x, y) =

∂

∂yj
Gi(x, y) .

In fact, this last equation holds in complete generality, as can be seen easily from
(4.7). We chose to take note of it here in recognition of the historical context.

Once we have the (nonlinear) connection H determined by Γ, we obtain the
associated (nonlinear) covariant derivative ∇ from Definition 4.3; it is unique by
Theorem 4.7. Using this connection, we may then recoup (Theorem 4.8) all the
(timelike and spacelike) geodesics found in Finsler geometry tradition via the First
Variation, and we also obtain all the null geodesics, which cannot [32, Chapt. 10] be
so found. Therefore, as first noted by Beem [7], we do indeed have genuine pseudo-
Finsler geometry.

6 Geodesic connectivity and stability

In [18], we defined a SODE to be LD if and only if its usual exponential map is a local
diffeomorphism. For some results there, we used the fact that the geodesics of such
SODEs give normal starlike neighborhoods of each point in M . (In fact, the a-curves
also give such neighborhoods, as is easily seen.) Thanks to our new exponential maps
(Section 3), these results now immediately extend to all SODEs. For convenience, we
state them here.

Proposition 6.1. Let M be a manifold with a pseudoconvex and disprisoning SODE
S. If S has no conjugate points, then M is geodesically connected.

Let M be a manifold with a SODE S and let M̃ be a covering manifold. If
φ : M̃ → M is the covering map, then it is a local diffeomorphism. Thus S̃ = (φ∗)∗S
is the unique SODE on M̃ which covers S, geodesics of S̃ project to geodesics of S,
and geodesics of S lift to geodesics of S̃. Also, S has no conjugate points if and only
if S̃ has none. The fundamental group is simpler, and S̃ may be both pseudoconvex
and disprisoning even if S is neither.

Corollary 6.2. Let M be a manifold with a pseudoconvex and disprisoning SODE
S and let M̃ be a covering manifold with covering SODE S̃. If S̃ has no conjugate
points, then both M̃ and M are geodesically connected.

Theorem 6.3. Let S be a pseudoconvex and disprisoning SODE on M . If S has no
conjugate points, then for each p ∈ M the exponential maps of S at p are diffeomor-
phisms.

We remark that none of these results require (geodesic) completeness of the SODE S.
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We now consider the joint stability of pseudoconvexity and disprisonment for
SODEs in the fine topology. Because each linear connection determines a (quadratic)
spray, Examples 2.1 and 2.2 of [8] show that neither condition is separately stable.
(Although [8] is written in terms of principal symbols of pseudodifferential operators,
the cited examples are actually metric tensors). We shall obtain C0-fine stability,
rather than C1-fine stability as in [8], due to our effective shift from potentials to
fields as the basic objects. The proof requires some modifications of that in [8]; we
shall concentrate on the changes here and refer to [8] for an outline and additional
details.

Rather than considering r-jets of functions, we now take r-jets of sections in defin-
ing the Whitney or Cr-fine topology as in Section 2 of [8]. Let h be an auxiliary
complete Riemannian metric on M . Thus we look at the Cr-fine topology on the
sections of TTM over TM .

If γ1 and γ2 are two integral curves of a SODE S with γ1(0) = (x, v) and γ2(0) =
(x, λv) for some positive constant λ, then the inextendable geodesics π ◦γ1 and π ◦γ2

no longer differ only by a reparametrization. Thus, in contrast to [8], we must now
consider an integral curve for each non-zero tangent vector at each point of M . Note
this also means that we can no longer use the h-unit sphere bundle to obtain compact
sets in TM covering compact sets in M .

Observe that the equations of geodesics involve no derivatives of S. Thus if
γ : [0, a] → TM is a fixed integral curve of S in TM with γ(0) = v0 ∈ TM
and if γ′ : [0, a] → TM is an integral curve of S′ in TM with γ′(0) = v, then
dh (π ◦ γ(t), π ◦ γ′(t)) < 1 for 0 ≤ t ≤ a provided that v is sufficiently close to v0 and
S′ is sufficiently close to S in the C0-fine topology. This and the σ-compactness of
TK1 when K1 is compact yield the following result.

Lemma 6.4. Assume K1 is a compact set contained in the interior of the compact
set K2, V is an open neighborhood of K2, S is a disprisoning SODE, and let ε > 0.
There exist countable sets {vi} ⊆ TK1 of tangent vectors and {δi} and {ai} of positive
constants such that if S′ is in a C0-fine ε-neighborhood of S over V , then the following
hold:

1. if c is an inextesdible S-geodesic with c(0) in a δi-neighborhood of vi, then
c[0, ai] ⊂ V and c(ai) ∈ V −K2;

2. If c′ is an inextendable S′-geodesic with ċ′(0) in a δi-neighborhood if vi, then
c′[0, ai] ⊂ V and c′(ai) ∈ V −K2;

3. Two inextendable geodesics, c of S and c′ of S′ with ċ(0) and ċ′(0) in a δi-
neighborhood of vi, remain uniformly close together for 0 ≤ t ≤ ai;

4. The union of all the δi-neighborhoods of the vi covers TK1. ¤

Continuing to follow [8], we construct the increasing sequence of compact sets
{An} which exhausts M and the monotonically nonincreasing sequence of positive
constants {εn}. The only additional changes from [8, p. 17f ] are to use integral curves
of S in TM instead of bicharacteristic strips in T ∗M . No other additional changes
are required for the proof of the next result either.
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Lemma 6.5. Let S be a pseudoconvex and disprisoning SODE and let S′ be δ-near
to S on M . If c′ : (a, b) → M is an inextendable S′-geodesic, then there do not exist
values a < t1 < t2 < t3 < b with c′(t1) ∈ An, c′(t3) ∈ An, and c′(t2) ∈ An+4 − An+3.
¤

Now we establish the stability of pseudoconvex and disprisoning SODEs by show-
ing that the set of all SODEs in DE2(M) which are pseudoconvex and disprisoning is
an open set in the C0-fine topology. The only changes needed from the proof of Theo-
rem 3.3 in [8, p. 19] are replacing principal symbols by SODEs, bicharacteristic strips
by integral curves, S∗An by TAn, and references to Lemma 3.2 there by references
to Lemma 6.5 here.

Theorem 6.6. If S ∈ DE2(M) is pseudoconvex and disprisoning, then there is
some C0-fine neighborhood W (S) in DE2(M) such that each S′ ∈ W (S) is both
pseudoconvex and disprisoning. ¤

Corollary 6.7. If M is a pseudoconvex and disprisoning pseudo-Riemannian man-
ifold, then all (possibly nonlinear) general connections on M which are sufficiently
close to the Levi-Civita connection are also pseudoconvex and disprisoning. ¤
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Fourier 18 (1968) 241–260.
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