Finsler manifolds with special Berwald curvature

A. Tayebi and E. Peyghan

Abstract. In this paper, we construct a new class of Finsler metrics
which is an extension of the class of Berwald metrics. We prove that
every complete Finsler metric in this class is Riemannian, whenever its
Cartan tensor is bounded. Then we show that the class of generalized
Douglas-Weyl metrics contains this new class of Finsler metrics.
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1 Introduction

For a Finsler metric F' = F (x,y), its geodesics are characterized by the system of
differential equations ¢ + 2G*(¢) = 0, where the local functions G* = G%(x,y) are
called the spray coefficients and given by following
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A Finsler metric F is called a Berwald metric if G* = %I‘; o (2)y? y* is quadratic in
y € T,M for any x € M [5]. In [7], it is proved that on a Berwald space, the
parallel translation along any geodesic preserves the Minkowski functionals. Therefore
Berwald spaces can be viewed as Finsler spaces modeled on a single Minkowski space.

On the other hand, various interesting special forms of Cartan, Landsberg and
Berwald tensors have been obtained by some Finslerists. The Finsler spaces having
such special forms were called C-reducible, P-reducible, semi-C-reducible, isotropic
Berwald curvature, isotropic mean Berwald curvature, and isotropic Landsberg cur-
vature, etc [6][9][14]]20][22].

In [8], Matsumoto introduced the notion of C-reducible metrics and proved that
any Randers metric is C-reducible. Then Matsumoto-HGjo proved that the converse is
true [11]. A Randers metric F' = o+ 3 is just a Riemannian metric a = \/a;;(x)y'y’
perturbed by a one form 3 = b;(z)y" on a manifold M such that ||B]la < 1 (see
[3][15][21]). In [10], Matsumoto-Shibata introduced the notion of semi-C-reducibility
by considering the form of Cartan torsion of a non-Riemannian («,3)-metric on a
manifold M with dimension n > 3.
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In [6], Shen-Chen by using the structure of the Funk metric, introduced the notion
of isotropic Berwald metrics. This motivates us to study special forms of Berwald
curvature for other important special Finsler metrics.

In this paper, we define a new class of Finsler metrics on manifolds which their
Berwald curvature satisfy in following

(1.1) Bijkl = Cjklgi + )\(h;-hkl + hzhjl + h;hjk),

where ¢* = F~1y', C;), is the Cartan tensor of F, h;; = g;j — F~2y;y; is the angular
metric, hj = g*hy; and A = A(z,y) is a homogeneous function of degrees -1 with
respect to y.

Example 1.1. Consider the following Finsler metric on the unit ball B” C R™,

_ VP = (2PlyP = (2,9)?) + (2, y)
1— a2 !

F(z,y) : y € T,B" =R"

where |.| and (,) denote the Euclidean norm and inner product in R", respectively.
F is called the Funk metric which is a Randers metric on B" [17]. Since G" = %F,

then we have .
Bijkl = Cjklﬁ + ﬁ(héhkl + h};hﬂ + hfhjk).

Then the Funk metric F' satisfies (1.1) with A = 5.

In this paper, we study compact Finsler manifolds (M, F) which their Berwald
curvatures satisfy (1.1) and prove the following.

Theorem 1.1. Let (M, F) be a compact Finsler manifold. Suppose that F satisfies
(1.1). Then F is a Riemannian metric.

The Douglas tensor is another non-Riemanian curvature defined as follows

1 oG™m z}
n+1 6ymy yiykyl

Dijkl = [Gi

The Douglas tensor D is a non-Riemannian projective invariant, namely, if two Finsler
metrics F' and F are projectively equivalent, G* = G* + Py’, where P = P(z,y) is
positively y-homogeneous of degree one, then the Douglas tensor of F' is same as that
of F' [13]. The notion of Douglas curvature was proposed by Bdcsé and Matsumoto
as a generalization of Berwald curvature [1]. A Finsler metric is called a generalized
Douglas-Weyl (GDW) metric if the Douglas tensor satisfy in tho‘jkllmym =0 [12].
In [2], Bacs6-Papp show that this class of Finsler metrics is closed under projective

transformation. In this paper, we prove the following.

Theorem 1.2. Every Finsler metric satisfying (1.1) is a generalized Douglas- Weyl
metric.

In this paper, we use the Berwald connection and the h- and v- covariant deriva-
tives of a Finsler tensor field are denoted by “|” and “, ” respectively (see [18][19]).
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2 Preliminaries

Let M be a n-dimensional C*° manifold. Denote by T, M the tangent space at z € M,
by TM = UzepmTyM the tangent bundle of M, and by TMy = TM \ {0} the slit
tangent bundle on M. A Finsler metric on M is a function F' : TM — [0, 00) which has
the following properties: (i) F'is C* on T'My; (ii) F is positively 1-homogeneous on
the fibers of tangent bundle TM, and (iii) for each y € T, M, the following quadratic
form g, on T, M is positive definite,

1 92
gy(u,v) := 35501 [Fz(y + su+ tv)} |s,t=0, u,v € TpM.

Let z € M and F, := F|r,p. To measure the non-Euclidean feature of F,, define
C, TyM@T,M®T,M — R by
_1d
T 24t
The family C := {C, } e, is called the Cartan torsion. It is well known that C =0
if and only if F' is Riemannian [4][17].

Cy(u,v,w) : {gy+tw(u, v)] lt=0, w,v,w € T, M.

The horizontal covariant derivatives of C along geodesics give rise to the Landsberg
curvature Ly, : T,M @ T, M @ T, M — R defined by Ly(u,v,w) := Lijk(y)uivjwk,
where Lijr = Cijpsy°, u = uz%h,, v = vla‘?ﬁih and w = uﬂ%h. The family
L := {Ly},ernm, is called the Landsberg curvature. A Finsler metric is called a

Landsberg metric if L=0.

Given a Finsler manifold (M, F'), then a global vector field G is induced by F on
T My, which in a standard coordinate (z¢,y?) for T'My is given by

0 ; 0
- — 2G" —
py (x,y) oy’
where G' := 29" [(F?) ki y" — (F?),], y € T,M. G is called the spray associated to

(M, F). In local coordinates, a curve c(t) is a geodesic if and only if its coordinates
(c'(t)) satisfy é + 2G%(¢) = 0.

G:yi

For a tangent vector y € T, My, define By : T, M @ T,M @ T, M — T, M and E, :

T,M®T,M — Rby B,(u,v,w) = Bijkl(y)ujvkwl 821’ » and Ey (u,v) := Ej(y)uiov®
where oy
7 G* 1 m
B Jkl - — W? E]k? T 5 jkm-

The B and E are called the Berwald curvature and mean Berwald curvature, respec-
tively. Then F is called a Berwald metric and weakly Berwald metric if B = 0 and
E = 0, respectively [16].

Define Dy, : T,M @ T,M ® T,M — T, M by D, (u,v,w) := D', (y)u'vIw* 3%,
where

Dijkl =B Ejktsli + Eﬂd,i + Ekléj + Eijyi .

i 2

jkl — m |:
We call D := {D,}ycrn, the Douglas curvature. A Finsler metric with D = 0
is called a Douglas metric. The notion of Douglas metrics was proposed by Bacsé-
Matsumoto as a generalization of Berwald metrics [1].
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3 Proof of Theorem 1.1

In this section, we are going to prove the Theorem 1.1. First, we prove the following.

Proposition 3.1. Let F be a complete Finsler metric with bounded Cartan torsion.
Suppose that F satisfies (1.1). Then F is a Riemannian metric

Proof. By assumption, we have
(3.1) By = Cialt + Nhihy + hihj + hihe),
Contracting (3.1) with y; and using

yiBijkl = —2L;u,

implies that
1
L + iAjkl =0,

where A;;, = FCjj,. Let p be an arbitrary point of M, and y,u,v,w € T,M. Let
¢: (—00,00) = M be the unit speed geodesic passing from p and %( ) = y. Suppose
that U(t), V(t) and W (t) are the parallel vector fields along ¢ with U(0) = u, V(0) = v
and W(0) = w. We put

A(t) - A(U(t)v V(t)a W(t))v A(t) = A(U(t)v V(t)a W(t))
Therefore

L(t) = A(t).
By definition, we have the following ODE,

At) + %A(t) 0,

which its general solution is .
A(t) = A(0)e™ 2.
Using ||A|] < oo, and letting ¢t — +o0 or t — —o0, we have
A(0) = A(u,v,w) = 0.
So A =0 and then F' is a Riemannian metric. O

Remark 3.1. The completeness condition in the above theorem can not be replaced
by positively complete or negatively complete. For example the Funk metric on
B™ C R™ satisfies all conditions of the above proposition but completeness, more
precisely Funk metric is a non-Riemannian positively complete Finsler metric.

Proof of Theorem 1.1: Since every compact Finsler manifold is complete with
bounded Cartan tensor, then by Proposition 3.1 we get the proof. (|

By (3), we can conclude the following.

Corollary 3.2. Every Landsberg metric satisfying (1.1) is a Riemannian metric.
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4 Proof of Theorem 1.2

In this section, we are going to prove the Theorem 1.2.

Lemma 4.1. ([12]) Let (M, F') be a Finsler metric. Then F' is a GDW-metric if and
only if ‘ ‘
D*jpsy” = Timy’,

for some tensor T, on manifold M.

Proposition 4.2. Let F be a non-Riemannian Finsler metric satisfies (1.1). Then
F is a Douglas metric if and only if A = %

Proof. Suppose that F' satisfies (1.1). Then
(4.1) By = Cial' + Nhihy + hihj + hihge),
Taking a trace of (4.1) yields
(4.2) 2E,; = (n+ 1)Ahyp.
Thus . ' 5 4 , ,

B = Cjrl' + m(Ej;Jﬁ + Ephy + Ejhy).
On the other hand, we have

hijr = 2Cij6 — F 72 (yjhik + yihji),

which implies that

(4.3) 2Fj51 = (n+ DA hj + (n+ DX [2C0 — F~ 2 (yrhji + yihw) |-

The Douglas tensor is given by

(4.4) Dijlcl = Bijlcl - %H{Ejk(siz + Eklf;ij + By + Ejray'}-

Putting (4.1), (4.2) and (4.3) in (4.4) yields

(4.5) D' = (F' =20 Clmy’ — QyF > + A )hjey'

For the Douglas curvature, we have Dijkl = Diﬂk. Then by (4.5), we conclude that
(4.6) M F~2 4+ =0.

From (4.5) and (4.6) we deduce

(4.7) D'y = (F71 = 20)Cjy’.

By (4.7), we get the proof. O



130

A. Tayebi and E. Peyghan

Proof of Theorem 1.2: The Douglas tensor of F' is given by

(4.8)

Dijkl = (F' =20 Cjny".

Taking a horizontal derivation of (4.8) implies that

(4.9)

D15y = =2(N Cigt + ALjra )y

where X' = Aj;,y™. By Lemma 4.1, F' is a GDW-metric with

Tjkl = —Q(A/Cjkl + )\ijl).

This completes the proof. O

5

Conclusion

By considering the special form of Berwald curvature of Funk metrics, it has been
constructed an extension of the class of Berwald metrics which is a subclass of the
class of generalized Douglas-Weyl metrics. It has been showed that every complete
Finsler metric with bounded Cartan torsion in this class is Riemannian.
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