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Abstract. In this paper we consider the unimodular solvable Lie group1

Gn. As it is stated in [9], in 1980, Bozek has introduced Gn for the first2

time. In [9] Calvaruso, Kowalski and Marinosci have studied geodesics3

on this Lie group when it has arbitrary odd dimension. Our aim in this4

paper is to investigate four other geometrical properties i.e. homogeneous5

Ricci solitons, harmonicity of invariant vector fields, left invariant con-6

tact structures and homogeneous structures in two cases Riemannian and7

Lorentzian on this Lie group with dimension 5. This survey shows that,8

the space-like energy on the Lorentzian Lie group G2 does not have a9

critical point and there is no left invariant almost complex structure on10

G2 × R.11
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Key words: Homogeneous Ricci solitons; harmonicity of invariant vector fields; left-13

invariant contact structures; homogeneous structures; spatially harmonic.14

1 Introduction15

For any integer n ≥ 1, the unimodular solvable Lie group Gn is as follows;

Gn =




eu0 0 · · · 0 x0

0 eu1 · · · 0 x1

· · · · · · · · · · · · · · ·
0 0 · · · eun xn

0 0 · · · 0 1




where (x0, x1, · · · , xn, u1, · · · , un) ∈ R2n+1 and u0 = −(u1+· · ·+un). In [9] Calvaruso,16

Kowalski and Marinosci have studied geodesic vectors for this Lie group. They proved17

that the space (Gn, g) where g is the Left-invariant Riemannian metric, admits 2n+118

linearly independent homogeneous geodesics through the origin 0. In [13] Chavosh19

Khatamy introduced the tangent bundle TGn for this Lie group and then investigated20

the exact form of its geodesic vectors.21

In this paper we consider some other geometrical properties of this Lie group in22
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dimension 5. One of these properties is Ricci solitons. As it is introduced in [7], a23

Ricci soliton is a pseudo-Riemannian manifold (M, g) which admits a smooth vector24

field X, that satisfies the following property;25

(1.1) LXg + ρ = λg

where LX is the Lie derivative in the direction of X, ρ is the Ricci tensor and λ is a26

real number. A Ricci solition is said to be a shrinking, steady or expanding, if λ > o27

, λ = o or λ < o, respectively.28

In section 2, we consider the Bozek example in dimension five. In [6], Calvaruso and29

De Leo investigated the curvature properties of four-dimensional generalized sym-30

metric spaces. Here we generalize their calculations for G2 with dimension five in31

two Riemannian and Lorentzian cases. We show that G2 is not a homogeneous Ricci32

soliton by using [7], where the authors have investigated Ricci solitons on Lorentzian33

Walker three manifolds. In section 3, we study harmonicity properties of invariant34

vector fields on G2 using [5] and [10], where they have studied harmonicity proper-35

ties of invariant vector fields on three- dimensional Lorentzian Lie groups and four36

dimensional generalized symmetric spaces. In section 4, we state left invariant con-37

tact structures on G2 using [11] which has an example that presents a contact metric38

Lorentzian structure in the exact form on R3 and also [12], where the full classifi-39

cation of invariant contact metric structures on five dimensional Riemannian gener-40

alized symmetric spaces are obtained. In this section we also show that there does41

not exist a left-invariant almost complex structure on G2 × R by using the relation42

between contact and complex structures in [11]. Finally in section 5 we state homoge-43

neous structures on G2, using [8] and [1], where they have determined homogeneous44

structures on arbitrary sphere of Kaluza-Klein type and on homogeneous Lorentzian45

three-manifolds.46

2 Homogeneous Ricci solitons on G247

Bozek example states that for n = 2, G2 is;

G2 =




eu0 0 0 x0

0 eu1 0 x1

0 0 eu2 x2

0 0 0 1




where (x0, x1, x2, u1, u2) ∈ R5 and u0 = −(u1 + u2). Considering the vector fields
Uα = ∂

∂uα
, α = 1, 2 and Xi = eui ∂

∂xi
, i = 0, 1, 2, the set {X0, X1, X2, U1, U2} is a basis

for the Lie algebra G of the Lie group G2 and the Lie bracket is introduced as follows;

[, ] | X0 X1 X2 U1 U2

−− −− −− −− −− −− −−
X0 | 0 0 0 X0 X0

X1 | 0 0 0 −X1 −X1

X2 | 0 0 0 −X2 −X2

U1 | −X0 X1 X2 0 0
U2 | −X0 X1 X2 0 0
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In the Riemannian case
The solvable unimodular Lie group G2 can be equipped with the following left-
invariant Riemannian metric with a > 0;

g =
2∑

i=0

e−2ui(dxi)2 + a

2∑

α,β=1

duαduβ .

So the scalar product 〈, 〉 on the Lie algebra G is;

〈, 〉 | X0 X1 X2 U1 U2

−− −− −− −− −− −− −−
X0 | 1 0 0 0 0
X1 | 0 1 0 0 0
X2 | 0 0 1 0 0
U1 | 0 0 0 a a

2
U2 | 0 0 0 a

2 a

We can construct an orthonormal frame field {e1, e2, e3, e4, e5} with respect to g;

e1 = X0, e2 = X1, e3 = X2, e4 =
U1√

a
− U2√

a
, e5 =

U1√
3a

+
U2√
3a

and we get;48

(2.1) [e1, e5] =
2√
3a

e1, [e2, e5] =
−2√
3a

e2, [e3, e5] =
−2√
3a

e3.

Considering Koszul’s formula 2g(∇eiej , ek) = g([ei, ej ], ek)−g([ej , ek], ei)+g([ek, ei], ej)49

the nonzero connection components are;50

51

(2.2)
∇e1e1 = −2√

3a
e5 ∇e1e5 = 2√

3a
e1 ∇e2e2 = 2√

3a
e5

∇e2e5 = −2√
3a

e2 ∇e3e3 = 2√
3a

e5 ∇e3e5 = −2√
3a

e3.

By using R(X, Y )Z = ∇[X,Y ]Z−∇X∇Y Z +∇Y∇XZ we can determine the curvature
components;

R(e3, e1)e3 =
4
3a

e1 R(e5, e1)e5 = − 4
3a

e1

R(e1, e2)e1 =
4
3a

e2 R(e3, e2)e3 = − 4
3a

e2

R(e5, e2)e5 = − 4
3a

e2 R(e5, e3)e5 = − 4
3a

e3.

Since R(X, Y, Z, W ) = g(R(X, Y )Z, W ) we have;

R3131 = R1212 =
4
3a

R5151 = R3232 = R5252 = R5353 = − 4
3a

.
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Applying the Ricci tensor formula ρ(X,Y ) =
5∑

i=1

εig(R(X, ei)Y, ei), we get;

(ρ)ij =




4
3a 0 0 0 0
0 − 4

3a 0 0 0
0 0 − 4

3a 0 0
0 0 0 0 0
0 0 0 0 − 4

a




which is diagonal with eigenvalues r1 = 4
3a , r2 = r3 = − 4

3a , r4 = 0 and r5 = − 4
a .

For an arbitrary left-invariant vector field X =
5∑

i=1

Kiei on G2 we have;

∇e1X =
−2K1√

3a
e5+

2K5√
3a

e1 ∇e2X =
2K2√

3a
e5− 2K5√

3a
e2 ∇e3X =

2K3√
3a

e5− 2K5√
3a

e3

using the relation (LXg)(Y, Z) = g(∇Y X,Z) + g(Y,∇ZX) we have;

LXg =




4K5√
3a

0 0 0 − 2K1√
3a

0 − 4K5√
3a

0 0 2K2√
3a

0 0 − 4K5√
3a

0 2K3√
3a

0 0 0 0 0
− 2K1√

3a
2K2√

3a
2K3√

3a
0 0




In the Lorentzian case
The solvable unimodular Lie group G2 can be equipped with the following left-
invariant Lorentzian metric with a > 0;

ĝ =
2∑

i=0

e−2ui(dxi)2 − a(du1
2 + du2

2) + 3adu1du2

and the scalar product 〈, 〉 on the Lie algebra G is;

〈, 〉 | X0 X1 X2 U1 U2

−− −− −− −− −− −− −−
X0 | 1 0 0 0 0
X1 | 0 1 0 0 0
X2 | 0 0 1 0 0
U1 | 0 0 0 −a 3a

2
U2 | 0 0 0 3a

2 −a

We can construct a pseudo-orthonormal frame field {e1, e2, e3, e4, e5}, where;

e1 = X0, e2 = X1, e3 = X2, e4 =
U1√

a
+

U2√
a
, e5 =

U1√
5a
− U2√

5a
.

Then the metric ĝ is with signature (+,+,+, +,−) and we have;52

(2.3) [e1, e4] =
2√
a
e1, [e2, e4] =

−2√
a
e2, [e3, e4] =

−2√
a
e3.
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Hence the connection components are;53

(2.4)
∇e1e1 = −2√

a
e4 ∇e1e4 = 2√

a
e1 ∇e2e2 = 2√

a
e4

∇e2e4 = −2√
a
e2 ∇e3e3 = 2√

a
e4 ∇e3e4 = −2√

a
e3

and the curvature components can be determined as follows;

R(e3, e1)e3 =
4
a
e1 R(e4, e1)e4 = −4

a
e1

R(e1, e2)e1 =
4
a
e2 R(e3, e2)e3 = −4

a
e2

R(e4, e2)e4 = −4
a
e2 R(e4, e3)e4 = −4

a
e3.

Therefore;

R3131 = R1212 =
4
a

R4141 = R3232 = R4242 = R4343 = −4
a

and the Ricci tensor is;

(ρ)ij =




4
a 0 0 0 0
0 − 4

a 0 0 0
0 0 − 4

a 0 0
0 0 0 − 12

a 0
0 0 0 0 0




which is diagonal with eigenvalues r1 = 4
a , r2 = r3 = − 4

a r4 = − 12
a and r5 = 0.

For an arbitrary left-invariant vector field X =
5∑

i=1

Kiei on G2 we have;

∇e1X =
−2K1√

a
e4 +

2K4√
a

e1 ∇e2X =
2K2√

a
e4− 2K4√

a
e2 ∇e3X =

2K3√
a

e4− 2K4√
a

e3

and the Lie derivative in the direction of X is;

LXg =




4K4√
a

0 0 − 2K1√
a

0
0 − 4K4√

a
0 2K2√

a
0

0 0 − 4K4√
a

2K3√
a

0
− 2K1√

a
2K2√

a
2K3√

a
0 0

0 0 0 0 0




Proposition 2.1. The solvable unimodular Lie group G2 is not a homogeneous Ricci54

soliton in both Riemannian and Lorentzian cases.55

Proof. In the Riemannian case by the Ricci soliton formula (1.1), we get the following56

system of differential equations;57

(2.5)





4K5√
3a

+ 4
3a = λ

2K1√
3a

= 2K2√
3a

= 2K3√
3a

= 0
λ = 0
−4K5√

3a
− 4

3a = λ

λ = − 4
a
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From the first and the third equations in (2.5) we get K5 = − 1√
3a

and the first and58

the last equations in (2.5) give us K5 = − 4√
3a

. So a = 0 which is a contradiction.59

The calculation in the Lorentzian case is similar. ¤60

Remark 2.1. A pseudo-Riemannian manifold (M, g) is in class A if and only if
the Ricci tensor is cyclic-parallel, i.e. ∇Xρ(Y, Z) +∇Y ρ(Z,X) +∇Zρ(X, Y ) = 0 or
equivalently it is a Killing tensor , i.e. ∇Xρ(X, X) = 0 and it is in class B if and only
if its Ricci tensor is a Codazzi tensor, i.e. ∇Xρ(Y, Z) = ∇Y ρ(X, Z), where

∇iρjk = −
∑

t

(εjBijtρtk + εkBiktρtj),

Bijk components can be obtained by the relation ∇ei
ej =

∑

k

εjBijkek and ρtk are61

tensor Ricci components. For more detail see [4].62

Proposition 2.2. The solvable unimodular Lie group G2 belongs to class A in both63

Riemannian and Lorentzian cases.64

Proof. In the Riemannian case Bijk’s are;

B115 =
−2√
3a

B225 =
2√
3a

B335 =
2√
3a

so ∇1ρ11 = ∇2ρ22 = ∇3ρ33 = ∇4ρ44 = ∇5ρ55 = 0 as desired. In the Lorentzian case
Bijk’s are;

B114 =
−2√

a
B224 =

2√
a

B334 =
2√
a

and in a similar manner they belong to class A. ¤65

Here we remind the following theorem from [2].66

Theorem 2.3. A pseudo-Riemannian manifold (Mn, g) of dimension n > 4, is con-67

formally flat if and only if its Weyl curvature tensor vanishes, that is68

(2.6) R(X, Y, Z,W ) =
1

n− 2
(g(X, Z)ρ(Y, W ) + g(Y, W )ρ(X, Z)

− g(X,W )ρ(Y,Z)− g(Y,Z)ρ(X, W ))

− τ

(n− 1)(n− 2)
(g(X, Z)g(Y, W )− g(Y, Z)g(X, W ))

where X, Y, Z,W are vector fields and τ is the scalar curvature.69

Proposition 2.4. The solvable unimodular Lie group G2 is not conformally flat in70

both Riemannian and Lorentzian cases.71

Proof. Since the scalar curvature is τ =
∑

i

ρ(ei, ei)(see [3]. p. 43), in the Riemannian72

case τ = −16
3a ( In the Lorentzian case τ = −16

a ), using (2.6) we have R1212 = 4
9a 6= 4

3a73

( R1212 = 4
3a 6= 4

a ). So in both cases G2 is not conformally flat. ¤74
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3 Harmonicity of invariant vector fields on G275

In this section we investigate the harmonicity of invariant vector fields on the Lie
group G2.
In the Riemannian case

Let V =
5∑

i=1

Kiei be a left-invariant vector field on G2, where {ei} is an orthogonal

frame field, then (2.2) yields;

∇e1V =
−2K1√

3a
e5+

2K5√
3a

e1, ∇e2V =
2K2√

3a
e5+

−2K5√
3a

e2, ∇e3V =
2K3√

3a
e5+

−2K5√
3a

e3

and with calculation ∇ei∇eiV and ∇∇ei
eiV for i = 1, · · · , 5;

∇e1∇e1V =
−4
3a

(K1e1 + K5e5), ∇e2∇e2V =
−4
3a

(K2e2 + K5e5),

∇e3∇e3V =
−4
3a

(K3e3 + K5e5).

Since ∇∇ei
eiV = 0, using ∇∗∇V =

5∑

i=1

εi(∇ei∇eiV −∇∇ei
eiV ) we get;

∇∗∇V =
−4
3a

(K1e1 + K2e2 + K3e3 + 3K5e5)

In the Lorentzian case

Let V =
5∑

i=1

Kiei be a left-invariant vector field on G2, where {ei} is an pseudo-

orthogonal frame field, then (2.4) gives;

∇e1V =
−2K1√

a
e4 +

2K4√
a

e1, ∇e2V =
2K2√

a
e4 +

−2K4√
a

e2, ∇e3V =
2K3√

a
e4 +

−2K4√
a

e3.

Hence;

∇e1∇e1V =
−4
a

(K1e1 + K4e4), ∇e2∇e2V =
−4
a

(K2e2 + K4e4),

∇e3∇e3V =
−4
a

(K3e3 + K4e4)

and for i = 0, · · · , 5 since ∇∇ei
eiV = 0 we get;

∇∗∇V =
−4
a

(K1e1 + K2e2 + K3e3 + 3K4e4).

In both Riemannian and Lorentzian cases the following theorem is applicable, but76

we only prove it for the Riemannian case. The proof of the Lorentzian case is very77

similar.78
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Theorem 3.1. Let V =
5∑

i=1

Kiei be a left-invariant vector field on the Lie group G2,79

then V defines a harmonic map if and only if V = K4e4.80

Proof. Let V = K4e4. Since both ∇∗∇V and tr[R(∇.V, V ).] =
∑

i

εiR(∇eiV, V )ei81

are zero, V defines a harmonic map. In the other direction, if ∇∗∇V = 4
3a (K1e1 +82

K2e2 + K3e3 + 3K5e5) = 0 and tr[R(∇.V, V ).] = 0, then V = K4e4. ¤83

Proposition 3.2. In both Riemannian and Lorentzian cases the left-invariant vector84

field V =
5∑

i=1

Kiei is an invariant harmonic vector field on the Lie group G2 if and85

only if K5 = K4 = 0.86

Proof. Since in the Riemannian case ∇∗∇V = −4
3a V +( 4

3aK4e4 + −8
3a K5e5) and in the87

Lorentzian case ∇∗∇V = −4
a V + ( 4

aK5e5 + −8
a K4e4), using ∇∗∇V = λV , we can88

complete the proof. ¤89

Let (M, g) be a compact pseudo-Riemannian manifold and gs be the Sasaki metric90

on the tangent bundle TM , then the energy of a smooth vector field V : (M, g) →91

(TM, gs) on G2 is;92

(3.1) E(V ) =
n− 1

2
vol(M, g) +

1
2

∫

M

‖ ∇V ‖2 dv

(see [5]). Since G2 is not compact we suppose that D is its relatively compact domain93

and calculate the energy of V |D.94

Proposition 3.3. Let V be a a smooth left-invariant vector field on G2, the energy
of V |D in the Riemannian case is;

ED(V ) = (2 +
2 ‖ V ‖2

3a
+

4K2
5

3a
− 2

3a
K2

4 )volD

and in the Lorentzian case is

ED(V ) = (2 +
2 ‖ V ‖2

a
+

4K2
4

a
+

2
a
K2

5 )volD

where ED(V ) denotes the energy of V |D.95

Proof. In the Lorentzian case we have;

‖ ∇V ‖2=
5∑

i=1

εig(∇eiV,∇eiV ) =
4K2

1

a
+

4K2
2

a
+

4K2
3

a
+

12K2
4

a
.

By replacing ‖ V ‖= K2
1 + K2

2 + K2
3 + K2

4 −K2
5 in the relation (3.1) we can complete96

the proof. We can prove the Riemannian case in a similar manner. ¤97
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Recall that for a Lorentzian Lie group G2, a left-invariant vector field V is spatially
harmonic if and only if X̂V = δV, where δ ∈ R and for

divV =
∑

i

g(∇eiV, ei)

and

(∇V )t(∇V V ) =
∑

i

εig(∇V V,∇eiV )ei

X̂V is;98

(3.2) X̂V = −∇∗∇V −∇V∇V V − divV.∇V V + (∇V )t(∇V V ).

(see[10]). Also a time-like vector field is called a unit time-like vector field when its99

norm is equal to −1.100

Proposition 3.4. Let V be a unit time-like vector field on the Lorentzian Lie group101

G2, then V is not spatially harmonic.102

Proof. For a unit time-like vector field V , we have;

∇V V = K1(−2K1√
a

e4 + 2K4√
a

e1) + K2( 2K2√
a

e4 + −2K4√
a

e2) + K3
2K3√

a
e4 + −2K4√

a
e3)

= 2K1K4√
a

e1− 2K2K4√
a

e2− 2K3K4√
a

e3+(−2K2
1√

a
+ 2K2

2√
a

+ 2K2
3√
a

)e4,

∇V∇V V = ∇V { 2K1K4√
a

e1 − 2K2K4√
a

e2 − 2K3K4√
a

e3 + (−2K2
1√

a
+ 2K2

2√
a

+ 2K2
3√
a

)e4}
= K1(

−4K2
1+4K2

2+4K2
3

a )e1 + K2(
4K2

1−4K2
2−4K2

3
a )e2

+ K3(
4K2

1−4K2
2−4K2

3
a )e3 + K4(

−4K2
1−4K2

2−4K2
3

a )e4 ,

divV =
5∑

i=1

g(∇eiV, ei) = −2K4√
a

,

(∇V )t(∇V V ) = K1(
4K2

4+4K2
1−4K2

2−4K3
3

a )e1 + K2(
4K2

4−4K2
1+4K2

2+4K2
3

a )e2103

+ K3(
4K2

4−4K2
1+4K2

2+4K2
3

a )e3,104

105

using the relation (3.2), we get;106

107

X̂V = ( 4+8K2
1−8K2

2−8K2
3+8K2

4
a )K1e1+(4−8K2

1+8K2
2+8K2

3
a )K2e2+( 4−8K2

1+8K2
2+8K2

3
a )K3e3+108

109

+( 12+8K2
2+8K2

3
a )K4e4 = 4

aV +( 8K2
1−8K2

2−8K2
3+8K2

4
a )K1e1 +(−8K2

1+8K2
2+8K2

3
a )K2e2110

111

+ (−8K2
1+8K2

2+8K2
3

a )K3e3 + ( 8+8K2
2+8K2

3
a )K4e4 − 4

aK5e5.112

113

Therefore, V is spatially harmonic if and only if we have the following system of114



10 Mansour Aghasi and Mehri Nasehi

equations;115

(3.3)





K5 = 0
K2

1 + K2
4 = K2

2 + K2
3 or K1 = 0

K2
1 = K2

2 + K2
3 or K2 = 0

K2
1 = K2

2 + K2
3 or K3 = 0

K4 = 0
116

Since V is unite time-like, K2
1 + K2

2 + K2
3 + K2

4 − K2
5 = −1. On the other hand117

(3.3) gives us K4 = K5 = 0 and hence K2
1 + K2

2 + K2
3 = −1. Now if K1 = 0 or118

K2
1 + K2

4 = K2
2 + K2

3 occur, there is a contradiction(because Ki’s are real constants).119

¤120

For the Lorentzian Lie group G2 consideration of the space like energy of its unit121

time-like vector field is meaningful. As it is mentioned in [5] the space-like energy122

of the unit time-like vector field V on the Lorentzian manifold M is the integral of123

the square norm of the restriction of ∇V to the distribution V ⊥. If V is a critical124

point of the space-like energy, then it is spatially harmonic. So we have the following125

corollary.126

Corollary 3.5. The space-like energy of the Lorentzian Lie group G2 does not have127

a critical point.128

4 Left invariant contact structures on G2129

An almost contact structure on a (2n + 1)-dimensional smooth manifold M consists
of a triple (ϕ, ξ, η), where ϕ is a (1, 1)-tensor, ξ is a nowhere vanishing vector field
and η is a 1-form, such that

η(ξ) = 1, ϕ2 = −id + η ⊗ ξ,

and ϕ has rank 2n( see [12]). If the 1-form η satisfies η ∧ (dη)n 6= o then η is called130

the contact form.131

Theorem 4.1. The Lie group G2 does not admit a left-invariant contact structure132

in both Riemannian and Lorentzian cases.133

Proof. Let {e1, · · · , e5} be the dual to the basis {e1, · · · , e5}. In the Riemannian case
using (2.1), we get;

de1 =
−2√
3a

e1 ∧ e5, de2 =
2√
3a

e2 ∧ e5, de3 =
2√
3a

e3 ∧ e5 , de4 = 0, de5 = 0.

and in the Lorentzian case using (2.3), we obtain;

de1 =
−2√

a
e1 ∧ e4, de2 =

2√
a
e2 ∧ e4, de3 =

2√
a
e3 ∧ e4 , de4 = 0, de5 = 0.

Hence for all indices i, j = 1, · · · , 5 in both cases dei∧dej = 0. So for any left-invariant134

differential 1-form η =
5∑

i=1

cie
i since dη ∧ dη = 0, the Lie group G2 does not carry a135

left-invariant contact structure, where c1, · · · , c5 are real constants. ¤136
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Since an almost contact structure (ϕ, ξ, η) on a manifold M2n+1 admits an almost137

complex structure on M2n+1 × R, by the definition J(X, f d
dt ) = (ϕX − fξ, η(X) d

dt ),138

we have the following corollary.139

140

Corollary 4.2. There does not exist any left-invariant almost complex structure on141

G2 × R.142

5 Homogeneous structure on G2143

A homogeneous pseudo-Riemannian structure on a connected pseudo-Riemannian
manifold (M, g) is a tensor field T of type (1, 2) such that the connection ∇̂ = ∇− T
satisfies;

∇̂g = 0, ∇̂R = 0, ∇̂T = 0

where ∇ is the Levi-Civita connection of g and R is its Ricci curvature tensor field.144

More exactly, T is the solution of the following Ambrose-Singer equations;145

(5.1) g(TXY, Z) + g(Y, TXZ) = 0,

146

(5.2) (∇XR)Y Z = [TX , RY Z ]−RTXY Z −RY TXZ ,

147

(5.3) (∇XT )Y = [TX , TY ]− TTXY .

For more detail see [1]. Since G2 is the special linear group, it is connected (see[14].148

p.15). Hence it makes sense to define a homogeneous structure on it.149

Proposition 5.1. A homogeneous Riemannian structure on the five-dimensional Lie
group G2 is;

T =
−4√
3a

e1 ⊗ (e1 ∧ e5) +
4√
3a

e2 ⊗ (e2 ∧ e5) +
4√
3a

e3 ⊗ (e3 ∧ e5),

and a homogeneous Lorentzian structure on Lorentzian Lie group G2 is;

T =
−4√

a
e1 ⊗ (e1 ∧ e4) +

4√
a
e2 ⊗ (e2 ∧ e4) +

4√
a
e3 ⊗ (e3 ∧ e4).

Proof. Let Tei := 1
2

∑

jk

T k
ijej ∧ ek, where ej ∧ ek(X) = g(ej , X)ek − g(ek, X)ej . Then150

for i, j, k, s = 1, · · · , 5 the first equation of Ambrose-Singer equations (5.1) implies that151

T k
ij = −T j

ik and T 1
i1 = T 2

i2 = T 3
i3 = T 4

i4 = T 5
i5 = 0. If we replace this relation in (5.2),152

we get ∇eiR(ej , ek)ej = TeiR(ej , ek)ej or Teiek = ∇eiek that implies T 1
15 − T 5

11 =153

T 5
22 − T 2

25 = T 5
33 − T 3

35 = 4√
3a

and since T 1
15 = −T 5

11, T
5
22 = −T 2

25, T
5
33 = −T 3

35, we have154

−T 1
15 = T 2

25 = T 3
35 = −2√

3a
. By (5.3) it can be shown that the other components are155

zero. The homogeneous Lorentzian structure can be obtained in a similar way. ¤156
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