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Abstract. This paper proposes methods for designing bidirectionally cou-1

pled systems via generalized synchronization technique. Starting from a2

chaotic system we are constructing synchronized bidirectionally coupled3

driving and response systems. Numerical simulation results are presented4

to prove the effectiveness of the scheme.5
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1 Introduction9

Pecora and Carroll [9] first introduced the concept of chaos synchronization. After10

that it has become an important subject in the field of non-linear science. Different11

types of synchronization and control methods, viz.- active control method [1], impul-12

sive control method [12], adaptive control method [2], linear and non-linear feedback13

control method [8], unidirectionally and bidirectionally coupled systems [4, 5] etc.,14

have been applied to chaos synchronization with a varying degree of success in each15

case.16

1.1 System coupling17

A (n + m)-dimensional dynamical system is called:18

1) decoupled if it can be decomposed in two dynamical systems of the form19

(1.1) Ẋ = f(X), Ẏ = g(Y ),

the first being n-dimensional and the second m-dimensional.20

2) Unidirectionally coupled if it can be decomposed in two dynamical systems of21

the form22

(1.2)
Ẋ = f(X)

Ẏ = g(Y ) + k(X, Y ),
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where X is n-dimensional, Y is m-dimensional and k(X, Y ) is non-zero function of23

X and Y. Physically it means that in some parts of the space Rn+m, the behaviour24

of one system is influenced by the behaviour of the other, but the driving system is25

completely independent of the response system.26

3) Bidirectionally coupled if it can be decomposed in two n-dimensional dynamical27

systems of the form28

(1.3)
Ẋ = f(X) + k1(X, Y )

Ẏ = g(Y ) + k2(X, Y ),

where X is n-dimensional, Y is m-dimensional and k1(X, Y ) and k2(X, Y ) are29

non-zero functions of X and Y.30

1.2 Synchronization31

If the distance between the states of two dynamical systems converges to zero as the32

time tends to infinity, the systems are then said to be synchronized. This type of33

synchronization is known as identical synchronization [9]. Kocarev and Parlitz [7]34

introduced a new concept of synchronization known as generalized synchronization35

(GS). For the following systems,36

(1.4)
Ẋ = f(X) ← Driving system

Ẏ = g(Y, h(X)), ← Response system

where X ∈ <n, Y ∈ <m, they developed a condition for the occurrence of gener-37

alized synchronization. According to them the system in (1.4) possesses generalized38

synchronization between X and Y if there exists a transformation F : <n → <m,39

a manifold M = { (X, Y ) : Y = F (X) }, and a set B ⊆ <n × <m with40

M ⊆ B such that all trajectories of (1.4) starting from the basin B converges to41

M as time tends to infinity. If F equals identity transformation, then the general-42

ized synchronization coincides with the identical synchronization. In a physical world,43

the application of generalized synchronization is more practical than those of identical44

synchronization because of the existence of the parameter mismatches and distortions.45

Authors like Rulkov et al. [11], Hramov et. al [3], Poria [10] have discussed gener-46

alized synchronization of chaos in unidirectionally coupled chaotic systems. Though47

most of the natural systems are bidirectionally coupled, still very few studies about48

synchronization of bidirectionally coupled systems are seen. In this paper, starting49

from a chaotic system, we have constructed bidirectionally coupled synchronized sys-50

tems using generalized synchronization method in two ways. For both methods of51

construction numerical simulations have been performed to judge their effectiveness.52

2 Designing bidirectionally coupled chaotic systems53

This section develops on how to design a bidirectionally coupled chaotic system in54

the generalized synchronization framework.55



56 Mitul Islam, Bipul Islam, Nurul Islam and H. P. Mazumder

Definition 2.1. Let us consider the following chaotic systems,56

(2.1)
Ẋ = f(X, Y, t) ← Master system

Ẏ = g(X, Y, t) ← Slave system,

where X = ( x1, x2, . . . , xn)t, Y = ( y1, y2, . . . , xn)t. For a constant invertible57

matrix58

(2.2) D =


d11 d12 . . . d1n

d21 d22 . . . d2n

...
...

. . .
...

dn1 dn2 . . . dnn

 ,

if limt→∞ ‖ X − DY ‖ = 0, then the two systems given in (2.1) are said to be in59

a state of generalized synchronization.60

2.1 The first method of synchronization61

For the chaotic system Ẋ = AX + f(X, t), let us take the drive and response62

systems as63

(2.3) Ẋ = AX + f(X, t) + V1

and64

(2.4) Ẏ = AY + g(Y, t) + V2,

where65

(2.5)
V1 = Dg(Y, t) + (DA− AD)Y

V2 = D−1f(X, t) + D−1BK(X − DY ).

Here X ∈ <n, Y ∈ <n, A is n × n matrix, f and g are both n × 1 matrices. Taking66

e = X − DY , one gets from(2.3) and (2.4),67

(2.6) ė = (A− BK) e,

where K is 1×n feedback matrix and B is n×1 suitable matrix [6]. If all the eigenval-68

ues of the matrix A − BK have negative real parts, then limt→∞ ‖ X − DY ‖= 069

and the generalized synchronization is achieved between (2.3) and (2.4), with V1 and70

V2 being given by (2.5).71

2.2 The second method of synchronization72

For a chaotic system, Ẋ = AX + f(X, t), let us consider a driving system in the73

form74

(2.7) Ẋ = AX + f(X, t) + h1(X, Y ),
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where X ∈ <n, A is a n × n, f and h1 are n × 1 matrices. Let the response system75

coupled with (2.7) be76

(2.8) Ẏ = AY + g(Y, t) + h2(X, Y ) + U,

where Y ∈ <n , g and h2 are both n × 1 matrices. Error between the systems (2.7)77

and (2.8) can be defined as e = X − DY , where D is non-singular constant78

matrix. Thus the error dynamical system of(2.7) and (2.8) becomes79

(2.9) ė = Ae

provided80

(2.10) U = D−1[ f(X, t) + h(X, y)]− g(Y, t)− h2(X, t)−AY + D−1ADY.

If real parts of all the eigenvalues of A are negative, then the system (2.9) is asymp-81

totically stable at the origin and hence the systems (2.7) and (2.8) are in the state of82

generalized synchronization.83

3 Application of synchronization techniques84

As an application, let us consider the Shimizu-Morioka chaotic dynamical system [4]85

(3.1)

ẋ = y

ẏ = x− λy − xz

ż = − αz + x2.

The system is chaotic for the values of the positive parameters λ = 0.605 and86

α = 0.549.87

88

3.1 Technique I89

The system of equations (3.1) can equivalently be written as Ẋ = AX + f(X, t),
where

X =

x1

x2

x3

 , A =

−1 0 0
1 − λ 0
0 0 − α

 , f(X, t) =

x1 + x2

−x1x3

x2
1

 .

Using the first method, the driving and the response systems of the forms of (2.3)90

and (2.4) are constructed as follows:91

(3.2)

ẋ1 =x2 + d11(y1 + y2) + d12{y1 − y1y3 + (1− λ)y2}+ d13{y2
1 + (1− α)y3}

ẋ2 =x1 − λx2 − x1x3 + d21(y1 + y2)− d22y1y3 + d23y
2
1+

(d22 − d11 − d21 + λd21)y1 − d12y2 + {(λ− α)d23 − d13}y3

ẋ3 =− αx3 + x2
1 + d31(y1 + y2)− d32y1y3 + d33y

2
1 + {(α− 1)d31 + d32}y1+

(α− λ)d32y2
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where

X =

x1

x2

x3

 , Y =

y1

y2

y3

 , D =

d11 d12 d13

d21 d22 d23

d31 d32 d33


and

g(Y, t) =

y1 + y2

−y1y3

y2
1

 .

Also,92

(3.3)

ẏ1 =y2 + β11(x1 + x2)− β12x1x3 + β13x
2
1

+ {Σ3
i=1ki(xi − di1y1 − di2y2 − di3y3)}Σ3

j=1β1jbj

ẏ2 =y1 − λy2 − y1y3 + β21(x1 + x2)− β22x1x3 + β23x
2
1

+ {Σ3
i=1ki(xi − di1y1 − di2y2 − di3y3)}Σ3

j=1β2jbj

ẏ3 =− αy3 + y2
1 + β31(x1 + x2)− β32x1x3 + β33x

2
1

+ {Σ3
i=1ki(xi − di1y1 − di2y2 − di3y3)}Σ3

j=1β3jbj ,

where B =

b1

b2

b3

, K =

k1

k2

k3

T

, D−1 =

β11 β12 β13

β21 β22 β23

β31 β32 β33

. The error dynamics93

of this system as described by (2.6) is94

(3.4)
ė1 = −(1 + b1k1)e1 − b1k2e2 − b1k3e3

ė2 = (1− b2k1)e1 − (λ + b2k2)e2 − b2k3e3

ė3 = −b3k1e1 − b3k2e2 − (α + b3k3)e3,

where95

(3.5)
e1 = x1 − d11y1 − d12y2 − d13y3

e2 = x2 − d21y1 − d22y2 − d23y3

e3 = x3 − d31y1 − d32y2 − d33y3.

3.2 Technique II96

System of equations (3.1) can alternatively be written as Ẋ = AX + f(X, t), where

X =

x1

x2

x3

 , A =

−1 − 1 0
1 − 1 0
0 0 − α

 , f(X, t) =

 x1 + 2x2

(1− λ)x2 − x1x3

x2
1

 .

Let us now consider the synchronized driving and response systems as given by (2.7)
and (2.8). Here we take

Y =

y1

y2

y3

 , g(Y, t) =

 y1 + 2y2

(1− λ)y2 − y1y3

y2
1

 ,
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h1(X, Y ) =

 y1 + 2y2 − x1 − 2x2

(1− λ)(y2 − x2)− y1y3 + x1x3

y2
1 − x2

1

 ,

h2(X, Y ) =

 x1 + 2x2

(1− λ)x2 − x1x3

x2
1

 .

Using this technique, the driving and the response systems of the forms (2.7) and97

(2.8) are constructed as follows98

(3.6)

ẋ1 =− x1 − x2 + y1 + 2y2

ẋ2 =x1 − x2 + (1− λ)y2 − y1y3

ẋ3 =− αx3 + y2
1 ,

99

(3.7)

ẏ1 = β11{y1 + 2y2 − (Σd1jyj + Σd2jyj)}
+ β12{(1− λ)y2 − y1y3 + Σd1jyj − Σd2jyj}
+ β13{y2

1 − αΣd3jyj}
ẏ2 = β21{y1 + 2y2 − (Σd1jyj + Σd2jyj)}

+ β22{(1− λ)y2 − y1y3 + Σd1jyj − Σd2jyj}
+ β23{y2

1 − αΣd3jyj}
ẏ3 = β31{y1 + 2y2 − (Σd1jyj + Σd2jyj)}

+ β32{(1− λ)y2 − y1y3 + Σd1jyj − Σd2jyj}
+ β33{y2

1 − αΣd3jyj}.

The error dynamical system, corresponding to the constructed bidirectionally coupled100

drive and response systems, is ė = Ae, i.e,101

(3.8)
ė1 =− e1 − e2

ė2 =e1 − e2

ė3 =− αe3,

where102

(3.9)
e1 =x1 − d11y1 − d12y2 − d13y3

e2 =x2 − d21y1 − d22y2 − d23y3

e3 =x3 − d31y1 − d32y2 − d33y3.

4 Results and discussions103

Numerical simulations are performed to show the effectiveness of the proposed tech-104

niques. Numerical simulation is carried out with D =

1 0 2
0 3 4
5 6 7

, B = (1, 2, 3)T ,K =105

(2, 1, 4) and λ = 0.605, α = 0.549. The time evolution of the synchronization errors106
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e = (e1, e2, e3)T are plotted in Fig. 1 and Fig. 3 for Technique I and Technique II107

respectively.108

109

Fig. 1. Fig. 2. Fig. 3.110

The initial synchronization errors are taken as (e1(0), e2(0), e3(0)) = (0.1, 0.2,−0.1),111

in each case. Figures show that the errors tend to zero as time goes to infinity which112

establishes the achievement of synchronization between the constructed drive and113

response systems using our techniques.114

115

Fig. 4. Fig. 5. Fig. 6.116

Time evolution of the state variables xi(i = 1, 2, 3), for the drive system, and117

yi(i = 1, 2, 3), for the response system, are plotted in Fig. 2 for Technique I,118

taking initial values of the state variables (x1(0), x2(0), x3(0)) = (2.2, 2.1, 2) and119

(y1(0), y2(0), y3(0)) = (2.1, 2.2,−2). A similar approach gives Figs. 4, 5 and 6 for120

Technique II. In this case, noticeable behaviour of the trajectories of the state vari-121

ables for both the driving and the response systems are observed. Fig. 4 and 5122

correspond to the initial values of the state variables (x1(0), x2(0), x3(0)) = (3, 2, 5)123

and (y1(0), y2(0), y3(0)) = (4, 1, 6) whereas Fig 6 corresponds to the initial condition124

(x1(0), x2(0), x3(0)) = (1, 2, 5) and (y1(0), y2(0), y3(0)) = (2, 1, 6).125
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