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Abstract. Real hypersurfaces of a complex space form Mn(c) have been1

studied from many points of view. The real hypersurfaces which satisfy2

(∇X l)Y = κ{η(Y )φAX + g(φAX, Y )ξ}, where l is the Jacobi structure3

operator and κ is constant, are called ”real hypersurfaces with pseudo4

D−parallel Jacobi structure operator”. This class has been classified in5

[7], for the case when Mn(c) = CPn (c > 0) and n ≥ 3. In the present6

paper, the same class is classified for the case of a complex plane M2(c)7

where the sectional curvature c can be positive or negative. In addition,8

the constant κ is now a function, therefore, a larger class is produced and9

classified.10

M.S.C. 2010: 53B25, 53D1511

Key words: Real hypersurface; structure Jacobi operator; pseudo-parallel tensor12

field.13

1 Introduction14

An n-dimensional Kaehlerian manifold of constant holomorphic sectional curvature15

c is called complex space form, which is denoted by Mn(c). A complete and simply16

connected complex space form is complex analytically isometric to a projective space17

CPn if c > 0, a hyperbolic space CHn if c < 0, or a Euclidean space Cn if c = 0.18

The induced almost contact metric structure of a real hypersurface M of Mn(c) will19

be denoted by (φ, ξ, η, g). The vector field ξ is defined by ξ = −JN where J is the20

complex structure of Mn(c) and N is a unit normal vector field.21

Real hypersurfaces have been studied by many authors and under several condi-22

tions ([1], [2], [13], [14]). An important class of hypersurfaces is the Hopf Hypersur-23

faces, that is real hypersurfaces satisfying Aξ = αξ, where A is the shape operator24

and α = g(Aξ, ξ).25

Certain authors have studied real hypersurfaces under conditions which involve26

the Jacobi structure operator lX = RξX = R(X, ξ)ξ ([10], [11], [12]).27

In [7], H. Lee, J. D. Pérez and Y. Jin Suh introduced the notion of pseudo D-28

parallel structure Jacobi operator, that is l satisfies the following condition:29

(1.1) (∇X l)Y = κ{η(Y )φAX + g(φAX, Y )ξ}
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where κ is a non-zero constant, X ∈ D and Y ∈ TM . They studied the above30

condition in real hypersurfaces of CPn, n ≥ 3 classifying them.31

However, the problem remains open for the case of CHn, n ≥ 3, and the case of32

M2(c) (both c > 0 and c < 0). In the present paper the latter case is treated in an33

even more generalized form: the constant κ in (1.1) is replaced by a function without34

any other restriction for κ. Namely we prove the following:35

Main Theorem. Let M be a real hypersurface of a complex plane M2(c), whose36

structure Jacobi operator satisfies condition (1.1) for some non-vanishing function κ.37

Then M is a Hopf hypersurface. Furthermore, we have:38

• if g(Aξ, ξ) 6= 0, then M is a tube of radius r = 1√
|c| ln(2 +

√
3) around totally real39

geodesic RHn( c
4 ) of a complex hyperbolic space CH2;40

• if g(Aξ, ξ) = 0, then the function κ is constant and equal to − c
4 , and we have one41

of the following cases:42

1) A has two principal curvatures (α = 0, λ1 = λ2 =
√

c
2 ) and M is a geodesic43

hypersphere of radius r = π
4 on CP 2,44

2) A has three principal curvatures (α = 0, λ1,λ2), where λ1, λ2 are not constants45

and satisfy λ1λ2 = c
4 .46

2 Preliminaries47

Let Mn be a Kaehlerian manifold of real dimension 2n, equipped with an almost48

complex structure J and a Hermitian metric tensor G. Then for any vector fields X49

and Y on Mn(c), the following relations hold: J2X = −X, G(JX, JY ) = G(X, Y ),50

∇̃J = 0, where ∇̃ denotes the Riemannian connection of G of Mn.51

Let M2n−1 be a real (2n − 1)-dimensional hypersurface of Mn(c), and denote by52

N a unit normal vector field on a neighborhood of a point in M2n−1 (from now on53

we shall write M instead of M2n−1). For any vector field X tangent to M we have54

JX = φX+η(X)N , where φX is the tangent component of JX, η(X)N is the normal55

component, and ξ = −JN , η(X) = g(X, ξ), g = G|M .56

By properties of the almost complex structure J and the definitions of η and g,57

the following relations hold ([3]):58

(2.1) φ2 = −I + η ⊗ ξ, η ◦ φ = 0, φξ = 0, η(ξ) = 1
59

(2.2) g(φX, φY ) = g(X, Y )− η(X)η(Y ), g(X, φY ) = −g(φX, Y ).

The above relations define an almost contact metric structure on M which is denoted60

by (φ, ξ, g, η). When an almost contact metric structure is defined on M , we can61

define a local orthonormal basis {e1, e2, ...en−1, φe1, φe2, ...φen−1, ξ}, called a φ−basis.62

Furthermore, let A be the shape operator in the direction of N , and denote by ∇ the63

Riemannian connection of g on M . Then, A is symmetric and the following equations64

are satisfied:65

(2.3) ∇Xξ = φAX, (∇Xφ)Y = η(Y )AX − g(AX,Y )ξ
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As the ambient space Mn(c) is of constant holomorphic sectional curvature c, the66

equations of Gauss and Codazzi are respectively given by:67

(2.4) R(X, Y )Z =
c

4
[g(Y, Z)X − g(X,Z)Y + g(φY, Z)φX − g(φX, Z)φY

−2g(φX, Y )φZ] + g(AY, Z)AX − g(AX,Z)AY,
68

(2.5) (∇XA)Y − (∇Y A)X =
c

4
[η(X)φY − η(Y )φX − 2g(φX, Y )ξ].

69

The tangent space TpM , for every point p ∈ M , is decomposed as following: TpM =70

D⊥ ⊕ D, where D = ker(η) = {X ∈ TpM : η(X) = 0}71

72

Based on the above decomposition, by virtue of (2.3), we decompose the vector field73

Aξ in the following way:74

(2.6) Aξ = αξ + βU,

where β = |φ∇ξξ|, α is a smooth function on M and U = − 1
β φ∇ξξ ∈ ker(η), provided75

that β 6= 0.76

If the vector field Aξ is expressed as Aξ = αξ, then ξ is called principal vector77

field.78

Finally differentiation will be denoted by ( ). All manifolds, vector fields, e.t.c.,79

of this paper are assumed to be connected and of class C∞.80

3 Auxiliary relations81

Let N = {p ∈ M : β 6= 0 in a neighborhood around p}. We define the open subsets82

N1 and N2 of N such that:83

N1 = {p ∈ N : α 6= 0 in a neighborhood around p},84

N2 = {p ∈ N : α = 0 in a neighborhood around p}.85

Then N1 ∪N2 is open and dense in the closure of N .86

Lemma 3.1. Let M be a real hypersurface of a complex plane M2(c). Then the87

following relations hold on N1.88

(3.1) AU =
(

γ

α
− c

4α
+

β2

α

)
U +

δ

α
φU + βξ, AφU =

δ

α
U +

( ε

α
− c

4α

)
φU

89

∇ξξ = βφU, ∇Uξ = − δ

α
U +

(
γ

α
− c

4α
+

β2

α

)
φU,(3.2)

∇φUξ = −
( ε

α
− c

4α

)
U +

δ

α
φU

90

(3.3) ∇ξU = κ1φU, ∇UU = κ2φU +
δ

α
ξ, ∇φUU = κ3φU +

( ε

α
− c

4α

)
ξ
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91

∇ξφU = −κ1U − βξ, ∇UφU = −κ2U −
(

γ

α
− c

4α
+

β2

α

)
ξ,(3.4)

∇φUφU = −κ3U − δ

α
ξ,

where κ1, κ2, κ3 are smooth functions on N1.92

Proof. From (2.4) we obtain93

(3.5) lU =
c

4
U + αAU − βAξ, lφU =

c

4
φU + αAφU.

The inner products of lU with U and φU yield respectively94

(3.6) g(AU,U) =
γ

α
− c

4α
+

β2

α
, g(AU, φU) =

δ

α
,

where γ = g(lU, U) and δ = g(lU, φU). So, (3.6) and g(AU, ξ) = g(Aξ, U) = β, yield95

the first of (3.1). Since l is symmetric with respect to metric g, the scalar products96

of the second of (3.5) with U and φU yield respectively97

(3.7) g(AφU,U) =
δ

α
, g(AφU, φU) =

ε

α
− c

4α
,

where ε = g(lφU, φU). So, (3.7) and g(AφU, ξ) = g(Aξ, φU) = 0, yield the second of98

(3.1). Combining (3.1) and (3.5), we obtain99

(3.8) lU = γU + δφU, lφU = δU + εφU.

By virtue of (2.6) and (3.1), the first of (2.3) for X = ξ, X = U and X = φU yields100

(3.2).101

It is well known that:102

(3.9) Xg(Y,Z) = g(∇XY, Z) + g(Y,∇XZ).

The relation (3.9) for X = ξ, Y = Z = U and X = Z = ξ, Y = U , because of103

(3.2), implies respectively g(∇ξU,U) = 0 = g(∇ξU, ξ). So if we put g(∇ξU, φU) = κ1,104

we have the first of (3.3). Similarly (3.9) for X = Y = Z = U and X = Y = U ,105

Z = ξ, because of (3.2) yields respectively g(∇UU,U) = 0, g(∇UU, ξ) = δ
a . Therefore,106

putting g(∇UU, φU) = κ2, we have the second of (3.3). By use of (3.2) and (3.9) we107

have that g(∇φUU,U) = 0 and g(∇φUU, ξ) = ε
α − c

4α . Then if we set g(∇φUU, φU) =108

κ3, we get the third of (3.3). In a similar way using (3.9) we obtain (3.4). ¤109

The condition (1.1) for X = Y = U yields

(∇U l)U = κ{η(U)φAU + g(φAU,U)ξ}.
The above equation is further developed by making use of Lemma 3.1 and (3.8), giving
the following:

(Uγ)U + κ2(γ − ε)φU + (Uδ)φU − 2κ2δ − δ

(
β2

α
− c

4α

)
ξ = −δκ

α
ξ.
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Since the vector fields U, φU and ξ are linearly independent, the last relation leads to110

(3.10) δ(β2 − c

4
) = δκ,

111 (3.11) (Uγ) = 2κ2δ,

112 (3.12) (Uδ) = κ2(ε− γ).

The condition (1.1) for X = U , Y = φU yields

(∇U l)φU = κ{η(U)φAφU + g(φAU, φU)ξ}.
The above equation is further developed by making use of Lemma 3.1, (3.8) and
(3.12), giving the following:

2δκ2φU +
δ2

α
ξ + (Uε)φU − ε

(
γ

α
− c

4α
+

β2

α

)
ξ = κ

(
γ

α
− c

4α
+

β2

α

)
ξ.

Since the vector fields U, φU and ξ are linearly independent, the last relation leads to113

(3.13) (κ + ε)
(

γ

α
− c

4α
+

β2

α

)
=

δ2

α
,

114

(3.14) (Uε) = −2κ2δ.

Putting X = φU , Y = U in (1.1) we obtain

(∇φU l)U = κ{η(φU)φAU + g(φAφU,U)ξ}.
The above equation is further developed by making use of Lemma 3.1, (3.8), (3.12)115

and the linear independency of the vector fields U , φU giving the following:116

(3.15) (κ + γ)
( ε

α
− c

4α

)
=

δ2

α
,

117

(3.16) (φUγ) = 2κ3δ,
118

(3.17) (φUδ) = κ3(ε− γ).

Finally putting X = Y = φU in (1.1) we get

(∇φU l)φU = κ{η(φU)φAφU + g(φAφU, φU)ξ},
which, in a similar way, implies119

(3.18) −δc

4
= κδ,

120 (3.19) (φUε) = −2κ3δ.

From (3.10) and (3.18) we obtain the following lemma:121

Lemma 3.2. Let M be a real hypersurface of a complex plane M2(c) satisfying (1.1).122

Then on N1 we have δ = 0.123
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4 The set N1124

We are going to use equation (2.5) for X,Y ∈ {U, φU, ξ}. For X = U , Y = ξ we125

have (∇UA)ξ − (∇ξA)U = − c
4φU. The last relation is further developed by virtue of126

Lemmas 3.1 and 3.2, yielding:127

(4.1) (Uα) = (ξβ) ,
128

(4.2) (Uβ) =
(

ξ

(
γ

α
− c

4α
+

β2

α

))
,

129

(4.3) γ+κ2β−(
ε

α
− c

4α
)
(

γ

α
− c

4α
+

β2

α

)
−κ1

(
γ

α
− c

4α
+

β2

α

)
+κ1

( ε

α
− c

4α

)
= 0.

In a similar way, (2.5) for X = φU , Y = ξ yields130

(4.4) (φUα) + 3β(
ε

α
− c

4α
)− κ1β − αβ = 0.

131

(4.5) (φUβ) + (
ε

α
− c

4α
)
(

γ

α
− c

4α
+

β2

α

)
+ κ1

( ε

α
− c

4α

)
− κ1

(
γ

α
− c

4α
+

β2

α

)

−β2 − ε = 0,
132

(4.6) ξ
( ε

α
− c

4α

)
= κ3β.

Similarly, the relation (2.5) for X = U , Y = φU yields133

(4.7) U
( ε

α
− c

4α

)
= κ3

(
γ

α
− ε

α
+

β2

α

)
,

134

(4.8) κ2

(
γ

α
− ε

α
+

β2

α

)
+ β

(
γ

α
− c

4α
+

β2

α

)
+ 2β

( ε

α
− c

4α

)

−
(

φU(
γ

α
− c

4α
+

β2

α
)
)

= 0,

We now define the subset N ′
1 ⊂ N1 to be the set of points p ∈ N1 such that γ 6= ε in135

a neighborhood around p.136

Lemma 4.1. Let M be a real hypersurface of a complex plane M2(c) satisfying (1.1).137

Then N ′
1 = f¡ and γ = ε on N1.138

Proof. Throughout the proof of this Lemma we work in N ′
1. By definition of N ′

1,
equations (3.12), (3.17) and Lemma 3.2 yield κ2 = κ3 = 0. So, using (2.4) for
X = Z = U , Y = ξ and Lemma 3.1 we take

R(U, ξ)U = −γξ.
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On the other hand, by virtue of Lemmas 3.1, 3.2, κ2 = κ3 = 0 and (4.3) we obtain

R(U, ξ)U = ∇U∇ξU −∇ξ∇UU −∇∇U ξ−∇ξUU = (Uκ1)φU − γξ.

The last two equations lead to139

(4.9) (Uκ1) = 0.

In a similar way, we calculate R(U, φU)U first from (2.4) and then from

R(U, φU)U = ∇U∇φUU −∇φU∇UU −∇∇U φU−∇φU UU,

we conclude that140

(4.10) 2
(

γ

α
− c

4α
+

β2

α

) ( ε

α
− c

4α

)
+ κ1

(
γ

α
− c

4α
+

β2

α
+

ε

α
− c

4α

)
+ c = 0.

Similarly, the calculation of R(φU, ξ)φU first from (2.4) and then from

R(φU, ξ)φU = ∇φU∇ξφU −∇ξ∇φUφU −∇∇φU ξ−∇ξφUφU

implies141

(4.11) (φUκ1) = 2β
( ε

α
− c

4α

)
+ κ1β.

Let us assume there is a point p1 ∈ N ′
1 such that ε 6= c

4 . Then there exists a142

neighborhood around p1 such that ε 6= c
4 in this neighborhood. Equation (3.15) and143

Lemma 3.2 yield κ = −γ, which is combined with (3.13) and Lemma 3.2 implying144

(γ− ε)( γ
α − c

4α + β2

α ) = 0. Since on N ′
1 γ 6= ε holds, then we obtain γ

α − c
4α + β2

α = 0.145

However the last relation, (4.8) and κ2 = 0 imply ε = c
4 which is a contradiction.146

Therefore there exists no point in N ′
1 such that ε 6= c

4 and so in N ′
1 we have ε = c

4 .147

In this case, (4.3), (4.8) and (4.10) (with κ2 = 0) yield respectively148

(4.12) γ = κ1

(
γ

α
− c

4α
+

β2

α

)
, φU

(
γ

α
− c

4α
+

β2

α

)
= β

(
γ

α
− c

4α
+

β2

α

)
,

−c = κ1

(
γ

α
− c

4α
+

β2

α

)
.

From (4.12) we observe that κ1 6= 0 (otherwise c = 0 which is a contradiction). So,
the differentiation of −c = κ1( γ

α − c
4α + β2

α ) along φU implies

(φUκ1)
(

γ

α
− c

4α
+

β2

α

)
+ κ1

(
φU(

γ

α
− c

4α
+

β2

α
)
)

= 0.

Replacing in the above equation the term (φUκ1) from (4.11)(ε = c
4 ) and by virtue149

of the second of (4.12), we take κ1β( γ
α − c

4α + β2

α ) = 0 ⇒ c = 0 (due to (4.12)), which150

is a contradiction. So N ′
1 = f¡ and γ = ε in N1. ¤151

Lemma 4.2. Let M be a real hypersurface of a complex plane M2(c) satisfying (1.1).152

Then on N1, γ 6= c
4 .153
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Proof. Combining (4.8), with (4.3), (4.4), (4.5) we obtain154

(4.13)
(
φU

(γ

α
− c

4α

))
=

3β

α

[
(
γ

α
− c

4α
)2 − c

4

]
.

If γ = c
4 then the last relation yields 3βc

4 = 0 which is a contradiction. Hence we have155

γ 6= c
4 . ¤156

Lemma 4.3. Let satisfying (1.1). Then on N1, κ3 = 0.157

Proof. Because of (3.3), (3.4), (4.6), (4.7) and (4.13), the well known relation [U, φU ] =
∇UφU −∇φUU takes the form

[U, φU ](
γ

α
− c

4α
) =

−κ2κ3β
2

α
− κ3β(

γ

α
− c

4α
+

β2

α
)− 3βκ3

α

[
(
γ

α
− c

4α
)2 − c

4

]
− κ3β (

γ

α
− c

4α
)

On the other hand (4.4), (4.5), (4.7) and (4.13) yield:

[U, φU ](
γ

α
− c

4α
) = U

(
φU(

γ

α
− c

4α
)
)
− φU

(
U(

γ

α
− c

4α
)
)

=

3(Uβ)
α

[
(
γ

α
− c

4α
)2− c

4

]
− 3β(Uα)

α2

[
(
γ

α
− c

4α
)2− c

4

]
+

6κ3β
3

α2
(
γ

α
− c

4α
)− β2

α
(φU(κ3))

+
2κ3β

α
(
γ

α
− c

4α
)(

γ

α
− c

4α
+

β2

α
)− 2κ3βγ

α
− κ1κ3β

3

α2
− κ3β

3

α
− 3κ3β

3γ

α3

+
3κ3cβ

3

4α3

The last equations using (4.1), (4.2) and (4.6) yield158

(4.14)
3
α

[
(
γ

α
− c

4α
)2 − c

4

]
(ξβ)− 3β

α2

[
(
γ

α
− c

4α
)2 − c

4

]
(ξα)− β(φUκ3) =

[
2c− βκ2 +

β2

α
κ1 − 8(

γ

α
− c

4α
)2 − 5β2

α
(
γ

α
− c

4α
)
]

κ3

In a similar way, from the action of [ξ, φU ] on γ
α − c

4α we obtain159

(4.15)
3
α

[(
γ

α
− c

4α
)2 − c

4
](ξβ)− 3β

α2
[(

γ

α
− c

4α
)2 − c

4
](ξα)− β(φUκ3) =

[γ − (
γ

α
− c

4α
)2 − 6β2

α
(
γ

α
− c

4α
)]κ3

Comparing (4.14) with (4.15) and by making use of (4.3) we obtain

κ3

[
(
γ

α
− c

4α
)2 − c

4

]
= 0

Let us assume there is a point p on N1 such that κ3 6= 0. Then, because of the160

continuity of κ3 there exists a neighborhood W(p) around p such that κ3 6= 0. This161

fact and the last equation imply that ( γ
α − c

4α )2 = c
4 on W(p). Differentiating the last162

equation along ξ and because of Lemma 4.2 we obtain ξ( γ
α − c

4α ) = 0. Combining163

the last equation with (4.6) we are led to κ3 = 0, which is a contradiction. Therefore164

W (p) is empty and κ3 = 0 on N1. ¤165
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By virtue of (2.4) for X = Z = φU , Y = ξ we obtain

R(φU, ξ)φU = −γξ − β(
γ

α
− c

4α
)U.

On the other hand, using Lemmas 3.1 and 4.3 we have

R(φU, ξ)φU = ∇φU∇ξφU −∇ξ∇φUφU −∇∇φU ξ−∇ξφUφU =
[
−(φUκ1) + β(

γ

α
− c

4α
)− κ2(

γ

α
− c

4α
) + κ1κ2 + βκ1

]
U+

[
−κ1(

γ

α
− c

4α
)− (φUβ)− (

γ

α
− c

4α
)(

γ

α
− c

4α
+

β2

α
) + κ1(

γ

α
− c

4α
+

β2

α
) + β2

]
ξ.

Equalizing the above two expressions of R(φU, ξ)φU , we are led to166

(4.16) (φUκ1)− 2β(
γ

α
− c

4α
) + κ2(

γ

α
− c

4α
)− κ1κ2 − κ1β = 0.

Using (3.11), (4.1), (4.2), (4.6), (4.7) and Lemmas 3.1, 4.1, 4.2, 4.3 we have167

(4.17) (Uα) = (ξβ) = 0, (Uβ) = −β2

α2
(ξα).

Since U( γ
α− c

4α ) = ξ( γ
α− c

4α ) = 0, due to Lemmas 4.1, 4.2 and (4.6), (4.7), the equality168

[U, ξ]( γ
α − c

4α ) = 0 holds. However, the same Lie bracket is calculated from (3.2) and169

(3.3) as [U, ξ]( γ
α − c

4α ) = ( γ
α − c

4α + β2

α − κ1)φU( γ
α − c

4α ). So the two expressions of170

U( γ
α − c

4α ) yield171

(4.18)
(

γ

α
− c

4α
+

β2

α
− κ1

)
φU(

γ

α
− c

4α
) = 0.

Lemma 4.4. Let M be a real hypersurface of a complex plane M2(c) satisfying (1.1).172

Then on N1 the relation γ
α − c

4α + β2

α = κ1 holds.173

Proof. If there existed a point p′ ∈ N1 such that γ
α − c

4α + β2

α 6= κ1 in a neighborhood174

W1 of p′, then (4.18) would give φU( γ
α − c

4α ) = 0. Developing this equation with the175

aid of Lemmas 3.1, 4.2, 4.3 and relation (3.16), we result to176

(4.19) (φUα) = 0.

(4.19) is combined with (4.4) and Lemma 4.1, giving177

(4.20) κ1 = 3(
γ

α
− c

4α
)− α.

(4.20) is combined with (4.3), (4.13), (4.19), (3.16) and Lemmas 4.1, 4.3, giving178

(4.21) κ2 = − 1
β

(γ − c

4
) + 4(

γ

α
− c

4α
)
β

α
− β.

So, replacing with (4.20), (4.21) in (4.16), and by making use of (3.16), (4.19), Lemma
4.3 we arrive to

(β2 − α2)
( γ

α
− c

4α

)
+

cα

2
− 2β2c

α
= 0.
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Differentiating the above relation along φU (because of (3.17), (4.19), Lemma 4.3), it179

is proved180

(4.22) (φUβ)
[(γ

α
− c

4α

)
− 2c

α

]
= 0.

Let W2 ⊆ W1 be the set of points p ∈ W1 where (φUβ) 6= 0 in a neighborhood around181

p. So, in W2 (4.22) implies ( γ
α − c

4α ) − 2c
α = 0 ⇒ ( γ

α − c
4α )2 = 2c2

α2 . Combining this182

relation with (3.16), (4.13), (4.19) and Lemma 4.3 we obtain α2 = 8c ⇒ (Uα) =183

(ξα) = 0. Therefore (4.17) gives [U, ξ]β = U(ξβ)− ξ(Uβ) = 0. The same Lie bracket184

is also calculated from Lemma 3.1 as [U, ξ]β = ( γ
α − c

4α + β2

α −κ1)(φUβ) which means185

( γ
α − c

4α + β2

α − κ1)(φUβ) = 0. Since γ
α − c

4α + β2

α − κ1 6= 0 it follows that (φUβ) = 0186

which is a contradiction, since we have assumed (φUβ) 6= 0. This means that W2 is187

empty and in W1 we have (φUβ) = 0.188

In this case (4.5) is combined with (4.20) giving189

(4.23) −γ + (
γ

α
− c

4α
)2 − 2

β2

α
(
γ

α
− c

4α
) = 0.

However from (3.16), (4.13), (4.19) and Lemma 4.3 we obtain ( γ
α − c

4α )2 = c
4 which is190

combined with (4.23) and Lemma 4.2, resulting to α2 +2β2 = 0 which is a contradic-191

tion. Therefore W1 is empty and we conclude there exists no point p′ ∈ N1 such that192

γ
α − c

4α + β2

α 6= κ1 in a neighborhood of p′. This means that γ
α − c

4α + β2

α − κ1 = 0193

holds in N1. ¤194

Lemma 4.5. Let M be a real hypersurface of a complex plane M2(c) satisfying (1.1).195

Then N1 is empty.196

Proof. From Lemma 4.4 we have γ
α − c

4α + β2

α = κ1. In this case, (4.3) and Lemma197

4.1 yield198

(4.24) κ2 = −γ

β
+

1
β

(
γ

α
− c

4α
+

β2

α
)2.

Moreover, from (3.11), (3.16) and Lemma 4.3, we have [φU,U ]γ = (φU(Uγ)) −
(U(φUγ)) = 0. The same Lie bracket is calculated from Lemma 3.1 as [φU,U ]γ =[
2( γ

α − c
4α ) + β2

α

]
(ξγ). The previous two relations yield

[
2(

γ

α
− c

4α
) +

β2

α

]
(ξγ) = 0.

If there was point in N1 such that (ξγ) 6= 0 then from the above equation it would199

be 2(γ − c
4 ) + β2 = 0. Differentiation of this equation along ξ, due to (4.6), (4.17)200

Lemmas 4.2, 4.3, would lead to (ξγ) = 0, which is a contradiction.201

Therefore it must be (ξγ) = 0. So, from (4.6), (4.7), and Lemma 4.3 we obtain202

(4.25) (Uα) = (Uβ) = (ξα) = (ξβ) = 0.

In addition, (3.16) with (4.13) and Lemma 4.3 give203

(4.26) (φUα) = −3β
[
(
γ

α
− c

4α
)− c

4
(
γ

α
− c

4α
)−1

]
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Also κ1 = γ
α − c

4α + β2

α , (4.5) and Lemma 4.1 yield204

(4.27) (φUβ) = γ − (
γ

α
− c

4α
)2 +

β4

α2
+ β2.

By virtue of (4.4), (4.26) κ1 = γ
α − c

4α + β2

α and Lemma 4.1 we get205

(4.28) (
γ

α
− c

4α
)2 +

β2

α
(
γ

α
− c

4α
) + γ = c.

The differentiation of (4.28) along φU , in combination with Lemmas 3.1, 4.3 and
(3.16), (4.13), (4.26), (4.27), leads to

4(
γ

α
− c

4α
)2(

γ

α
− c

4α
) + (

γ

α
− c

4α
)(−3c

2
+ 2γ +

2β4

α2
+ 2β2)+

6β2

α
(
γ

α
− c

4α
)2 − 3β2c

2α
= 0.

In the above equation, the term ( γ
α − c

4α )2 is replaced from (4.28) and we obtain206

(4.29) −4β2

α
(
γ

α
− c

4α
)2 + (

γ

α
− c

4α
)(

5c

2
− 2γ − 4β4

α2
+ 2β2)

−6β2γ

α
+

9β2c

2α
= 0.

In equation (4.29) the term ( γ
α − c

4α )2 is replaced from (4.28) giving207

(4.30) γ =
5c

4
.

Now, (4.28) and (4.30) result to208

(4.31) α2 + 4β2 = −4c,⇒ c < 0.

So by virtue of (4.30) and (4.31), equations (4.24), (4.26) and (4.27) are written209

respectively as210

(4.32) κ2 = −β

4
− 3c

2β
, (φUα) =

3αβ

4
− 3βc

α
, (φUβ) =

3c

2
+

3β2

4
.

The third of (4.32) gives

(φUβ)− 3c

2
=

3β2

4
> 0 ⇒ (φUβ) >

3c

2
.

By virtue of the second of (4.32), (4.31) and (φUβ) > 3c
2 , equation (4.31) is differen-

tiated along φU giving:

0 = α(φUα) + 4β(φUβ) > α(φUα) + 6βc = −3β3 ⇒

β > 0.
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Since β > 0 and c < 0 (due to (4.31)), equation (4.31) is rewritten as211

(4.33) β2 + βc + c = −α2

4
+ βc < 0.

From (4.33), we observe that f(β) = β2 + βc + c is always negative for every β.212

However the discriminant of f(β) is c2−4c > 0, due to (4.31), which is a contradiction.213

Therefore the set N1 is empty and the lemma is proved. ¤214

Lemma 4.6. Let M be a real hypersurface of a complex plane M2(c) satisfying (1.1).215

Then, N = f¡ .216

Proof. From Lemma 4.5 we have α = 0 in N . Then (2.4), combined with (2.6), yields217

(4.34) lX =
c

4
[X − η(X)ξ]− g(X, U)β2U, lU = (

c

4
− β2)U, lφU =

c

4
φU.

Condition (1.1) for X = Y = U yields (∇U l)U = κ{g(φAU,U)ξ}, which is further218

analyzed with the aid of (4.34) and Xg(Y, Z) = g(∇XY, Z) + g(Y,∇XZ), giving219

(4.35) −2β(Uβ)U − β2∇UU + (
c

4
+ κ)g(AU, φU)ξ = 0.

The inner products of (4.35) with U , φU and ξ (using also the rule Xg(Y, Z) =220

g(∇XY, Z) + g(Y,∇XZ) and (2.6)) imply respectively221

(4.36) (Uβ) = 0, g(∇UU, φU) = 0, (
c

4
+ κ− β2)g(AU, φU) = 0.

Similarly, putting X = φU , Y = U in (1.1) we obtain (∇φU l)U = κ{g(φAφU,U)ξ},222

which is further analyzed with the aid of (4.34) and Xg(Y, Z) = g(∇XY, Z) +223

g(Y,∇XZ), giving224

(4.37) −2β(φUβ)U − β2∇φUU + (
c

4
+ κ)g(AφU, φU)ξ = 0.

The inner products of the (4.37) with φU and U result respectively to225

(4.38) g(∇φUU, φU) = 0, (φUβ) = 0.

Finally, putting X = Y = φU in (1.1) we obtain (∇φU l)φU = κ{g(φAφU, φU)ξ},226

which is further analyzed with the aid of (4.34) and (4.38), giving ( c
4 +κ)g(AU, φU) =227

0. Combining the last relation with (4.36) we have g(AU, φU) = g(U,AφU) = 0. This228

equality using β = g(Aξ, U) = g(AU, ξ), g(AφU, ξ) = g(φU,Aξ) = 0, leads to the229

following decompositions:230

(4.39) AU = λU + βξ, AφU = µφU,

where µ = g(AφU, φU). (2.3), (2.6), (4.36) and (4.39) are used to develop (∇UA)ξ −
(∇ξA)U = − c

4φU -which holds due to (2.5). Therefore after the development we end
up to:

β∇UU − λµφU − (ξλ)U − λ∇ξU − (ξβ)ξ − β2φU + A∇ξU = − c

4
φU.
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The inner product of the above relation with φU , combined with (2.6), (4.34), (4.36)231

and (4.39) results to232

(4.40) −λµ + (µ− λ)g(∇ξU, φU)− β2 +
c

4
= 0.

In a similar way, the relation (∇φUA)ξ − (∇ξA)φU = c
4U is analyzed with the aid of233

(4.38), (4.39), giving234

(4.41) β∇φUU + βµξ + λµU − (ξµ)φU − µ∇ξφU + A∇ξφU =
c

4
U,

whose inner product with ξ because of (2.3) and (2.6) yields235

(4.42) g(∇ξU, φU) = 3µ.

Replacing with (4.42) in (4.40) we obtain236

(4.43) 3µ2 − 4λµ− β2 +
c

4
= 0.

On the other hand, the inner product of (4.41) with U , because of (4.42), leads to

3µ2 − 2λµ− β2 − c

4
= 0.

So, the above relation and (4.43) give237

(4.44) λµ =
c

4
, λ, µ 6= 0.

Finally, relation (∇UA)φU − (∇φUA)U = − c
2ξ is developed by virtue of (4.38) and

(4.39) giving

(Uµ)φU + µ∇UφU −A∇UφU − (φUλ)U − λ∇φUU+

βµU + A∇φUU = − c

2
ξ.

The inner product of the above equation with U , because of (4.36), (4.38), (4.39)
yields

λ + 2µ− (φUλ) = 0.

However, (4.43) and (4.44) yield 3µ2 − 3c
4 − β2 = 0 which is differentiated along

φU (see also (4.38), (4.44)) giving (φUµ) = 0. Relation (φUµ) = 0 and (4.44) give
(φUλ) = 0. Combining the last relation with λ + 2µ− (φUλ) = 0 we get

λ + 2µ = 0.

From the above equation and (4.44) we obtain238

(4.45) µ2 = − c

8

On the other hand, condition (1.1) for X = U , Y = ξ, with lξ = 0, (2.1) and (2.3)
infer −lφAU = κφAU . Analyzing this equation with the aid of (4.34) we are led to

c

4
+ κ = 0.
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The above relation, (4.37) and (4.38) yield

∇φUU = 0 ⇒ g(∇φUU, ξ) = 0 ⇒ g(∇φUξ, U) = 0 ⇒ g(U, φAφU) = 0,

which by virtue of (4.39) yields µ = 0, a contradiction due to (4.45). Therefore the239

set N is empty. ¤240

5 Proof of main theorem241

From Lemma 4.6 in the hypersurface M , we have β = 0. Therefore M is Hopf i.e.242

Aξ = αξ. According to [9] the function α must be constant.243

Let H1 be the set of points p ∈ M such that Aξ = αξ, (α 6= 0) in a neighborhood244

around p, and H2 be the set of points q ∈ M such that Aξ = 0, in a neighborhood245

around q. Then H1 ∪H2 is open and dense in the closure of M .246

At every point of H1 there exists a φ-basis {e, φe, ξ} such that, the vector fields247

Ae, Aφe are decomposed as follows:248

(5.1) Ae = λ1e, Aφe = λ2φe, Aξ = αξ,

where λ1, λ2 are functions. Also equation (2.4) gives249

(5.2) lX =
c

4
[X − η(X)ξ] + αAX − α2η(X)ξ,

le =
c

4
e + αAe, lφe =

c

4
φe + αAφe.

By making use of (2.5) for X = e, Y = φe we obtain ∇eAφe − A∇eφe − ∇φeAe +250

A∇φee = − c
2ξ, whose inner product with ξ (combined with (5.1), (2.3) and (3.9))251

results to252

(5.3) α(λ1 + λ2)− 2λ1λ2 = − c

2
.

Similarly, (2.5) for X = e, Y = ξ yields ∇eAξ − A∇eξ − ∇eAξ + A∇eξ = − c
4φe,253

whose inner product with φe (combined with (5.1), (2.3) and (3.9)) results to254

(5.4) αλ1 − λ1λ2 − (λ1 − λ2)g(∇ξe, φe) = − c

4
.

Finally, (2.5) for X = φe, Y = ξ yields ∇φeAξ − A∇φeξ −∇φeAξ + A∇φeξ = − c
4φe,255

whose inner product with e (combined with (5.1), (2.3) and (3.9)) results to256

(5.5) αλ2 − λ1λ2 − (λ1 − λ2)g(∇ξe, φe) =
c

4
.

Combining (5.4) and (5.5) we obtain α(λ1 − λ2) = − c
2 . The last equation and (5.3)257

result to258

(5.6) λ2(λ1 − α) = 0.

Let H ′
1 ⊆ H1 be the set of points p′ ∈ H1 such that λ1 − α 6= 0 in a neighborhood259

around p′. Therefore λ2 = 0 and from (5.1) and (5.3) there exist 3 constant principal260

curvatures: α, − c
2α and 0.261
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• CP 2. According to Takagi [14] (see also [9]), the only possible three-dimensional262

hypersurface with three constant distinct principal curvatures is type B, where α =263

2cotr and the other eigenvalues are cot(r − π
4 ) and −tan(r − π

4 ). Therefore it must264

be cot(r− π
4 ) = 0, −tan(r− π

4 ) = − c
2α or cot(r− π

4 ) = − c
2α , −tan(r− π

4 ) = 0, which265

both lead to contradictions.266

• CH2. Based on the list of eigenvalues ([1], [8], [9]), the only way to have zero as an267

eigenvalue is to have a tube of radius r = 0 which is impossible (r > 0).268

Therefore in both CP 2 and CH2 we have a contradiction and H ′
1 = f¡ .269

We have proved that in H1, α = λ1 holds. So, due to (5.3) we have two constant270

distinct principal curvatures: α of multiplicity 2 and λ2 = c
2α + α of multiplicity 1.271

Based on [8], [13] this can only happen when M is a real hypersurface of type (B)272

in CH2, that is a tube of radius r = 1√
|c| ln(2 +

√
3) around totally real geodesic273

RHn( c
4 ). At every point of H2, there exists a φ-basis {e, φe, ξ} too, such that, the274

vector fields Ae, Aφe are decomposed as following:275

(5.7) Ae = µ1e, Aφe = µ2φe, Aξ = 0,

where λ1, λ2 are functions. Also equation (2.4) gives276

(5.8) lX =
c

4
[X − η(X)ξ], le =

c

4
e, lφe =

c

4
φe.

By virtue of (3.9) it is shown that ∇ξe⊥{ξ, φe}. Therefore we have

∇ξe = n1φe, n1 = g(∇ξe, φe).

In a similar way, from (3.9) and (2.3) it is proved that∇ee⊥{ξ, e},∇φee⊥e, g(∇φee, ξ) =277

µ2.278

So we have the following covariant derivatives:279

(5.9) ∇ξe = n1φe, ∇ee = n2φe, ∇φee = n3φe + µ2ξ,

where n1, n2, n3 are functions on H2.280

Using the above derivatives and the second of (2.3) we also have281

(5.10) ∇ξφe = −n1e, ∇eφe = −n2e− µ1ξ, ∇φeφe = −n3e.

Using condition (1.1) for X = e, Y = φe and X = φe, Y = e, and by virtue of (5.8),
(5.9), (5.10), we obtain respectively

(
c

4
+ κ)µ1 = 0, (

c

4
+ κ)µ2 = 0.

From the above relations we conclude that κ = − c
4 , otherwise we would have µ1 =282

µ2 = 0 which is a contradiction.283

Equation (2.5) for X = e, Y = φe yields (∇eA)φe − (∇φeA)e = − c
2ξ. The last284

relation is further analyzed by virtue of (5.7), (5.9) and (5.10) giving285

(5.11) (eµ2) = n3(µ1 − µ2), (φeµ1) = n2(µ1 − µ2), µ1µ2 =
c

4
.
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In a similar way, from (2.5) we take (∇eA)ξ − (∇ξA)e = − c
4φe, which is further286

developed with the aid of (5.7), (5.9) and (5.10), giving287

(5.12) (ξµ1) = 0 n1(µ1 − µ2) = 0.

Again from (2.5) we have (∇φeA)ξ − (∇ξA)φe = c
4e, which yields288

(5.13) (ξµ2) = 0.

Next we make use of (2.4) for X = Z = e, Y = ξ and obtain R(e, ξ)e = − c
4e. On

the other hand it is R(e, ξ)e = ∇e∇ξe − ∇ξ∇ee − ∇[e,ξ]e. So , equalizing the two
expressions of R(e, ξ)e we get

∇e∇ξe−∇ξ∇ee−∇[e,ξ]e = − c

4
e.

The last equation is developed with the aid of (2.3), (5.7), (5.9), (5.10), resulting to289

(5.14) (en1)− (ξn2) = (µ1 − n1)n3.

Similarly, the calculation of R(φe, ξ)e yields

∇φe∇ξe−∇ξ∇φee−∇[φe,ξ]e = 0.

The above relation yields290

(5.15) (φen1)− (ξn3) = (n1 − µ2)n2.

Finally, (2.4) gives R(e, φe)e = −(c + µ1µ2)φe which which eventually yields291

(5.16) (en3)− (φen2) + n2
2 + n2

3 + n1(µ1 + µ2) = −(c + µ1µ2).

We are going to distinguish two cases: µ1 = µ2 and µ1 6= µ2.292

If µ1 = µ2 then from (5.11) and (5.12)-or (5.13)-we have two distinct constant293

principal curvatures α = 0 and µ1 = µ2 =
√

c
2 , c > 0. Based on [13] M is a geodesic294

hypersphere of radius r = π
4 .295

If µ1 6= µ2 then (5.12) implies n1 = 0. If at least one of µ1, µ2 was constant, then296

(5.11) and (5.14) would give n2 = n3 = 0. Then the last relation combined with (5.6)297

and the third of (5.11) would result to c = 0 which is a contradiction. This means298

that the functions µ1, µ2 must not be constant. ¤299

Remark. A hypersurface of type (B) mentioned in the main theorem, can be300

considered of many points of view. Based on [8] we can classify them with respect to301

its principal foliations and geodesics. In addition, we can find necessary and sufficient302

conditions on real hypersurfaces satisfying Aξ = αξ, in [4], [5], [6].303
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