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Pseudo d-parallel Jacobi structure operators in
non-flat complex planes

Th. Theofanidis

Abstract. Real hypersurfaces of a complex space form M, (c) have been
studied from many points of view. The real hypersurfaces which satisfy
(VxD)Y = k{n(Y)pAX + g(pAX,Y)E}, where [ is the Jacobi structure
operator and k is constant, are called "real hypersurfaces with pseudo
D—parallel Jacobi structure operator”. This class has been classified in
[7], for the case when M, (c) = CP™ (¢ > 0) and n > 3. In the present
paper, the same class is classified for the case of a complex plane M (c)
where the sectional curvature ¢ can be positive or negative. In addition,
the constant x is now a function, therefore, a larger class is produced and
classified.

M.S.C. 2010: 53B25, 53D15
Key words: Real hypersurface; structure Jacobi operator; pseudo-parallel tensor
field.

1 Introduction

An n-dimensional Kaehlerian manifold of constant holomorphic sectional curvature
¢ is called complex space form, which is denoted by M, (c). A complete and simply
connected complex space form is complex analytically isometric to a projective space
CP™ if ¢ > 0, a hyperbolic space CH" if ¢ < 0, or a Euclidean space C" if ¢ = 0.
The induced almost contact metric structure of a real hypersurface M of M, (c) will
be denoted by (¢,&,7,9). The vector field & is defined by £ = —JN where J is the
complex structure of M, (c) and N is a unit normal vector field.

Real hypersurfaces have been studied by many authors and under several condi-
tions ([1], [2], [13], [14]). An important class of hypersurfaces is the Hopf Hypersur-
faces, that is real hypersurfaces satisfying A¢ = a&, where A is the shape operator
and a = g(Ag, §).

Certain authors have studied real hypersurfaces under conditions which involve
the Jacobi structure operator (X = R X = R(X,&)¢ ([10], [11], [12]).

In [7], H. Lee, J. D. Pérez and Y. Jin Suh introduced the notion of pseudo D-
parallel structure Jacobi operator, that is [ satisfies the following condition:

(1.1) (VxD)Y = r{n(Y)pAX + g(¢AX,Y)E}

DirrERENTIAL GEOMETRY - DYNAMICAL SYsSTEMS, Vol.15, 2013, pp. 105-121.
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106 Th. Theofanidis

where x is a non-zero constant, X € D and Y € TM. They studied the above
condition in real hypersurfaces of CP™, n > 3 classifying them.

However, the problem remains open for the case of CH™, n > 3, and the case of
Ms(c) (both ¢ > 0 and ¢ < 0). In the present paper the latter case is treated in an
even more generalized form: the constant  in (1.1) is replaced by a function without
any other restriction for x. Namely we prove the following:

Main Theorem. Let M be a real hypersurface of a complex plane My(c), whose
structure Jacobi operator satisfies condition (1.1) for some non-vanishing function k.
Then M is a Hopf hypersurface. Furthermore, we have:

o if g(AE, &) #0, then M is a tube of radius r = ﬁln@ +v/3) around totally real

geodesic RH"(§) of a complex hyperbolic space CH?;
o if g(A,£) =0, then the function k is constant and equal to —5, and we have one
of the following cases:

1) A has two principal curvatures (« = 0, Ay = Ao = %) and M is a geodesic
hypersphere of radius r = 7 on CcP?,

2) A has three principal curvatures (o =0, A1,A2), where A1, A2 are not constants
and satisfy M2 = §.

2 Preliminaries

Let M, be a Kaehlerian manifold of real dimension 2n, equipped with an almost
complex structure J and a Hermitian metric tensor G. Then for any vector fields X
and Y on M,,(c), the following relations hold: J2X = -X, G(JX,JY)=G(X,Y),
VJ = 0, where V denotes the Riemannian connection of G of M,.

Let Mas,—1 be a real (2n — 1)-dimensional hypersurface of M,,(c), and denote by
N a unit normal vector field on a neighborhood of a point in Ma,_; (from now on
we shall write M instead of Ms,_1). For any vector field X tangent to M we have
JX = X +n(X)N, where ¢ X is the tangent component of JX, n(X)N is the normal
component, and £ = —JN, n(X)=g(X,¢), g=G|u.

By properties of the almost complex structure J and the definitions of  and g,
the following relations hold ([3]):

(2.1) ¢*=-I+n®E, nop=0, ¢=0, n¢ =1

(2.2) 9(dX,0Y) = g(X,Y) —n(X)n(Y),  g(X,9Y) = —g(¢X,Y).

The above relations define an almost contact metric structure on M which is denoted
by (¢,€,9,m). When an almost contact metric structure is defined on M, we can
define a local orthonormal basis {e1, ea, ..., _1, Pe1, pea, ...de,_1, £}, called a p—basis.
Furthermore, let A be the shape operator in the direction of N, and denote by V the
Riemannian connection of g on M. Then, A is symmetric and the following equations
are satisfied:

(2.3) Vx¢ = 9AX, (Vx@)Y =n(Y)AX — g(AX,Y)¢
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Pseudo d-parallel Jacobi structure operators 107

As the ambient space M, (c) is of constant holomorphic sectional curvature ¢, the
equations of Gauss and Codazzi are respectively given by:

(24)  ROXY)Z =9, 2)X — g(X, 2)Y +g(6Y. 2)6X — g(9X, Z)¢Y

(25)  (VxA)Y = (VrA)X = In(X)8Y —n(Y)oX —29(¢X.Y)e.

The tangent space T, M, for every point p € M, is decomposed as following: T,M =
D+ @ D, where D = ker(n) = {X € T,M : n(X) = 0}

Based on the above decomposition, by virtue of (2.3), we decompose the vector field
A¢ in the following way:

(2.6) A€ = af + BU,

where § = |¢V¢£], a is a smooth function on M and U = —%QSVfg € ker(n), provided
that 8 # 0.

If the vector field A€ is expressed as A{ = af, then £ is called principal vector
field.

Finally differentiation will be denoted by ( ). All manifolds, vector fields, e.t.c.,
of this paper are assumed to be connected and of class C*°.

3 Auxiliary relations

Let N ={p € M : 3 +# 0 in a neighborhood around p}. We define the open subsets
Ni and Ny of N such that:

N1 ={pe N :a#0in a neighborhood around p},
No ={p e N :a=0 in a neighborhood around p}.

Then N7 U N5 is open and dense in the closure of N.

Lemma 3.1. Let M be a real hypersurface of a complex plane Ms(c). Then the
following relations hold on N;.

i c 52 0 0 € c
2
(3.2) Vel = poU, Vi = _éU 4 (V _ < + ﬂ) U,
« a Ada «

ws=~ (5 ) v

é € c
(33) VfU = /{1¢U, VU = kU + ag, V¢UU = k3oU + (E — 5) £
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v ¢ B
(34) VeoU = —kiU = 36, VyoU = —roU — (= — — + — | &,
a  da «
)
VoupU = —r3U — 557
where K1, Ko, k3 are smooth functions on N7.
Proof. From (2.4) we obtain
(3.5) U = EU AU — BAE,  1oU = %zsU + aAQU.

The inner products of (U with U and ¢U yield respectively

v e B b
. A = - — — J— A — —
(3.6) 9(AUU) == = =+ —, g(AU,¢U) = —,
where v = ¢g(IU,U) and § = g(IU, ¢U). So, (3.6) and g(AU, &) = g(AE,U) = 3, yield
the first of (3.1). Since [ is symmetric with respect to metric g, the scalar products
of the second of (3.5) with U and ¢U yield respectively

<

4a’

where € = g(I¢U, ¢U). So, (3.7) and g(AdU, &) = g(AE, ¢U) = 0, yield the second of
(3.1). Combining (3.1) and (3.5), we obtain

0
(3.7) g(ABUU) = =, g(AQU.6U) = = -

(3.8) U =AU + 60U, 16U = 6U + eqU.

By virtue of (2.6) and (3.1), the first of (2.3) for X = ¢, X = U and X = ¢U yields
(3.2).
It is well known that:

(3.9) Xg(¥,2) = g(VxY, Z) + (Y, Vx2).

The relation (3.9) for X = ¢, Y =Z=U and X = Z =¢, Y = U, because of
(3.2), implies respectively g(V:U,U) =0 = g(VU, €). So if we put g(VeU, oU) = Ky,
we have the first of (3.3). Similarly (3.9) for X =Y =Z =U and X =Y = U,
7 = &, because of (3.2) yields respectively g(VyU,U) =0, g(VyU,§&) = g. Therefore,
putting ¢(VyU, ¢U) = ko, we have the second of (3.3). By use of (3.2) and (3.9) we
have that g(VeuU,U) =0 and g(V4uU, &) = £ — 4% Then if we set g(VypU, oU) =
k3, we get the third of (3.3). In a similar way using (3.9) we obtain (3.4). O

The condition (1.1) for X =Y = U yields
(Vul)U = r{n(U)pAU + g(¢AU, U)¢}.

The above equation is further developed by making use of Lemma 3.1 and (3.8), giving
the following:

2
(UNU + ka(y — €)oU + (Ud) U — 2k26 — 6 (ﬁa - 4604) £= 9 .



110

111

112

113

114

115

116

117

118

119

120

121

122

123

Pseudo d-parallel Jacobi structure operators 109

Since the vector fields U, ¢U and £ are linearly independent, the last relation leads to

(3.10) (3% — Z) = 0k,
(3.11) (U~) = 2k20,
(3.12) (U) = kale — 7).

The condition (1.1) for X = U, Y = ¢U yields
(Vul)oU = k{n(U)pAdU + g(¢AU, ¢U)&}

The above equation is further developed by making use of Lemma 3.1, (3.8) and
(3.12), giving the following:

52 2 9
20ko0U + —& + (Ue)pU — € 17£+ﬂ E=k l,i+é .

o a 4da  « a da «

Since the vector fields U, ¢U and & are linearly independent, the last relation leads to

5 c 52 52
1 y_c PN _o
(3.13) (m-l—e)(a 4a+a) "
(3.14) (Ue) = —2k20.

Putting X = ¢U, Y = U in (1.1) we obtain

(Voul)U = k{n(oU)pAU + g(¢ AU, U)E}.

The above equation is further developed by making use of Lemma 3.1, (3.8), (3.12)
and the linear independency of the vector fields U, ¢U giving the following:

(3.15) (et (S -£) =2,
(3.16) (¢U7) = 2539,
(3.17) (@U0) = kz(e — 7).

Finally putting X =Y = ¢U in (1.1) we get
(Voul)oU = r{n(oU)9 AU + g(¢AdU, 9U)E},

which, in a similar way, implies

(3.18) —% = K0,
(3.19) (pUe€) = —2k30.

From (3.10) and (3.18) we obtain the following lemma:

Lemma 3.2. Let M be a real hypersurface of a complex plane My (c) satisfying (1.1).
Then on N7 we have § = 0.
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4 The set N

We are going to use equation (2.5) for X|Y € {U,¢U,£}. For X = U, Y = £ we
have (VyA)§ — (VeA)U = —$¢U. The last relation is further developed by virtue of
Lemmas 3.1 and 3.2, yielding:

(4.1) (Ua) = (£5),
(e _c P
2 wn=(e(2-1m+%))
€ ¢ Y c i Y c 32 € c
(4.3) '7""‘526_(5_@) <Ot " 1o + a) — kK1 (OL T o + a>+l€1 (a - E) =0.
In a similar way, (2.5) for X = ¢U, Y = ¢ yields
(4.4) (6Ua) +35(= = =) —rif—af = 0.

(45) <¢Uﬁ>+<€—")(7—C+f)+m(;_;)_m(7_c+52)

a 4o’ \a Ada a 4o «

—[% —€e=0,
€ c

(4.6) g(a—a)zfggﬂ.

Similarly, the relation (2.5) for X = U, Y = ¢U yields

oy (1P
(47) U(a 4a)ﬂ3<a a+a>’
(4.8) RIS WY (e B rog(£-2)
' \a aa a 4o« a 4o

- (¢U(”—c+ﬁz)) =0,

a Ao «
We now define the subset N1 C N; to be the set of points p € N7 such that v # € in

a neighborhood around p.

Lemma 4.1. Let M be a real hypersurface of a complex plane M (c) satisfying (1.1).
Then Ny = & and v = € on Ni.

Proof. Throughout the proof of this Lemma we work in N’;. By definition of N/,
equations (3.12), (3.17) and Lemma 3.2 yield ko = k3 = 0. So, using (2.4) for
X=7=U,Y =¢ and Lemma 3.1 we take

R(U, U = —¢.
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On the other hand, by virtue of Lemmas 3.1, 3.2, ko = k3 = 0 and (4.3) we obtain
R(U,§U = VyVeU —VeVylU — Vyye-voU = (Uk1)pU — A€,
The last two equations lead to
(4.9) (Uky1) = 0.
In a similar way, we calculate R(U, ¢U)U first from (2.4) and then from
R(U,¢U)U = VuyVeuU — VeuVuU = Vyygv-v,,uU,

we conclude that

Yy ¢ B € c v e B2« ¢
410) 2(X- 2% (f—f) T rLe© —0.
( ) (a 4a+a> a 4o +K1(a 4a+a+a 4o e

Similarly, the calculation of R(¢U,£)¢U first from (2.4) and then from
R(QU,§)PU = VouVedU — VeV U = Vv ,pe-veov oU

implies

(411) (Ur1) =28 (= = =) +rab.

Let us assume there is a point p; € A’y such that € # %- Then there exists a
neighborhood around p; such that € # ¢ in this neighborhood. Equation (3.15) and
Lemma 3.2 yield kK = —v, which is combined with (3.13) and Lemma 3.2 implying

(’yfe)(lfiJrﬁ(j)*O Since on N’y v # € holds, thenweobtamff—Jrﬁ =0.

[eY 4o
However the last relation, (4.8) and k2 = 0 imply € = § which is a contradlctlon

Therefore there exists no point in N’y such that € # ¢ and so in N’} we have € = £.
In this case, (4.3), (4.8) and (4.10) (with ko = 0) yield respectively

_(r_ e P 3 v P
(4.12) 7—“1(0[—40[4- )7 ¢U(o¢ 4oz+ ) B(a_éloz—i_a)’

2
_C:m<7_+ﬂ)
a 4o

From (4.12) we observe that k1 # 0 (otherwise ¢ = 0 which is a contradiction). So,

the differentiation of —c = r1(2 — & + %2) along ¢U implies
gl B 3
(¢Uf<c1)< 4 + )+m <¢U(a 4a+ )] =0.

Replacing in the above equation the term (¢Uk1) from (4.11)(e = §) and by virtue
of the second of (4.12), we take x16( — 5 + %2) = 0= ¢ =0 (due to (4.12)), which
is a contradiction. So N/} = & and v = € in N]. O

Lemma 4.2. Let M be a real hypersurface of a complex plane Ms(c) satisfying (1.1).
Then on N1, v # §.
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Proof. Combining (4.8), with (4.3), (4.4), (4.5) we obtain

¥ c 35 C.9 C
(-2 - 213573
(4.13) oU <a 4o o (a 4a) 4
If v = 7 then the last relation yields = 3B¢ — 0 which is a contradiction. Hence we have
v#F T 1 U

Lemma 4.3. Let satisfying (1.1). Then on N1, k3 = 0.

Proof. Because of (3.3), (3.4), (4.6), (4.7) and (4.13), the well known relation [U, U] =
VuoU — VU takes the form

U, 6U)(2 — =) =
Kakiz 3 Yoo B 3Bks[y ey v«
B h e Rl (i TR N i)
On the other hand (4.4), (4.5), (4.7) and (4.13) yield:
yooe, 'y c L\
UG =30 =V (UG - ) v (VG - ) =
3UB) [,y ¢ ¢ 38W0a)y,y c¢.o c] 6ryB c 32
i | Rl (bt | R b e GG
2638,y ¢\ 7 B% 2m3By  miksf® ks 3rafy
* a (5*£)<E*£+ i a a2 a  ad
3k
4a3
The last equations using (4.1), (4.2) and (4.6) yield
3 3
@) [ - 5[ - 2 - ea) - BloURs) =
i Y ooc 58 v ¢
R R e
In a similar way, from the action of [¢,¢U] on I — = we obtain
3.7 c 343 c c B
(4.15) a[(a - B) }(5/3) - *[(a - @) - Z](fa) — B(¢Uks) =
v e 6829
[v - (a - @) - 7(& - 4a)]H3
Comparing (4.14) with (4.15) and by making use of (4.3) we obtain
v Cv2_ ¢ _
(G5 "2 =0

Let us assume there is a point p on ANj such that k3 # 0. Then, because of the
continuity of k3 there exists a neighborhood W(p) around p such that k3 # 0. This

fact and the last equation imply that (1 — %)% = ¢ on W(p). Differentiating the last

equation along & and because of Lemma 4.2 we obtain (2 — ;%) = 0. Combining

the last equation with (4.6) we are led to k3 = 0, which is a contradiction. Therefore
W (p) is empty and k3 = 0 on Nj. O
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By virtue of (2.4) for X = Z = ¢U, Y = £ we obtain
R(9U, €)8U = —¢ = B(= — -)U.

o 4o

On the other hand, using Lemmas 3.1 and 4.3 we have

R(oU,§)oU = VyuVedpU — VeV U — Vy, e o0 U =

T_Cy_ . 1_C
[—(0Um) + B = ) = ma(L = D)+ mima + B | U+
T_ey_ ey By e B e
[ m(a 4a) (9UB) (a 4a)(a 4oy * a ) +Kl(a 4oy + a )+ 576
Equalizing the above two expressions of R(¢U, &)U, we are led to
o c Y c _
(4.16) (¢U’“)_2ﬁ(a_@)+“2(&_ E)—mng—mﬁ—o.
Using (3.11), (4.1), (4.2), (4.6), (4.7) and Lemmas 3.1, 4.1, 4.2, 4.3 we have
ﬁQ
(4.17) o) = (€8) =0, (UB)=-"5(ca).
Since U(2—5) = &(2—55) =0, due to Lemmas 4.1, 4.2 and (4.6), (4.7), the equality

[U,¢](2 — &) = 0 holds. However, the same Lie bracket is calculated from (3.2) and

(B33)as [UE|(Z —5)=(F -5+ ’%2 — k1)pU(L — ). So the two expressions of

4o
U2 — £) yield
T B Tooey
(4.18) (a ot m) OU(> — =) =0.

Lemma 4.4. Let M be a real hypersurface of a complex plane My (c) satisfying (1.1).
Then on N, the relation It %2 = k1 holds.

Proof. If there existed a point p’ € N7 such that T — £ + '%2 # k1 in a neighborhood

W1 of p, then (4.18) would give ¢pU (2 — ;%) = 0. Developing this equation with the

aid of Lemmas 3.1, 4.2, 4.3 and relation (3.16), we result to
(4.19) (pUc«) = 0.
(4.19) is combined with (4.4) and Lemma 4.1, giving

v ¢
4.2 =3(L-
(420) " 3(a 4a) “

(4.20) is combined with (4.3), (4.13), (4.19), (3.16) and Lemmas 4.1, 4.3, giving

1 c ¥ c

(4.21) HzZ—B(’Y—E)-I—Zl(a—@)E—ﬁ.

So, replacing with (4.20), (4.21) in (4.16), and by making use of (3.16), (4.19), Lemma

4.3 we arrive to e
9 o (Y c ) ca  20%c
— - — — — — =0.
(# @ )(a 4o + 2 o
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114 Th. Theofanidis

Differentiating the above relation along ¢U (because of (3.17), (4.19), Lemma 4.3), it
is proved

c 2c
w2 wn (- 2)-%] o
Let W5 C W; be the set of points p € Wy Where (pUPB) # 0 in a neighborhood around
p. So, in Wy (4.22) implies (L — £) -2 =0= (2 - £)* = 2¢% - Combining this

relation with (3.16), (4.13), (4.19) and Lemma 4.3 we obtain a? = 8¢ = (Ua) =
(éa) = 0. Therefore (4.17) gives [U,£]3 = U(E6) — §(Uﬁ) = 0. The same Lie bracket
is also calculated from Lemma 3.1 as [U, 5]5 (E i —|— = —k1)(¢Up) which means
(2 - 4a + B— — k1) (@UB) = 0. Since = — = + ﬂ— — K1 # O it follows that (¢US) =0
which is a contradlctlon since we have assumed (¢UB) # 0. This means that W is
empty and in Wy we have (¢US3) = 0.

In this case (4.5) is combined with (4.20) giving

c 52 c
4.23 - Ty ———)=0.
(4.23) (G- w) a(a o)
However from (3.16), (4.13), (4.19) and Lemma 4.3 we obtain (2 — £)? =  which is

combined with (4.23) and Lemma 4.2, resulting to o +23% = 0 which is a contradic-
tion. Therefore Wi is empty and we conclude there exists no point p €N 1 such that

I E + ﬁ # k1 in a neighborhood of p’. This means that I — ;& + -k =0
holds in ./\/1 O

Lemma 4.5. Let M be a real hypersurface of a complex plane Ms(c) satisfying (1.1).
Then N1 is empty.

Proof. From Lemma 4.4 we have T — ;= + 2 — ky. In this case, (4.3) and Lemma
4.1 yield

4.24 =Ll (L _ =

(4.24) "2 164 * Bra 4o *
Moreover, from (3.11), (3.16) and Lemma 4.3, we have [¢U,Uly = (¢U(U7)) —
(U(¢U~)) = 0. The same Lie bracket is calculated from Lemma 3.1 as [¢U, U]y =

22 - &)+ %2} (£7). The previous two relations yield

el 4o

22— 5+ Dien =0

a 4o

If there was point in N such that (£7) # 0 then from the above equation it would
be 2(y — £) 4+ #* = 0. Differentiation of this equation along &, due to (4.6), (4.17)
Lemmas 4.2, 4.3, would lead to () = 0, which is a contradiction.

Therefore it must be (£v) = 0. So, from (4.6), (4.7), and Lemma 4.3 we obtain

(4.25) (Ua) = (UB) = ((a) = (£6) = 0.
In addition, (3.16) with (4.13) and Lemma 4.3 give
c

(4.26) (0Ua) ==30](3 - 30 - 50 ~ 3]
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Also k1 = 1 — & + %2, (4.5) and Lemma 4.1 yield

(e

i C\2 Ik 2
4.27 UB) =~— (L - .
(4.27) @UB) =~ (2 ==+ 5 +8
By virtue of (4.4), (4.26) k1 = 2 — = + % and Lemma 4.1 we get
gl By e
42 A A -
(4.28) (a 4a) * a(a 4a)+7 “

The differentiation of (4.28) along ¢U, in combination with Lemmas 3.1, 4.3 and
(3.16), (4.13), (4.26), (4.27), leads to

T e T

a 4o’ "o 4o o 4o 2
6% 7 _ ¢ 30,
a o Ao 200
In the above equation, the term (2 — ;%)% is replaced from (4.28) and we obtain
(1.20) R R HC R [ ORP AT
' a a 4o a 4da’ 2 2
632 9ﬂ2 _0
a 2 '

In equation (4.29) the term (2 — ;%)% is replaced from (4.28) giving

5¢
4.30 =—.
(4.30) 1=
Now, (4.28) and (4.30) result to
(4.31) o® +48% = —4¢,= ¢ <0,

So by virtue of (4.30) and (4.31), equations (4.24), (4.26) and (4.27) are written
respectively as

3 3 3 3 332
@) m=-f-i5 Ua=TE-E eus =T A

The third of (4.32) gives

3¢ 332
(¢U6)ff—%>0:>(¢w)>*
By virtue of the second of (4.32), (4.31) and (pU ) > 2, equation (4.31) is differen-

tiated along ¢U giving:
0 = a(pUa) +46(¢UB) > a(pUa) + 68c = —33° =
8> 0.
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Since > 0 and ¢ < 0 (due to (4.31)), equation (4.31) is rewritten as
o2
(4.33) 52+ﬂc+c=—z+ﬂc<0.

From (4.33), we observe that f(3) = 32 + B¢ + c is always negative for every f.
However the discriminant of f(3) is ¢>—4c > 0, due to (4.31), which is a contradiction.
Therefore the set N7 is empty and the lemma, is proved. (|

Lemma 4.6. Let M be a real hypersurface of a complex plane Ms(c) satisfying (1.1).
Then, N = & .

Proof. From Lemma 4.5 we have o = 0 in /. Then (2.4), combined with (2.6), yields
¢
4

Condition (1.1) for X =Y = U yields (Vyl)U = s{g(¢pAU,U)¢{}, which is further
analyzed with the aid of (4.34) and X¢g(Y,Z) = ¢(VxY,Z) + g(Y,Vx Z), giving

(434)  IX = JX = n(X)§] - g(X,U)BU, WU = (5 - U, 16U = J6U.

(4.35) 2BUB)U — BVpU + (2 + K)g(AU, U )E = 0.

The inner products of (4.35) with U, ¢U and ¢ (using also the rule Xg(Y,Z) =
9(VxY,Z)+ g(Y,VxZ) and (2.6)) imply respectively

(4.36) UB) =0,  g(VuU,oU) =0, (g + k= B2)g(AU, ¢U) = 0.

Similarly, putting X = ¢U, Y = U in (1.1) we obtain (V4ul)U = k{g(¢AsU,U)E},
which is further analyzed with the aid of (4.34) and Xg¢(Y,Z2) = ¢(VxY,Z) +
9(Y,VxZ), giving

c
(4.37) —26(sUB)U — *°V U + (3 +r)9(AgU, U)E = 0.
The inner products of the (4.37) with ¢U and U result respectively to

(4.38) 9(VeuU,U) =0, (¢UB) =0,

Finally, putting X =Y = ¢U in (1.1) we obtain (Vgyl)oU = r{g(¢AsU, U)LY,
which is further analyzed with the aid of (4.34) and (4.38), giving (§ +x)g(AU, ¢U) =
0. Combining the last relation with (4.36) we have g(AU, ¢U) = g(U, ApU) = 0. This
equality using 8 = g(4¢,U) = g(AU,¢), g(AdU, &) = g(¢U, AE) = 0, leads to the
following decompositions:

(4.39) AU = \U + ¢, AU = pugU,

where = g(A¢U, ¢U). (2.3), (2.6), (4.36) and (4.39) are used to develop (VyA)€ —
(VeA)U = —§¢U-which holds due to (2.5). Therefore after the development we end
up to:

BVuU = MU — (ENU = AVU — (§8)€ — F29U + AV U = —gw
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The inner product of the above relation with ¢U, combined with (2.6), (4.34), (4.36)
and (4.39) results to

(4.40) A+ (1= Ng(VeU,¢U) — 3 + 2 =0.

In a similar way, the relation (VyyA){ — (Ve A)pU = $U is analyzed with the aid of
(4.38), (4.39), giving

(4.41) BV 60U + B + MU = (Ep)8U — pVegU + AVeoU = <U,

whose inner product with & because of (2.3) and (2.6) yields

(1.42) 4(VeU, 6U) = 3.
Replacing with (4.42) in (4.40) we obtain
(4.43) 3u% — ddpu— B2 + 2 =0

On the other hand, the inner product of (4.41) with U, because of (4.42), leads to

3u2—2Au—52—§:0.

So, the above relation and (4.43) give

(4.44) Ao = 2, A # 0.

Finally, relation (VyA)pU — (VyuA)U = —5¢ is developed by virtue of (4.38) and
(4.39) giving

(Un)dU + uVyoU — AV oU — (SUNU — AV gy U+
Bul + AV 4y U = —%g.

The inner product of the above equation with U, because of (4.36), (4.38), (4.39)
yields
A+ 2u — (QUN) = 0.

However, (4.43) and (4.44) yield 3u? — 3¢ — 3% = 0 which is differentiated along
dU (see also (4.38), (4.44)) giving (¢Up) = 0. Relation (¢Up) = 0 and (4.44) give
(¢UA) = 0. Combining the last relation with A + 2 — (¢UX) = 0 we get

A+2u=0.
From the above equation and (4.44) we obtain

(4.45) I I

On the other hand, condition (1.1) for X = U, Y = ¢, with I = 0, (2.1) and (2.3)
infer —l¢p AU = k¢ AU. Analyzing this equation with the aid of (4.34) we are led to

2—1—1{20.
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The above relation, (4.37) and (4.38) yield
VeuU =0= g(VeuU,§) =0= g(Veu§,U) = 0= g(U,¢A9U) =0,

which by virtue of (4.39) yields u = 0, a contradiction due to (4.45). Therefore the
set NV is empty. O

5 Proof of main theorem

From Lemma 4.6 in the hypersurface M, we have § = 0. Therefore M is Hopf i.e.
A€ = . According to [9] the function o must be constant.

Let H; be the set of points p € M such that A = af, (a # 0) in a neighborhood
around p, and Hs be the set of points ¢ € M such that A¢ = 0, in a neighborhood
around gq. Then Hy U Hs is open and dense in the closure of M.

At every point of H; there exists a ¢-basis {e, ¢e, £} such that, the vector fields
Ae, Age are decomposed as follows:

(5.1) Ae = Me, Age = g ¢e, A€ = é,

where A1, Ag are functions. Also equation (2.4) gives

(5.2) IX = Z[X = n(X)¢] + aAX — a’n(X),
le = Ze + ade, lpe = g(be + aAde.

By making use of (2.5) for X = e, Y = ¢e we obtain V. Ag¢e — AV.¢pe — V4. Ae +
AV yee = —5&, whose inner product with £ (combined with (5.1), (2.3) and (3.9))
results to

(5.3) a(A1 + A2) — 2\ ho = ,g,

Similarly, (2.5) for X = e, ¥ = { yields V. A{ — AV . — V AL + AV.L = — e,
whose inner product with ¢e (combined with (5.1), (2.3) and (3.9)) results to

(54) @At = Mz = (= Ao)g(Vee, de) = =7

Finally, (2.5) for X = ¢e, Y = ¢ yields Vg AL — AV & — Vg AL + AV g€ = — e,
whose inner product with e (combined with (5.1), (2.3) and (3.9)) results to

(5.5) ada — Atda — (A1 — A2)g(Vee, ge) = g

Combining (5.4) and (5.5) we obtain a(A; — A2) = —5. The last equation and (5.3)
result to

(56) )\2()\1 - Oé) =0.

Let H{ C H; be the set of points p’ € H; such that \; — @ # 0 in a neighborhood
around p’. Therefore Ay = 0 and from (5.1) and (5.3) there exist 3 constant principal

curvatures: a, —5= and 0.
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e CP?. According to Takagi [14] (see also [9]), the only possible three-dimensional
hypersurface with three constant distinct principal curvatures is type B, where a =

2cotr and the other eigenvalues are cot(r — %) and —tan(r — 7). Therefore it must
be cot(r — ) =0, —tan(r — §) = —5= or cot(r — §) = —5=, —tan(r — 7) = 0, which

both lead to contradictions.

e CH?. Based on the list of eigenvalues ([1], [8], [9]), the only way to have zero as an
eigenvalue is to have a tube of radius » = 0 which is impossible (r > 0).

Therefore in both CP? and CH? we have a contradiction and H| = & .

We have proved that in Hy, a = A; holds. So, due to (5.3) we have two constant
distinct principal curvatures: « of multiplicity 2 and Ay = 5= + a of multiplicity 1.
Based on [8], [13] this can only happen when M is a real hypersurface of type (B)
in CH?, that is a tube of radius r = ﬁln@ + 1/3) around totally real geodesic

Vel

RH™(§). At every point of Hy, there exists a ¢-basis {e, pe,{} too, such that, the
vector fields Ae, Age are decomposed as following;:

(5.7) Ae = ue, Age = pade, A€ =0,
where A1, A2 are functions. Also equation (2.4) gives
c c c
. X =S[x —n(x S = Soe.
5:5) X=SX-nX), le=fe o= oo
By virtue of (3.9) it is shown that Vee L {¢, ge}. Therefore we have

Vee = nige, n1 = g(Vee, ¢e).

In a similar way, from (3.9) and (2.3) it is proved that Ve L{¢, e}, VyeeLe, g(Vgee, &) =

H2-
So we have the following covariant derivatives:

(5.9) Vee = nige, Ve = nage, Vse€ = nzde + 2k,

where n1,no,n3 are functions on Hos.

Using the above derivatives and the second of (2.3) we also have
(5.10) Vepe = —nqe, Vepe = —nge — 1€, Vsepe = —nse.

Using condition (1.1) for X = e, Y = ¢e and X = ¢e, Y = e, and by virtue of (5.8),
(5.9), (5.10), we obtain respectively

C

(GHom=0 (5

4 +I€)u2 =0.

From the above relations we conclude that k = —
to = 0 which is a contradiction.

Equation (2.5) for X = e, Y = ¢e yields (VcA)pe — (VyeA)e = —5€. The last
relation is further analyzed by virtue of (5.7), (5.9) and (5.10) giving

7, otherwise we would have p; =

(5.11) (ep2) = ma(pus — pa). (o) = ma(py — o), papia = 7.
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In a similar way, from (2.5) we take (V.A)§ — (VeA)e = —{de, which is further
developed with the aid of (5.7), (5.9) and (5.10), giving

(5.12) (€p1) =0 ni(p — p2) = 0.

Again from (2.5) we have (V. A)§ — (VeA)pe = {e, which yields

(5.13) (€u2) = 0.

Next we make use of (2.4) for X = Z = e, Y = { and obtain R(e,{)e = —e. On

the other hand it is R(e,§)e = V. Vee — VeVee — Vi ge. So , equalizing the two
expressions of R(e,{)e we get

V.Vee = VeVee = Vioge = —7e.
The last equation is developed with the aid of (2.3), (5.7), (5.9), (5.10), resulting to
(5.14) (en1) = (§n2) = (1 — na)ns.
Similarly, the calculation of R(¢e, {)e yields
VpeVee = VeVigee — Vigege = 0.
The above relation yields

(5.15) (¢eny) — (Ens) = (n1 — p2)ne.

Finally, (2.4) gives R(e, ¢pe)e = —(c + p12)¢e which which eventually yields
(5.16) (en3) — (peng) +n3 +n3 +ny(p1 + p) = —(c+ p1pz).

We are going to distinguish two cases: p; = po and puy # po.

If 1 = po then from (5.11) and (5.12)-or (5.13)-we have two distinct constant
principal curvatures o = 0 and p; = g = %, ¢ > 0. Based on [13] M is a geodesic
hypersphere of radius r = 7.

If 4y # po then (5.12) implies ny = 0. If at least one of pq, ua was constant, then
(5.11) and (5.14) would give ny = n3 = 0. Then the last relation combined with (5.6)
and the third of (5.11) would result to ¢ = 0 which is a contradiction. This means
that the functions p1, e must not be constant. (]

Remark. A hypersurface of type (B) mentioned in the main theorem, can be
considered of many points of view. Based on [8] we can classify them with respect to
its principal foliations and geodesics. In addition, we can find necessary and sufficient
conditions on real hypersurfaces satisfying A¢ = &, in [4], [5], [6].
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