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Abstract. Milnor has classified the flat metrics on Lie groups. In this
paper, we give a basis algebraic proof of Milnor’s classification.
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1 Introduction

In [9], Milnor studied the curvatures of left invariant metrics on Lie groups. For a
Lie group G with a left invariant Riemannian metric g, Milnor considered the left
invariant Riemannian connection ∇ associated to g, i.e., ∇ satisfies the “symmetry”
condition (torsion free)

(1.1) ∇xy −∇yx = [x, y], ∀ x, y ∈ g,

and the compatibility condition (the parallel translation perseveres the metric g ([10]))

(1.2) g(∇xy, z) + g(y,∇xz) = 0, ∀x, y ∈ g,

and in addition, the flatness of the connection ∇ or the metric g corresponds to

(1.3) Rxyz = ∇[x,y]z −∇x∇yz +∇y∇xz = 0, ∀x, y, z ∈ g,

that is, the Riemannian curvature tensor R is zero. In particular, Milnor gave the
classification of the flat metrics (see Theorem 1.5 in [9]).

On the other hand, one can try to find a left invariant Riemannian metric g
associated to a left invariant connection∇ satisfying Eqs. (1.1) and (1.3) such that the
compatibility (1.2) holds. In fact, the manifolds (not necessarily Riemannian) or Lie
groups with a connection ∇ satisfying Eqs. (1.1) and (1.3) have already been studied
independently. Such structures are called affine manifolds or the affine structures on
Lie groups ([2, 6, 7, 8] etc.). Like most of the geometric structures on Lie groups,
the study of left invariant affine structures on a Lie group can be given through the
corresponding structures on its Lie algebra. The left-invariant affine structures on a
Lie group G bijectively correspond to the left-symmetric algebra structures on the
Lie algebra g of G and the correspondence is given by

(1.4) ∇xy = xy, ∀x, y ∈ g.
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Left-symmetric algebras also appear in many other fields in mathematics and mathe-
matical physics (see [4] and the references therein). Thus it is natural to study the left
invariant Riemannian metrics on a Lie group G by considering the left invariant affine
structures on G with a compatible Riemannian metric in terms of their corresponding
left-symmetric algebras. By this view, there is a new proof of Milnor’s classification
theorem in [5].

But the proof of proposition 3.4 in [5] (i.e. Theorem 3.5 in this paper) is based
on the study on affine representations in [3]. In this paper, we give a basic algebraic
proof of Theorem 3.5, hence a basic algebraic proof of Milnor’s classification theorem.

2 Preliminaries on left-symmetric algebras

For self-contained, we recall some basic facts on left-symmetric algebras (cf. [6, 8],
etc.).

Definition 2.1. Let A be a vector space over a field F with a bilinear product
(x, y) 7→ xy. Then A is called a left-symmetric algebra if for any x, y, z ∈ A, the
associator

(2.1) (x, y, z) = (xy)z − x(yz)

is symmetric in x, y, that is,

(2.2) (x, y, z) = (y, x, z), or equivalently (xy)z − x(yz) = (yx)z − y(xz).

Let A be a left-symmetric algebra. Then A is called trivial if all products are zero.
For any x, y ∈ A, let L(x) and R(x) denote the left and right multiplication operator
respectively, that is, L(x)(y) = xy, R(x)(y) = yx.

Proposition 2.1. Let A be a left-symmetric algebra.
(1) The commutator

(2.3) [x, y] = xy − yx, ∀x, y ∈ A,

defines a Lie algebra g(A), which is called the sub-adjacent Lie algebra of A and A is
also called the compatible left-symmetric algebraic structure on the Lie algebra g(A).

(2) Let L : A → gl(A) be a linear map defined by x 7→ L(x) (for every x ∈ A).
Then L gives a regular representation of the Lie algebra g(A), that is,

(2.4) [L(x), L(y)] = L([x, y]), ∀x, y ∈ A.

Proposition 2.2. If a real or complex Lie algebra g has a compatible left-symmetric
algebra structure, then [g, g] 6= g.

Definition 2.2. Let A be a left-symmetric algebra. A bilinear form f : A × A → F
is called left invariant if f satisfies

(2.5) f(xy, z) + f(y, xz) = 0, ∀x, y, z ∈ A.
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3 A basic algebraic proof of a theorem of Milnor

In this section, let A be a real left-symmetric algebra and f be a positive definitive
symmetric left invariant bilinear form on A. For any subspace V in A, set

(3.1) V ⊥ = {x ∈ A | f(x, y) = 0, ∀ y ∈ V }.

Recall that the adjoint F ∗ of a linear transformation F on A with f is defined by the
formula

(3.2) f(F (x), y) = f(x, F ∗(y)), ∀ x, y ∈ A.

The transformation F is self-adjoint if F ∗ = F and skew-adjoint if F ∗ = −F . So Eq.
(2.5) is equivalent to the fact that L(x) is skew-adjoint for any x ∈ A. For any Lie
algebra g, adx is the linear transformation given by adx(y) = [x, y] for any x, y ∈ g.

Lemma 3.1 ([5]). [A, A]⊥ = {x ∈ A | R(x) = R(x)∗}.
Proof. For any x, y, z ∈ A, x ∈ [A,A]⊥ if and only if f(x, [y, z]) = 0, if and only
if f(x, yz) − f(x, zy) = 0, if and only if f(R(x)y, z) = f(R(x)z, y), if and only if
R(x) = R(x)∗. ¤

Lemma 3.2 ([5]). [A, A]⊥ = {x ∈ A | R(x) = 0}.
Proof. For any x ∈ [A, A]⊥ and y ∈ A, by Lemma 3.1, we know that

f(xx, y) = f(R(x)x, y) = f(x,R(x)y) = f(x, yx) = 0.

Hence xx = 0 due to the positive definiteness of f . For any x ∈ [A,A]⊥, R(x) is
diagonalizable over the real number field R since it is self-adjoint. Let λ ∈ R be an
arbitrary eigenvalue of R(x) and y ∈ A be a non-zero eigenvector associated to λ.
Since (xy)x− x(yx) = (yx)x− y(xx), we know that (xy)x− λxy = λ2y. Hence

λ2f(y, y) = f((xy)x− λxy, y) = f((xy)x, y) = f(xy, yx) = λf(xy, y) = 0.

Therefore λ = 0 and then R(x) = 0. ¤

Lemma 3.3 ([5]). AA = [A,A].

Proof. In fact, x ∈ (AA)⊥ if and only if f(x, yz) = 0, ∀y, z ∈ A, if and only if
f(yx, z) = 0, ∀y, z ∈ A, if and only if R(x)y = 0, ∀y ∈ A, if and only if R(x) = 0.
Then by Lemma 3.2, we know that AA = [A,A]. ¤

Lemma 3.4 ([5]). Let H be a trivial subalgebra of A and let V be a subspace of A
such that L(x)V ⊆ V for any x ∈ H. Then {L(x)|V }x∈H is a family of commutative
linear transformations on V .

Proof. For any x, y ∈ H, z ∈ V ,

L(x)(L(y)z) = x(yz) = x(yz)− (xy)z = y(xz)− (yx)z = y(xz) = L(y)(L(x)z)

since H is trivial. Therefore L(x)|V L(y)|V = L(y)|V L(x)|V . ¤
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For any subalgebra V in A, we let CR(V ) = {x ∈ V | R(x)|V = 0}. In particular,
CR(A) = [A, A]⊥ due to Lemma 3.2.

Theorem 3.5. As left-symmetric algebras, [A,A] is a proper ideal of A with trivial
products.

Proof. Obviously, AA is an ideal of the left-symmetric algebra A. Then [A,A] is an
ideal of A by Lemma 3.3. Moreover, A splits as an orthogonal direct sum

A = [A,A]⊥ ⊕ [A,A] = CR(A)⊕ [A,A].

By Proposition 2.3, we know that [A,A] 6= A. Hence CR(A) 6= 0.
In order to prove that [A, A] is trivial, it is enough to show that C = [[A,A], [A,A]]

is not trivial if [A, A] is not trivial. In fact, if [A,A] is not trivial, then both B =
CR([A,A]) and C are not zero and there is an orthogonal direct sum [A,A] = B⊕C.
Moreover, C = [[A,A], [A, A]] = (AA)(AA) is an ideal of A since C is an ideal of
[A,A] and for any x ∈ CR(A), y, z ∈ AA, we have

x(yz) = (xy)z − (yx)z + y(xz) = (xy)z + y(xz) ∈ C.

If C is still not trivial, then by induction, there would be an infinite series of non-zero
ideals {An}n∈Z+ of A such that

dim A1(= [A, A]) > dim A2(= C) > dim A3 > · · · > dim An > dim An+1 > · · · ,

which is obviously impossible since A is a finite-dimensional vector space.
Now assume that [A,A] is not trivial and C is trivial. For any x ∈ CR(A), y ∈

B, z ∈ C,
f(xy, z) = −f(y, xz) = 0.

Hence B is an invariant space of L(x) for any x ∈ CR(A). By Lemma 3.4, we know
that L(x)|BL(y)|B = L(y)|BL(x)|B for any x, y ∈ CR(A). Obviously, there does not
exist a non-zero y ∈ B such that L(x)y = 0 for any x ∈ CR(A). Then there exists a
basis {u1, · · · , u2n} of B (hence dim B is even) such that f(ui, uj) = δij and for any
x ∈ CR(A),

L(x)u2i−1 = −αi(x)u2i, L(x)u2i = αi(x)u2i−1, i = 1, · · · , n,

and for any i (1 ≤ i ≤ n), there exists an element x ∈ CR(A) such that αi(x) 6= 0.
Furthermore, by the assumption that C is trivial, there exists an element uk ∈ B

(1 ≤ k ≤ 2n) such that L(uk)|C 6= 0. If k = 2l, then there exists an element x ∈ CR(A)
such that L(x)uk = αl(x)uk−1 and αl(x) 6= 0. Let e1 = − x

αl(x) , e2 = uk, e3 = uk−1,
then {e1, e2, e3} satisfies

f(e2, e2) = f(e3, e3) = 1, f(e2, e3) = 0, e1e2 = −e3, e1e3 = e2, L(e2)|C 6= 0.

If k = 2l−1, then there exists an element x ∈ CR(A) such that L(x)uk = −αl(x)uk+1

and αl(x) 6= 0. Let e1 = x
αl(x) , e2 = uk, e3 = uk−1, then {e1, e2, e3} still satisfies

f(e2, e2) = f(e3, e3) = 1, f(e2, e3) = 0, e1e2 = −e3, e1e3 = e2, L(e2)|C 6= 0.
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By Lemma 3.4 again, L(x)|CL(y)|C = L(y)|CL(x)|C for any x, y ∈ B. Similarly,
there also exists a basis {v1, · · · , v2m} of C such that f(vi, vj) = δij and for any
x ∈ B,

L(x)v2i−1 = −βi(x)v2i, L(x)v2i = βi(x)v2i−1, i = 1, · · · ,m.

and for any i (1 ≤ i ≤ m), there exists an element x ∈ B such that βi(x) 6= 0. Since
L(e2)|C 6= 0, there exists j such that βj(e2) 6= 0. Because C is an ideal of A, we set

e1v2j−1 =
2m∑

i=1

λivi, e1v2j =
2m∑

i=1

µivi.

Since f(e1v2j−1, v2j−1) = f(e1v2j , v2j) = 0 and f(e1v2j−1, v2j) + f(e1v2j , v2j−1) = 0,
we have

λ2j−1 = µ2j = 0, λ2j + µ2j−1 = 0.

Set e′1 = e1 + λ2j

βj(e2)
e2, then

e′1v2j−1 =
∑

i 6=2j−1,2j

λivi, e′1v2j =
∑

i 6=2j−1,2j

µivi.

Let H be the vector space linearly spanned by {v1, · · · , v2j−2, v2j+1, · · · , v2m}. Then
e′1v2j−1 ∈ H, e′1v2j ∈ H. Hence

−βj(e2)v2j = (e′1e3)v2j−1 = e′1(e3v2j−1) + (e3e
′
1)v2j−1 − e3(e′1v2j−1) ∈ H,

which is a contradiction. ¤

It is clear that dim[A,A] is even from the proof of Theorem 3.5. From the above
discussion, we have the following structure theory.

Theorem 3.6 ([5]). A left-symmetric algebra A has a positive definitive symmetric
left invariant bilinear form if and only if A splits as an orthogonal direct sum A =
[A,A]⊕CR(A), where CR(A) is a non-zero trivial subalgebra, [A,A] is a trivial ideal
with even dimension, and where the linear transformations R(x) = 0 and L(x) is
skew-adjoint for any x ∈ CR(A).

Let Ann(A) = {x ∈ A|xy = yx = 0, ∀y ∈ A} be the annihilator of A. Obviously,
Ann(A) is an ideal of A and Ann(A) ⊆ CR(A). Set b = {x ∈ CR(A)|f(x, y) = 0, ∀y ∈
Ann(A)}. Therefore CR(A) splits as an orthogonal direct sum CR(A) = b⊕Ann(A).

Consider the corresponding structure of the sub-adjacent Lie algebra g of the left-
symmetric algebra A, and set u = Ann(g)⊕ [g, g]. Then the Milnor’s classification is
obtained immediately.

Theorem 3.7 ([9], Theorem 1.5). A Lie group G with left invariant metric is flat
if and only if the associated Lie algebra g splits as an orthogonal direct sum b ⊕ u,
where b is a commutative subalgebra, u is a commutative ideal, and where the linear
transformation adb is skew-adjoint for any b ∈ b. Furthermore, if these conditions
are satisfied, then

(3.3) ∇u = 0,∇b = ad(b),∀u ∈ u, b ∈ b.

Acknowledgements. This work was supported by the National Natural Sci-
ence Foundation of China (11001133). We would like to express our thanks to Prof.
Chengming Bai for the helpful suggestions and discussion.



A basic algebraic proof of a theorem of Milnor 97

References

[1] A. Aubert, A. Medina, Pseudo-Riemannian Lie groups (in French), Tohoku
Math. J. 55 (2003), 487-506.

[2] L. Auslander, Simply transitive groups of affine motions, Amer. J. Math. 99
(1977), 809-826.

[3] O. Baues, Prehomogeneous affine representations and flat pseudo-Riemannian
manifolds, in: V. Cortes (Ed.), Handbook of pseudo-Riemannian Geometry and
Supersymmetry, in: IRMA Lect. Math. Theor. Phys., vol. 16, Euro. Math. Soc.,
Zurich, 2010, 731-820.

[4] D. Burde, Left-symmetric algebras, or pre-Lie algebras in geometry and physics,
Cent. Eur. J. Math. 4 (2006), 323-357.

[5] Z. Chen, D. Hou, C. Bai, A left-symmetric algebraic approach to left invariant
flat (pseudo-)metrics on Lie groups, J. Geom. Phys. 62 (2012), 1600-1610.

[6] H. Kim, Complete left-invariant affine structures on nilpotent Lie groups, J. Diff.
Geom. 24 (1986), 373-394.

[7] J.-L. Koszul, Homogeneous bounded domains and orbits of affine transformation
groups (in French), Bull. Soc. Math. France 89 (1961), 515-533.

[8] A. Medina, Flat left-invariant connections adapted to the automorphism structure
of a Lie group, J. Diff. Geom. 16 (1981), 445-474.

[9] J. Milnor, Curvatures of left invariant metrics on Lie groups, Adv. Math. 21
(1976), 293-329.

[10] A.A. Sagle, Nonassociative algebras and Lagrangian mechanics on homogeneous
spaces, Algebras, Groups Geom. 2 (1985), 478-494.

Authors’ address:

Zhiqi Chen and Mengying Liu
School of Mathematical Sciences and LPMC, Nankai University,
Tianjin 300071, P.R. China.
E-mail: chenzhiqi@nankai.edu.cn


