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Abstract. Milnor has classified the flat metrics on Lie groups. In this
paper, we give a basis algebraic proof of Milnor’s classification.
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1 Introduction

In [9], Milnor studied the curvatures of left invariant metrics on Lie groups. For a
Lie group G with a left invariant Riemannian metric g, Milnor considered the left
invariant Riemannian connection V associated to g, i.e., V satisfies the “symmetry”
condition (torsion free)

(1.1) Voy = Vyr =[z.y], Va,yeg,

and the compatibility condition (the parallel translation perseveres the metric g ([10]))
(1.2) 9(Vay,2) + 9(y, Vaz) =0, Va,y € g,

and in addition, the flatness of the connection V or the metric g corresponds to
(1.3) Ryyz = Vg2 —VeVyz+V, V2 =0, Vr,y,2 € g,

that is, the Riemannian curvature tensor R is zero. In particular, Milnor gave the
classification of the flat metrics (see Theorem 1.5 in [9]).

On the other hand, one can try to find a left invariant Riemannian metric g
associated to a left invariant connection V satisfying Eqs. (1.1) and (1.3) such that the
compatibility (1.2) holds. In fact, the manifolds (not necessarily Riemannian) or Lie
groups with a connection V satisfying Egs. (1.1) and (1.3) have already been studied
independently. Such structures are called affine manifolds or the affine structures on
Lie groups ([2, 6, 7, 8] etc.). Like most of the geometric structures on Lie groups,
the study of left invariant affine structures on a Lie group can be given through the
corresponding structures on its Lie algebra. The left-invariant affine structures on a
Lie group G bijectively correspond to the left-symmetric algebra structures on the
Lie algebra g of G and the correspondence is given by

(1.4) V.y =uzy, V,y € g.
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Left-symmetric algebras also appear in many other fields in mathematics and mathe-
matical physics (see [4] and the references therein). Thus it is natural to study the left
invariant Riemannian metrics on a Lie group G by considering the left invariant affine
structures on G with a compatible Riemannian metric in terms of their corresponding
left-symmetric algebras. By this view, there is a new proof of Milnor’s classification
theorem in [5].

But the proof of proposition 3.4 in [5] (i.e. Theorem 3.5 in this paper) is based
on the study on affine representations in [3]. In this paper, we give a basic algebraic
proof of Theorem 3.5, hence a basic algebraic proof of Milnor’s classification theorem.

2 Preliminaries on left-symmetric algebras

For self-contained, we recall some basic facts on left-symmetric algebras (cf. [6, 8],
etc.).

Definition 2.1. Let A be a vector space over a field F with a bilinear product
(z,y) — xy. Then A is called a left-symmetric algebra if for any z,y,z € A, the
associator

(2.1) (z,y,2) = (zy)z — 2(y2)

is symmetric in z,y, that is,
(2.2) (z,9,2) = (y,z,2), or equivalently (zy)z — x(yz) = (yz)z — y(xz).

Let A be a left-symmetric algebra. Then A is called trivial if all products are zero.
For any z,y € A, let L(z) and R(z) denote the left and right multiplication operator
respectively, that is, L(z)(y) = 2y, R(z)(y) = yx.

Proposition 2.1. Let A be a left-symmetric algebra.
(1) The commutator

(23) [:Evy} =Y — Yz, vxayeAa

defines a Lie algebra g(A), which is called the sub-adjacent Lie algebra of A and A is
also called the compatible left-symmetric algebraic structure on the Lie algebra g(A).

(2) Let L : A — gl(A) be a linear map defined by x — L(z) (for every x € A).
Then L gives a regular representation of the Lie algebra g(A), that is,

(2.4) [L(x), L)] = L(a,y]), Va.y € A.

Proposition 2.2. If a real or complex Lie algebra g has a compatible left-symmetric
algebra structure, then [g,g] # g.

Definition 2.2. Let A be a left-symmetric algebra. A bilinear form f: Ax A — F
is called left invariant if f satisfies

(2.5) flay,2) + fly,xz) =0, Vz,y,z € A.
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3 A basic algebraic proof of a theorem of Milnor

In this section, let A be a real left-symmetric algebra and f be a positive definitive
symmetric left invariant bilinear form on A. For any subspace V in A, set

(3.1) Vi={zecA|flz,y)=0,YyeV}

Recall that the adjoint F* of a linear transformation F' on A with f is defined by the
formula

(3-2) f(F(x),y) = f(z, F*(y)), Va,yeA

The transformation F is self-adjoint if F* = F' and skew-adjoint if F* = —F. So Eq.
(2.5) is equivalent to the fact that L(z) is skew-adjoint for any € A. For any Lie
algebra g, adz is the linear transformation given by adz(y) = [z,y] for any z,y € g.

Lemma 3.1 ([5]). [A, At = {z € A| R(z) = R(z)*}.

Proof. For any z,y,z € A, x € [A, A]* if and only if f(x,[y,2]) = 0, if and only
if f(z,yz) — f(z,zy) = 0, if and only if f(R(x)y,z) = f(R(x)z,y), if and only if
R(z) = R(z)*. O

Lemma 3.2 ([5]). [4,A]* = {z € A| R(z) = 0}.

Proof. For any z € [A, A]* and y € A, by Lemma 3.1, we know that

f(za,y) = f(R(z)x,y) = f(2, R(x)y) = f(z,yz) = 0.

Hence xz = 0 due to the positive definiteness of f. For any x € [A, A]*, R(x) is
diagonalizable over the real number field R since it is self-adjoint. Let A € R be an
arbitrary eigenvalue of R(z) and y € A be a non-zero eigenvector associated to A.
Since (zy)r — z(yz) = (yr)r — y(zz), we know that (zy)r — Azy = A\%y. Hence

N fy.y) = f((ay)e = Aey,y) = f((zy)z,y) = f(ay,yo) = Mf(zy,y) = 0.
Therefore A = 0 and then R(x) = 0. O
Lemma 3.3 ([5]). AA =[A4, A].

Proof. In fact, x € (AA)* if and only if f(z,yz) = 0, Vy,z € A, if and only if
flyz,z) =0, Vy,z € A, if and only if R(z)y =0, Vy € A, if and only if R(z) = 0.
Then by Lemma 3.2, we know that AA = [A, A]. O

Lemma 3.4 ([5]). Let H be a trivial subalgebra of A and let V' be a subspace of A
such that L(x)V CV for any x € H. Then {L(z)|v }zen is a family of commutative
linear transformations on V.

Proof. For any x,y € H,z € V|
L(z)(L(y)2) = z(yz) = x(yz) — (zy)z = y(zz) — (yz)z = y(zz) = L(y)(L(v)z)

since H is trivial. Therefore L(x)|v L(y)|v = L(y)|v L(x)|v . O
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For any subalgebra V in A, we let Cr(V) = {x € V | R(x)|v = 0}. In particular,
Cr(A) = [A, A]* due to Lemma 3.2.

Theorem 3.5. As left-symmetric algebras, [A, A] is a proper ideal of A with trivial
products.

Proof. Obviously, AA is an ideal of the left-symmetric algebra A. Then [A, A] is an
ideal of A by Lemma 3.3. Moreover, A splits as an orthogonal direct sum

A=[A At DA Al =Cr(A) @ [A, A

By Proposition 2.3, we know that [A, A] # A. Hence Cr(A) # 0.

In order to prove that [A, A] is trivial, it is enough to show that C' = [[4, A], [A4, A4]]
is not trivial if [A, A] is not trivial. In fact, if [A, A] is not trivial, then both B =
Cr([A, A]) and C are not zero and there is an orthogonal direct sum [A, A] = B@ C.
Moreover, C' = [[4, A],[A, A]] = (AA)(AA) is an ideal of A since C' is an ideal of
[A, A] and for any € Cr(A),y,z € AA, we have

2(yz) = (vy)z — (yx)z +y(zz) = (2y)z + y(22) € C.

If C is still not trivial, then by induction, there would be an infinite series of non-zero
ideals {A,, },cz+ of A such that

dim Ay (= [4,4]) > dimAy(=C) >dimAg > --- >dim A, > dimA,1; > -,

which is obviously impossible since A is a finite-dimensional vector space.

Now assume that [A, 4] is not trivial and C' is trivial. For any x € Cr(A),y €
B,ze(C,

f(ajya Z) = _f(y?xz) =0.

Hence B is an invariant space of L(z) for any © € Cr(A). By Lemma 3.4, we know
that L(z)|pL(y)|s = L(y)|sL(x)|p for any x,y € Cr(A). Obviously, there does not
exist a non-zero y € B such that L(z)y = 0 for any © € Cr(A). Then there exists a
basis {u1,--- ,us,} of B (hence dim B is even) such that f(u;,u;) = §;; and for any

z € Cr(4),
L(x)UQ»L'_l = 7C¥i($)7.l,2¢, L(fﬂ)’UQZ = Oli(.T)UQi_l, ’L = ]., e, N,

and for any i (1 < i < n), there exists an element x € Cr(A) such that «;(x) # 0.

Furthermore, by the assumption that C' is trivial, there exists an element u; € B
(1 <k < 2n)such that L(ug)|c # 0. If k = 21, then there exists an element x € Cr(A)
such that L(z)ur = ay(z)ug—1 and ay(x) # 0. Let eq = *ﬁ,eg = U, e3 = Up_1,
then {e1, es, €3} satisfies

f(e2,e2) = fles,e3) =1, f(ea,e3) =0, ejea = —e3,e1e3 = ez, L(ez)|c # 0.

If k = 20 —1, then there exists an element © € Cr(A) such that L(z)ur = —oq(x)ug41

and aq(z) # 0. Let e; = ﬁ, €2 = up,e3 = ug—1, then {e1, e, ez} still satisfies

flea,e2) = fles,e3) =1, f(ez,e3) =0, erea = —e3z,e1e3 = ez, L(ez)|c # 0.



96 Z. Chen and M. Liu

By Lemma 3.4 again, L(z)|cL(y)|c = L(y)|cL(z)|c for any x,y € B. Similarly,
there also exists a basis {v1,---,vom} of C such that f(v;,v;) = d;; and for any
x € B,

L(m)vgi,l = —ﬁi(l')l]zi, L(.’E)’UQZ' = ﬁi(x)vgi,l, Z = 1, e, M.
and for any 7 (1 < ¢ < m), there exists an element « € B such that 5;(x) # 0. Since
L(e2)|c # 0, there exists j such that 8;(e2) # 0. Because C is an ideal of A, we set

2m 2m
€1V25—1 = E A, €1V25 = g HiVs.
i=1 =1

Since f(e1v2j—1,v2j-1) = f(e1va;,v25) = 0 and f(e1va;—1,va5) + f(e1vas,v25-1) =0,
we have

Agj—1 = poj =0, Agj + pgj—1 =0.

Set €] = ey + %62, then

B
! !
€1V2j—1 = E Aiv;, €ejvg; = E i Vs

i#£25—1,25 i£25—1,2j

Let H be the vector space linearly spanned by {v1,--- ,v2j_2, V241, ,V2m}. Then
elvy;—1 € H,ejvy; € H. Hence

—Bjlez)vay = (€le3)vaj—1 = €} (ezvzj—1) + (eze])vaj—1 — ez(ejvaj—1) € H,
which is a contradiction. O

It is clear that dim[A, A] is even from the proof of Theorem 3.5. From the above
discussion, we have the following structure theory.

Theorem 3.6 ([5]). A left-symmetric algebra A has a positive definitive symmetric
left invariant bilinear form if and only if A splits as an orthogonal direct sum A =
[A, Al ® Cr(A), where Cr(A) is a non-zero trivial subalgebra, [A, A] is a trivial ideal
with even dimension, and where the linear transformations R(x) = 0 and L(z) is
skew-adjoint for any x € Cr(A).

Let Ann(A) = {z € Alzy = yz =0, Yy € A} be the annihilator of A. Obviously,
Ann(A) is an ideal of A and Ann(A4) C Cr(A). Set b = {z € Cr(A)|f(z,y) =0, Yy €
Ann(A)}. Therefore Cr(A) splits as an orthogonal direct sum Cr(A) = b@® Ann(A).

Consider the corresponding structure of the sub-adjacent Lie algebra g of the left-
symmetric algebra A, and set u = Ann(g) & [g, g]. Then the Milnor’s classification is
obtained immediately.

Theorem 3.7 ([9], Theorem 1.5). A Lie group G with left invariant metric is flat
if and only if the associated Lie algebra g splits as an orthogonal direct sum b @ u,
where b is a commutative subalgebra, u is a commutative ideal, and where the linear
transformation adb is skew-adjoint for any b € b. Furthermore, if these conditions
are satisfied, then

(3.3) V. =0,V, =ad(b),Yu € u,b € b.
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