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Abstract. The main objective of the paper is to study a new type of
structure named as almost pseudo product structure in an n-dimensional
Riemannian manifold. Some results involving this structure have been es-
tablished. The existence of this type of structure is shown with examples.
It has also been shown that, every Einstein manifold is an almost prod-
uct manifold and if the sum of the associated scalars of a quasi Einstein
manifold is zero, the manifold is an almost paracontact manifold.
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1 Introduction

Almost product structure on a differentiable manifold were investigated by A.G.
Walker [8], Willmore [9], Yano [10], [11] and others [6]. An almost paracontact struc-
ture on a differentiable manifold was introduced by Sato [7]. The structure is closely
related to almost contact structure [1] and almost product structure. Einstein mani-
folds have an important role in Riemannian and semi-Riemannian Geometry. Many
of the authors have investigated on Einstein manifold equipped with almost product
and almost complex structure.

The notion of Quasi Einstein manifolds arose during the study of exact solutions of
the Einstein field equations as well as during considerations of quasi-umbilical hyper-
surfaces. For instance, the Robertson-Walker spacetimes are quasi-Einstein manifolds.
Many authors investigated different properties of Quasi Einstein manifold [2], [3], [5].
In [4], U. C. De and G. C. Ghosh introduced generalized quasi-Einstein manifold and
showed that a 2-quasi umbilical hypersurface of an Euclidean space is a generalized
quasi-Einstein manifold. At the time of investigation on structures on manifolds, the
author found that every Einstein manifold admits an almost product structure and
similarly every quasi Einstein manifold admits an almost paracontact structure pro-
vided the sum of the associated scalars is zero. Inspired by these results, at the time of
investigation on generalized quasi Einstein manifold, the author felt the importance
to introduce the new structure, named as almost pseudo product structure. This
paper is divided in four sections. After introduction in section one and definitions in
section two, in section three, it has been shown that every Einstein manifold always
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admits an almost product structure and thus it is an almost product manifold. It
has been also proved that, if the sum of the associated scalars of a quasi Einstein
manifold is zero, the manifold admits an almost paracontact structure. In the last
section, the author has defined and discussed about the properties of almost pseudo
product structure with examples.

2 Definitions

Let (Mn, g), n ≥ 2 be a Riemannian manifold. Let us denote the Ricci Tensor of type
(0,2) of (M, g) by Ric. We call M an Einstein manifold if, for every vector field X,Y
on M , there exists a real constant λ such that

(2.1) Ric(X,Y ) = λg(X,Y ).

Let L be the symmetric endomorphism of the tangent space at each point correspond-
ing to the Ricci tensor Ric of type (0,2) defined by

(2.2) g(LX, Y ) = Ric(X,Y ),

for all vector fields X, Y.
Let M be an n-dimensional differentiate manifold and Mx be the tangent space at
each point x of the manifold M . If there exist an endomorphism F on each tangent
space Mx such that

F 2 = I,

we say that the mixed tensor of type (1, 1), F gives an almost product structure to
the manifold and we call the manifold an almost product manifold.

A non-flat n-dimensional Riemannian manifold (Mn, g), n ≥ 3 is said to be a quasi
Einstein manifold if its Ricci tensor of type (0, 2) is not identically zero and satisfies
the condition

(2.3) Ric(X,Y ) = ag(X,Y ) + bw(X)w(Y ),

where a, b as scalars and w is a non-zero 1-form, metrically equivalent to the unit
vector field U i.e., for all vector fields X

(2.4) g(X,U) = w(X), g(U,U) = 1.

I. Sato [7], introduced the concept of a structure similar to the almost contact struc-
ture, which is known as almost paracontact structure. A differentiable manifold with
structure tensors (φ, ξ, η) where φ is a (1, 1) type tensor, ξ is a vector field and η is
a 1-form on the manifold satisfying

φ2(X) = X − η(X)ξ, φ(ξ) = 0,

for any vector field X, is said to be an almost paracontact manifold.
As a generalization of quasi Einstein manifold, in [4], U.C. De and G.C. Ghosh

introduced the notion of generalized quasi Einstein manifold. A Riemannian manifold
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(Mn, g), n ≥ 3 is said to be generalized quasi-Einstein manifold if its Ricci tensor of
type (0, 2) is not identically zero and satisfies:

(2.5) Ric(X,Y ) = ag(X,Y ) + bA(X)A(Y ) + cB(X)B(Y ),

where a, b, c are scalars and A and B are two non-zero 1-forms, metrically equivalent
to the unit vector field U and V respectively, i.e., for all vector fields X

(2.6) g(X,U) = A(X), g(U,U) = 1, g(X,V ) = B(X), g(V, V ) = 1, g(U, V ) = 0.

3 Structures on Einstein and quasi Einstein mani-
folds

3.1 Every Einstein manifold admits an almost product struc-
ture

Theorem 3.1. Every Einstein manifold always admits an almost product structure
and therefore every Einstein manifold is an almost product manifold.

Proof. Using equations (2.1) and (2.2), we have

g(LX, Y ) = λg(X,Y ). LX = λX.

Therefore,

(3.1) L(L)X = L2X = λ2X.

Now, let us consider an endomorphism F on each tangent space Mx such that

F (X) =
1

λ
L(X)

So, we have

F (F (X)) = F (
1

λ
L(X))

i.e.,

F (F (X)) =
1

λ2
L2(X)

Now, using equation (3.1) we get

F 2(X) = X,

which is an almost product structure. So, we see that an Einstein manifold admits
an almost product structure with structure tensors F . �

Corollary 3.2. The almost product structure on an Einstein manifold is not unique.
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Proof. If we consider the (1, 1) tensor field as

Ψ(X) = − 1

λ
L(X),

we have the same result, i.e.,
Ψ2(X) = X,

where F = −Ψ and consequently, the almost product structure on Einstein manifold
is not unique. �

Corollary 3.3. The almost product structure on Einstein manifold defines two com-
plementary distributions on Einstein manifold globally [10].

Proof. Let us consider

P =
1

2
(I + F ), Q =

1

2
(I − F ).

Then we have

P +Q = I P 2 = P, Q2 = Q, PQ = QP = 0 F = P −Q.

Thus P and Q globally define two complementary distributions. �

3.2 On quasi Einstein manifolds

Theorem 3.4. Every quasi Einstein manifold with sum of the associated scalars zero,
always admits an almost paracontact structure and therefore every quasi Einstein
manifold with sum of the associated scalars zero, is an almost paracontact manifold.

Proof. From equation (2.2) and equation (2.3), we infer

g(LX, Y ) = ag(X,Y ) + bw(X)w(Y ).

Therefore, we have

(3.2) L(X) = aX + bw(X)U.

Now, if sum of the associated scalars is zero, i.e. a+ b = 0, we get

L(U) = (a+ b)(U) = 0.

Further, equation (3.2) leads to

L(L(X)) = L(aX + bw(X)U),

= aL(X) + bw(X)LU,

i.e.,
L2(X) = a2X + abw(X)U.

Now, using a+ b = 0, we get

(3.3) L2(X) = a2(X − w(X)U).
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We further consider an endomorphism φ at each point of the tangent space Mx, such
that

(3.4) φ(X) =
1

a
L(X).

So,

φ2(X) =
1

a2
L2(X).

By using equation (3.3), we get

φ2(X) = X − w(X)U.

Again, using equation (3.2) and equation (3.4), we get

φ(U) = 0.

So, we see that a quasi Einstein manifold with sum of the associated scalars zero
admits an almost paracontact structure with structure tensors (φ,U,w) where φ is a
(1, 1) type tensor, U is a vector field and w is a 1-form on the manifold satisfying
φ2(X) = X − w(X)U and φ(U) = 0. �

We know that, if the associated scalars a, b of a quasi Einstein hypersurface of an
Euclidean space has the property a+b = 0, or its generator vector field U is a parallel
vector field, then the manifold is odd dimensional[5]. Thus we have

Corollary 3.5. Considr a quasi Einstein hypersurface of Euclidean space with a +
b = 0, or with the generator vector field U parallel vector field. Then the quasi
Einstein hypersurface of the Euclidean space is an odd dimensional almost paracontact
manifold.

4 On almost pseudo product structure

Let Mn be an n(≥ 4) dimensional manifold and ψ be a tensor field of type (1, 1), U
and V be two linearly independent vector fields and A, B be two non-zero 1-forms
respectively. If (ψ,A,B,U, V ) satisfy the conditions

(4.1) ψ2(X) = X −A(X)U −B(X)V,

(4.2) ψ(U) = 0, ψ(V ) = 0,

for any vector field X. Then Mn is said to admit an almost pseudo product structure,
(ψ,A,B,U, V ) and such a manifold Mn is called an almost pseudo product manifold.

If the sum of the associated vector fields is zero, i.e., U + V = 0, then it becomes
an almost paracontact structure of dimension n− 1 with one form η = (A−B).
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4.1 Preliminaries

For any vector field X in an almost pseudo product manifold Mn, we have

ψ2(X) = X −A(X)U −B(X)V.

Now, operating ψ from left and using equation (4.2) we get

(4.3) ψ3(X) = ψ(X).

Again replacing X by ψ(X), in equation (4.1), we get

(4.4) ψ3(X) = ψ(X)−A(ψ(X))U −B(ψ(X))V.

By comparing the equations (4.3) and (4.4), we have A(ψ(X))U + B(ψ(X))V = 0,
but U and V are two linearly independent vectors. Thus we have

A(ψ(X)) = 0 and B(ψ(X)) = 0 i.e. A ◦ ψ = 0 and B ◦ ψ = 0.

Moreover, ψ(U) = 0 ⇒ ψ2(U) = 0, and hence, putting X = U in equation (4.1), we
get

ψ2(U) = U −A(U)U −B(U)V = 0.

Since U and V are two linearly independent non zero vector fields, we get

A(U) = 1, B(U) = 0.

Similarly, putting X = V , we get

A(V ) = 0, B(V ) = 1.

We also have ψ(U) = 0 and ψ(V ) = 0 in any almost pseudo product manifold, and
U and V are linearly independent. Thus rank ψ ≤ n− 2.

Let W be any other vector field with ψ(W ) = 0. Therefore by equation (4.1), we
have

W = A(W )U +B(W )V.

So, we see that W,U and V are linearly dependent. Hence ker ψ is generated by U
and V only, and therefore rank ψ = n− 2. This leads to the following theorem:

Theorem 4.1. In an almost pseudo product manifold we have
a) A ◦ ψ = 0 and B ◦ ψ = 0
b) A(U)=1, B(U)=0, A(V)=0, B(V)=1
c) Rank ψ = n− 2.

We will now show that the almost pseudo product structure is not unique. Let f
be a non singular vector valued linear function on Mn.

Let us define the (1, 1) tensor field ψ∗, the 1-forms A∗, B∗ and the unit vector
fields U∗, V ∗ as

(4.5) f ◦ ψ∗ = ψ ◦ f,

(4.6) A∗ = A ◦ f, B∗ = B ◦ f,
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(4.7) fU∗ = U, fV ∗ = V.

Now, post multiplying equation (4.5) by ψ∗ and using equation (4.1) and equation
(4.6), we get

f ◦ ψ∗2 = ψ ◦ f ◦ ψ∗ = ψ ◦ (f ◦ ψ∗)

= ψ2 ◦ f

= (In −A⊗ U −B ⊗ V ) ◦ f

= f −A∗ ⊗ U −B∗ ⊗ V .

Applying equation (4.7), we infer

f ◦ ψ∗2 = f ◦ (In −A∗ ⊗ U∗ −B∗ ⊗ V ∗) .

Since f is non singular, we have

ψ∗2 = In −A∗ ⊗ U∗ −B∗ ⊗ V ∗.

Now, f ◦ ψ∗U∗ = ψ ◦ fU∗ = ψ(U) = 0, by equation (4.5) and (4.7)

ψ∗U∗ = 0.

Similarly,
ψ∗V ∗ = 0.

Therefore, with the help of these, we can state the following theorem:

Theorem 4.2. The almost pseudo product structure in an almost pseudo product
manifold is not unique.

4.2 Necessary and sufficient condition for being an almost
pseudo product manifold

To find the necessary and sufficient condition for Mn to be an almost pseudo product
manifold, we need the following results:

Theorem 4.3. The eigenvalues of the structure tensor ψ are the roots of the equation
α(α2 − 1) = 0.

Proof. Let α be the eigen value of ψ and ζ be the corresponding eigenvector. Then
ψ(ζ) = αζ and ψ2(ζ) = α2ζ .

Now, using equation (4.1), we get

(α2 − 1)ζ +A(ζ)U +B(ζ)V = 0 .

Operating by ψ on this equation and using A ◦ ψ = B ◦ ψ = 0, we get α(α2 − 1) = 0.
�
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Corollary 4.4. The eigenvalues of ψ are 0, 1 and -1.

Theorem 4.5. The necessary and sufficient condition that a manifold Mn will be an
almost pseudo product manifold is that at each point of the manifold Mn, it contains a
tangent bundle Πp of dimension p, a tangent bundle Πq of dimension q and a tangent
bundle Π2 of dimension 2 such that Πp ∩ Πq = {Φ} ,Πp ∩ Π2 = {Φ} ,Πq ∩ Π2 = {Φ}
(where {Φ} is the null set) and Πp ∪ Πq ∪ Π2 = a tangent bundle of dimension n,
projection L,M,N on Πp,Πq and Π2 respectively being given by

a) 2L = ψ2 + ψ b) 2M = ψ2 − ψ, c) N = −ψ2 + In.

Proof. Let Pi be p linearly independent eigenvectors corresponding to the eigenvalue
1 of ψ, Qj be q linearly independent eigenvectors corresponding to −1 and Rk be 2
linearly independent eigenvectors corresponding to the eigenvalue 0 respectively where
i = 1, 2, ...p, j = 1, 2, ...q and k = 1, 2 and p+ q+ 2 = n. Using Einstein’s summation
, we have aiPi = 0⇒ ai = 0, bjQj = 0⇒ bj = 0 and ckRk = 0⇒ ck = 0, for scalars
ai, bj and ck and for all i, j and k.

Now, let us consider the equation

(4.8) aiPi + bjQj + ckRk = 0,

where i = 1, 2, ..., p, j = 1, 2, ..., q and k = 1, 2. Applying ψ on equation (4.8), we get

(4.9) aiψ(Pi) + bjψ(Qj) = 0

⇒ aiPi − bjQj = 0.
Operating ψ once again, we get

(4.10) aiPi + bjQj = 0 .

Thus, from equation (4.8), (4.9) and (4.10), we get

aiPi = bjQj = ckRk = 0.

Therefore ai = bj = ck = 0, i.e., {Pi, Qj , Rk} is a linearly independent set.
Now, let L,M,N be projection maps on Πp,Πq and Π2 respectively and we see that

LPi = Pi LQj = 0 LRk = 0
MPi = 0 MQj = Qj MRk = 0
NPi = 0 NQj = 0 NRk = Rk.

Conversely, suppose that there is a tangent bundle Πp ,Πq and Π2 of dimension
p, q and 2 respectively at each point of Mn, such that Πp∩Πq = Πp∩Π2 = Πq ∩Π2 =
{Φ}, also Πp ∪ Πq ∪ Π2 = a tangent bundle of dimension n. Let Pi, Qj and U, V
be p, q and two linearly independent vectors in Πp, Πq and Π2 respectively, where
i = 1, 2, ..., p and j = 1, 2, ..., q. Let {Pi, Qj , U, V } span a tangent bundle of dimension
n. Then {Pi, Qj , U, V } is a linearly independent set.

Let us define the inverse set
{
p

′i, q
′j , A,B

}
such that

(4.11) In = p
′i ⊗ Pi + q

′j ⊗Qj +A⊗ U +B ⊗ V .
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We define
ψ = p

′i ⊗ Pi − q
′j ⊗Qj .

Therefore
ψ2 = p

′i ⊗ Pi + q
′j ⊗Qj .

Thus, by the help of equation (4.11), we infer

ψ2 = In −A⊗ U −B ⊗ V.

Thus, we see thatMn admits an almost pseudo product structure. Hence the condition
is sufficient. �

Now, let us define a vector valued (1,1) tensor field ψ
′

such that

(ψ
′
)2(X) = ψ2(X) +A(X)U +B(X)V, and (ψ

′
)2(X) = X.

So, we see that the almost pseudo product structure induces an almost product struc-
ture for all vector fields X in Mn. Thus we have the following theorem

Theorem 4.6. Every almost pseudo product structure induces an almost product
structure in an almost pseudo product manifold.

Consider the Nijenhuis tensor N(X,Y ) of the induced almost product structure
ψ

′
, where

N(X,Y ) = [ψ
′
X,ψ

′
Y ]− ψ

′
[ψ

′
X,Y ]− ψ

′
[X,ψ

′
Y ]− [X,Y ].

In N vanishes, i.e., the almost product structure becomes integrable, we will call the
almost pseudo product structure a pseudo product structure.

Though the almost pseudo product structure always induces an almost product
structure, the basic difference is that almost pseudo product structure is singular but
almost product structure is non-singular.

4.3 Metric on almost pseudo product-manifold

Let us now try to find a metric on almost pseudo product manifold. We first prove
the following Lemma:

Lemma 4.7. Every almost pseudo product manifold Mn admits a Riemannian metric
tensor field h, such that h(X,U) = A(X) and h(X,V ) = B(X) for every vector field
X on Mn.

Proof. Since Mn admits a metric tensor field f (which exists, provided that Mn is
paracompact), we obtain h by setting

h(X,Y ) = f(−X+A(X)U+B(X)V, −Y+A(Y )U+B(Y )V )+A(X)A(Y )+B(X)B(Y ).

Now, putting Y = U and using theorem (4.1), we get

h(X,U) = A(X).

Similarly, by putting Y = V , we get

h(X,V ) = B(X).

�
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Theorem 4.8. Every almost pseudo product manifold Mn admits a Riemannian
metric tensor field g such that

(4.12) g(X,U) = A(X), g(X,V ) = B(X)

and

(4.13) g(ψX,ψY ) = g(X,Y )−A(X)A(Y )−B(X)B(Y ) .

Proof. Let us put

(4.14) g(X,Y ) =
1

2
[h(X,Y ) + h(ψX,ψY ) +A(X)A(Y ) +B(X)B(Y )]

Now, using Lemma (4.7), it can be easily verified that g(X,U) = A(X)) and g(X,V ) =
B(X). Again, from equation (4.14) and Theorem 4.1,

g(ψX,ψY ) =
1

2
[h(ψX,ψY ) + h(ψ2X,ψ2Y )],

whence we infer g(ψX,ψY ) = g(X,Y )−A(X)A(Y )−B(X)B(Y ). �

This leads to the following result:

Corollary 4.9. The structure tensor ψ of the almost pseudo contact structure is
symmetric with respect to the metric tensor field g.

Proof. Putting ψY for Y in the equation (4.13)and (4.14) and using A◦ψ = B◦ψ = 0,
we get g(ψX, Y ) = g(X,ψY ). �

4.4 Example of almost pseudo product structure in 4-dimensional
Euclidean space

Example 4.1. Let R4 be any 4-dimensional Euclidean space and let us define

ψ =


0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

 .

So, ψ2 =


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 Now, let us choose U =


0
0
1
0

 and V =


0
0
0
1

 and

correspondingly A =
(

0 0 1 0
)

and A =
(

0 0 0 1
)
.

Thus A⊗ U =


0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

 and B ⊗ V =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

.
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Therefore ψ2 = I4 −A⊗ U −B ⊗ V . Again,

ψ(U) =


0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0




0
0
1
0

 =


0
0
0
0

 ,

ψ(V ) =


0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0




0
0
0
1

 =


0
0
0
0

 .

Thus, we conclude that the structure is an almost pseudo product structure and R4

is an almost pseudo product manifold.

Example 4.2. Let us consider a generalized quasi Einstein manifold (Mn, g), n ≥ 4
with Ricci tensor of type (0, 2) is not identically zero and satisfying

Ric(X,Y ) = ag(X,Y ) + bA(X)A(Y ) + cB(X)B(Y ),

where a, b, c are scalars with the property a+ b = 0 and a+ c = 0. A and B are two
non-zero 1-forms, metrically equivalent to the unit vector field U and V respectively,
i.e. for all vector fields X

g(X,U) = A(X), g(U,U) = 1, g(X,V ) = B(X), g(V, V ) = 1, g(U, V ) = 0.

Using (2.2) and (2.5), we get

LX = aX + bA(X)U + cB(X)V.

Therefore

L2X = a2X + 2abA(X)U + 2acB(X)V + b2A(X)U + b2B(X)V.

Then, using a+ b = 0 and a+ c = 0, we infer

L2X = a2(X −A(X)U −B(X)V ).

Now, let us consider an endomorphism ψ on each tangent space Mn such that

ψ(X) =
1

a
L(X).

Therefore, we see that

ψ2(X) = X −A(X)U −B(X)V,

and that ψ(U) = 0 and ψ(V ) = 0. Hence the mixed tensor of type (1, 1), ψ gives
an almost pseudo product structure on the manifold. So, we conclude that every
G(QE)n is an almost pseudo product manifold.
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