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Abstract. The aim of our paper is to focus on some properties of sub-
manifolds in Riemannian manifolds endowed with endomorphisms that
generalize the Golden Riemannian structure, named metallic Riemannian
structures. We focus on the properties of the structure induced on sub-
manifolds, named by us Σ-metallic Riemannian structures, especially re-
garding the normality of this types of structure. Examples of structures
induced on a sphere of codimension 1 by some metallic Riemannian struc-
tures defined on an Euclidean space are given.
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1 Introduction

Metallic means family was introduced by Vera W. de Spinadel in ([10]) and it contains
some generalizations of the Golden mean, such as the Silver mean, the Bronze mean,
the Copper mean, the Nickel mean and many others.

A (p, q)-metallic number is the positive solution of the equation x2 − px − q = 0
(for fixed positive integer values of p and q) and it has the form:

(1.1) σp,q =
p+

√
p2 + 4q

2
.

Some important members of the metallic mean family ([10]) are the following: the

Golden mean φ = 1+
√
5

2 (for p = q = 1), the Silver mean σAg = σ2,1 = 1 +
√

2 (for

q = 1 and p = 2), the Bronze mean σBr = σ3,1 = 3+
√
13

2 (for q = 1 and p = 3),

the Subtle mean σ4,1 = 2 +
√

5 = φ3 (for p = 4 and q = 1), the Copper mean

σCu = σ1,2 = 2 (for p = 1 and q = 2), the Nickel mean σNi = σ1,3 = 1+
√
13

2 (for p = 1
and q = 3) and so on.

Polynomial structures on manifolds were defined by S.I. Goldberg, K. Yano and
N.C. Petridis in ([3] and [4]). C.E. Hretcanu and M. Crasmareanu defined some
particular cases of polynomial structures, called Golden structure ([6], [7], [1], [2])
and some generalizations of this, called metallic structure ([8]).
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In this paper, after recalling the basic notions of Golden and metallic Riemannian
manifolds (in Section 2), we focus on the properties of Σ-metallic Riemannian struc-
tures induced on submanifolds by metallic Riemannian structure (in Section 3) and
we give some examples of structures induced on submanifolds by metallic Riemannian
structures (in Section 4). In the next section we find some properties of the normal
Σ-metallic Riemannian structures.

2 Golden and metallic Riemannian structures

The Golden structure ([1]) is a polynomial structure on a manifold M determined by
a (1, 1)-tensor field J which satisfies:

(2.1) J2 = J + I,

where I is the identity operator on the Lie algebra X (M) of vector fields on M .

A metallic structure ([8]) is a polynomial structure on a manifold M determined
by a (1, 1)-tensor field J which satisfies:

(2.2) J2 = pJ + qI,

where I is the identity operator on the Lie algebra X (M) of vector fields on M and
p, q are fixed positive integer numbers.

Moreover, if (M, g) is a Riemannian manifold endowed with a metallic structure
J such that the Riemannian metric g is J-compatible, i.e.:

(2.3) g(JX, Y ) = g(X, JY ),

for any X,Y ∈ X (M), then (g, J) is called metallic Riemannian structure and
(M, g, J) is a metallic Riemannian manifold.

In a metallic Riemannian manifold (M, g, J), from (2.2) and (2.3) we get:

(2.4) g(JX, JY ) = pg(X, JY ) + qg(X,Y ),

for any X,Y ∈ X (M).

An almost product structure F on a Riemannian manifold (M, g) induces two
metallic Riemannian structures on M , given by ([8]):

(2.5) J1 =
p

2
I +

(
2σp,q − p

2

)
F, J2 =

p

2
I −

(
2σp,q − p

2

)
F.

Conversely, every metallic structure J on a Riemannian manifold (M, g) induces
two almost product structures on this manifold ([8]):

(2.6) F± = ±
(

2

2σp,q − p
J − p

2σp,q − p
I

)
.
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3 Σ-metallic Riemannian structures

In this section we assume that M is an n-dimensional submanifold isometrically
immersed in the (n + r)-dimensional metallic Riemannian manifold (M, g, J), with
n, r ≥ 1 integer numbers.

We denote by Tx(M) the tangent space of M in a point x ∈ M and by T⊥x (M)
the normal space of M in x. Let i∗ be the differential of the immersion i : M → M .
The induced Riemannian metric g on M is given by g(X,Y ) = g(i∗X, i∗Y ), for any
X,Y ∈ X (M). We fixe a local orthonormal basis {N1, ..., Nr} of the normal space
T⊥x (M). Hereafter we assume that the indices α, β, γ run over the range {1, ..., r}.

The vector fields J(i∗X) and J(Nα) can be decomposed into tangential and normal
components:

(3.1) (i) Ji∗X = i∗(PX) +

r∑
α=1

uα(X)Nα, (ii) JNα = i∗(ξα) +

r∑
β=1

aαβNβ ,

for any X ∈ Tx(M), where P is a (1, 1)-tensor field on M , ξα are vector fields on M ,
uα are 1-forms on M and (aαβ)r is an r × r matrix of smooth real functions on M .

In the rest of the paper we shall simply denote by X the vector field i∗X, for
X ∈ X (M).

Theorem 3.1. ([8]) The structure Σ = (P, g, uα, ξα, (aαβ)r), induced on a subman-
ifold M by the metallic Riemannian structure (g, J) on M , satisfies the following
equalities:

(3.2) P 2X = pPX + qX −
∑
α

uα(X)ξα,

(3.3) (i) uα(PX) = puα(X)−
∑
β

aαβuβ(X), (ii) aαβ = aβα,

(3.4) (i) uβ(ξα) = qδαβ + paαβ −
∑
γ

aαγaγβ , (ii) Pξα = pξα −
∑
β

aαβξβ ,

(3.5) (i) g(PX, Y ) = g(X,PY ), (ii) uα(X) = g(X, ξα)

for any X,Y ∈ X (M), where δαβ is the Kronecker delta and p, q are fixed positive
integers.

Definition 3.1. A Σ-metallic Riemannian structure on a Riemannian manifold (M, g)
is given by the data Σ = (P, g, uα, ξα, (aαβ)r), determined by a (1, 1)-tensor field P
on M , the vector fields ξα on M , the 1-forms uα on M , the r × r matrix (aαβ)r of
smooth real functions on M which verify the relations (3.2), (3.3), (3.4) and (3.5).

Remark 3.2. If Σ = (P, g, uα, ξα, (aαβ)r) is the induced structure on the submanifold
M in the metallic Riemannian manifold (M, g, J), then M is an invariant submanifold
with respect to J (i.e. J(M) ⊂ TM) if and only if (M, g, P ) is a metallic Riemannian
manifold, whenever P is non-trivial ([8]).
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Let ∇ and ∇ be the Levi-Civita connections on (M, g) and (M, g), respectively.
The Gauss and Weingarten formulas are:

(3.6) (i)∇XY = ∇XY +

r∑
α=1

hα(X,Y )Nα, (ii)∇XNα = −AαX +∇⊥XNα,

respectively, whereAα =: ANα
is the shape operator and h(X,Y ) =

∑r
α=1 hα(X,Y )Nα

is the second fundamental form. Also,

(3.7) hα(X,Y ) = g(h(X,Y ), Nα) = g(AαX,Y ),

for any X,Y ∈ X (M).

Remark 3.3. The normal connection ∇⊥XNα has the decomposition:

(3.8) ∇⊥XNα =

r∑
β=1

lαβ(X)Nβ ,

for any X ∈ X (M), α ∈ {1, ..., r}, and

(3.9) lαβ = −lβα,

for any α, β ∈ {1, ..., r}.

Proof. From g(∇⊥XNα, Nβ) + g(Nα,∇⊥XNβ) = 0 we get:

g(
∑
γ

lαγ(X)Nγ , Nβ) + g(Nα,
∑
γ

lβγ(X)Nγ) = 0,

for any X ∈ X (M) and γ ∈ {1, ..., r}. Thus we obtain (3.9). �

Using an analogy of a locally product manifold ([9]), we can define locally metallic
Riemannian manifold, as follows:

Definition 3.4. If (M, g, J) is a metallic Riemannian manifold and J is parallel with
respect to the Levi-Civita connection ∇ on M (i.e. ∇J = 0), then we call (M, g, J)
a locally metallic Riemannian manifold.

As in the case of submanifolds in Riemannian manifolds with Golden structure
([6]), it is easy to verify the following relations regarding the covariant derivatives of
components of the Σ = (P, g, uα, ξα, (aαβ)r)-structure, induced on M by the metallic
Riemannian structure (g, J):

Theorem 3.2. If M is an n-dimensional submanifold of codimension r in a locally
metallic Riemannian manifold (M, g, J), then the Σ = (P, g, uα, ξα, (aαβ)r)-structure,
induced on M by the metallic Riemannian structure (g, J), has the following proper-
ties:

(3.10) (∇XP )(Y ) =

r∑
α=1

hα(X,Y )ξα +

r∑
α=1

uα(Y )AαX,
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(3.11) (∇Xuα)(Y ) = −hα(X,PY ) +

r∑
β=1

[lαβ(X)uβ(Y ) + aβαhβ(X,Y )],

(3.12) ∇Xξα = −P (AαX) +

r∑
β=1

aαβAβX +

r∑
β=1

lαβ(X)ξβ ,

(3.13) X(aαβ) = −uα(AβX)− uβ(AαX) +

r∑
γ=1

[aγβlαγ(X) + aαγ lβγ(X)],

for any X,Y ∈ X (M).

Proof. Using the Gauss and Weingarten formulae in (∇XJ)Y = 0, for any X,Y ∈
X (M) and identifying the tangential components (and the normal components, re-
spectively), we obtain the equalities (3.10) and (3.11). Moreover, from

∇X(JNα) = ∇Xξα −
r∑

β=1

aαβAβX +

r∑
β=1

[X(aαβ) + hβ(X, ξα) +

r∑
γ=1

aαγ lγβ(X)]Nβ

and

J(∇XNα) = −P (AαX) +

r∑
β=1

lαβ(X)ξβ −
r∑

β=1

[uβ(AαX)−
r∑

γ=1

aγβlαγ(X)]Nβ ,

for any X ∈ X (M) and using (∇XJ)Nα = 0 we obtain (3.12) and (3.13) by identifying
the tangential and the normal components, respectively. �

Remark 3.5. If M is an invariant submanifold in the locally metallic Riemannian
manifold (M, g, J), then P is parallel with respect to the Levi-Civita connection ∇
on M , where P is the (1, 1)-tensor field on the Riemannian manifold (M, g) defined
in (3.1)(i).

4 Examples of structures induced on submanifolds
by metallic Riemannian structures

We assume that the ambient space is E2a+b (a, b ≥ 1 integer numbers) and for any
point of E2a+b we have its coordinates:

(x1, ..., xa, y1, ..., ya, z1, ..., zb) := (xi, yi, zj),

where i ∈ {1, ..., a} and j ∈ {1, ..., b}. The tangent space Tx(E2a+b) is isomorphic
with E2a+b. For λ ∈ {−1, 1} we can construct two metallic structures on E2a+b,
Jλ : E2a+b → E2a+b, given by:
(4.1)

Jλ

(
∂

∂xi
,
∂

∂yi
,
∂

∂zj

)
=

(
p

2

∂

∂xi
+
λ
√

∆

2

∂

∂yi
,
p

2

∂

∂yi
+
λ
√

∆

2

∂

∂xi
,

(
p

2
+
λεj
√

∆

2

)
∂

∂zj

)
,
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where εj ∈ {−1, 1}, i ∈ {1, ..., a}, j ∈ {1, ..., b} and ∆ = p2 + 4q.
We easily find that J2

λ = pJλ + qI and (Jλ, < ·, · >) is a metallic Riemannian
structure on E2a+b.

Thus, we obtain two metallic structures: J+1 (for λ = 1) and J−1 (for λ = −1).
Moreover, for λεj = 1, we obtain the following form of Jλ:

(4.2) Jλ

(
∂

∂xi
,
∂

∂yi
,
∂

∂zj

)
=

(
p

2

∂

∂xi
+ λ

√
∆

2

∂

∂yi
,
p

2

∂

∂yi
+ λ

√
∆

2

∂

∂xi
, σp,q

∂

∂zj

)
,

and for λεj = −1, we obtain:

(4.3) Jλ

(
∂

∂xi
,
∂

∂yi
,
∂

∂zj

)
=

(
p

2

∂

∂xi
+ λ

√
∆

2

∂

∂yi
,
p

2

∂

∂yi
+ λ

√
∆

2

∂

∂xi
, σp,q

∂

∂zj

)
,

where σp,q = p−σ. Now, we can construct a Σ-metallic Riemannian structure on the
sphere S2a+b−1(R) ↪→ E2a+b. The equation of sphere S2a+b−1(R) is:

(4.4)

a∑
i=1

(xi)2 +

a∑
i=1

(yi)2 +

b∑
j=1

(zj)2 = R2,

where R is its radius and (x1, ..., xa, y1, ..., ya, z1, ..., zb) := (xi, yi, zj) are the coordi-
nates of any point of S2a+b−1(R). We denote by:

(4.5)

a∑
i=1

(xi)2 = r21,

a∑
i=1

(yi)2 = r22,

b∑
j=1

(zj)2 = r23

and we obtain r21 + r22 + r23 = R2.
An unit normal vector field N on the sphere S2a+b−1(R) is given by:

(4.6) N =
1

R
(x1, ..., xa, y1, ..., ya, z1, ..., zb).

Thus:

(4.7) JλN =
1

R

(
p

2
xi + λ

√
∆

2
yi,

p

2
yi + λ

√
∆

2
xi, σp,qz

j

)
,

where ∆ = p2 + 4q and λ ∈ {−1, 1}.
For a vector field X on S2a+b−1(R) we use the following notation:

X = (X1, ..., Xa, Y 1, ..., Y a, Z1, ..., Zb) := (Xi, Y i, Zj)

and from < X,N >= 0 we obtain:

(4.8)

a∑
i=1

(
xiXi + yiY i

)
+

b∑
j=1

zjZj = 0.
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If we decompose JλN into tangential and normal components at the sphere S2a+b−1(R),
for A =< JλN,N >, we obtain:

(4.9) JλN = ξ +AN.

In the followings we consider λεj = 1. Thus, we obtain:

(4.10) A =
1

R2

[
p

2
(r21 + r22) + λ

√
∆

a∑
i=1

xiyi + σp,qr
2
3

]
.

The tangential component of JλN at the sphere S2a+b−1(R) has the form:

(4.11) ξ =
1

R

((p
2
−A

)
xi + λ

√
∆

2
yi,
(p

2
−A

)
yi + λ

√
∆

2
xi, (σp,q −A) zj

)
.

From u(X) =< X, ξ >, we obtain:

(4.12) u(X) = λ

√
∆

2R

 a∑
i=1

(yiXi + xiY i) + λ

b∑
j=1

zjZj

 .
The decomposition of JX into tangential and normal components at the sphere

S2a+b−1(R) (where X is a vector field on S2a+b−1(R)), is given by:

(4.13) JλX = PX + u(X)N.

Thus, we obtain:
(4.14)

PX =

(
p

2
Xi + λ

√
∆

2
Y i − u(X)

R
xi,

p

2
Y i + λ

√
∆

2
Xi − u(X)

R
yi, σp,qZ

j − u(X)

R
zj

)
,

for any tangent vectorX := (Xi, Y i, Zj) at the sphere S2a+b−1(R) in a point (xi, yi, zj),
for i ∈ {1, ..., a} and j ∈ {1, ..., b}.

Therefore, from the relations (4.10), (4.11), (4.12) and (4.14) we obtain the Σ-
structure induced on the sphere S2a+b−1(R) of codimension 1 in the Euclidean space
E2a+b by Jλ from E2a+b, given by (P,< ·, · >, ξ, u,A).

In particular, for λεj = 1 (where λ ∈ {−1, 1} and εj ∈ {−1, 1}), we obtain:

1. for p = q = 1, two Golden structures, given by:

(4.15) Φλ

(
∂

∂xi
,
∂

∂yi
,
∂

∂zj

)
=

(
1

2

∂

∂xi
+ λ

√
5

2

∂

∂yi
,

1

2

∂

∂yi
+ λ

√
5

2

∂

∂xi
, φ

∂

∂zj

)

2. for p = 2, q = 1, two Silver structures, given by:

(4.16) Agλ

(
∂

∂xi
,
∂

∂yi
,
∂

∂zj

)
=

(
∂

∂xi
+ λ
√

2
∂

∂yi
,
∂

∂yi
+ λ
√

2
∂

∂xi
, σAg

∂

∂zj

)
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3. for p = 3, q = 1, two Bronze structures, given by:
(4.17)

Brλ

(
∂

∂xi
,
∂

∂yi
,
∂

∂zj

)
=

(
3

2

∂

∂xi
+ λ

√
13

2

∂

∂yi
,

3

2

∂

∂yi
+ λ

√
13

2

∂

∂xi
, σBr

∂

∂zj

)

4. for p = 1, q = 2, two Copper structures, given by:

(4.18) Cuλ

(
∂

∂xi
,
∂

∂yi
,
∂

∂zj

)
=

(
1

2

∂

∂xi
+ λ

3

2

∂

∂yi
,

1

2

∂

∂yi
+ λ

3

2

∂

∂xi
, σCu

∂

∂zj

)
5. for p = 1, q = 3, two Nickel structures, given by:

(4.19)

Niλ

(
∂

∂xi
,
∂

∂yi
,
∂

∂zj

)
=

(
1

2

∂

∂xi
+ λ

√
13

2

∂

∂yi
,

1

2

∂

∂yi
+ λ

√
13

2

∂

∂xi
, σNi

∂

∂zj

)
.

The induced structures on the sphere S2a+b−1(R) of codimension 1 in the Eu-
clidean space E2a+b are as follows:

1. for p = q = 1, we obtain the
∑

-Golden structures, given by:

A =
1

R2

[
1

2
(r21 + r22) + λ

√
5

a∑
i=1

xiyi + φr23

]

ξ =
1

R

((
1

2
−A

)
xi + λ

√
5

2
yi,

(
1

2
−A

)
yi + λ

√
5

2
xi,

(
1

2
−A+

√
5

2

)
zj

)

u(X) = λ

√
5

2R

 a∑
i=1

(yiXi + xiY i) + λ

b∑
j=1

zjZj


PX =

(
1

2
Xi + λ

√
5

2
Y i − u(X)

R
xi,

1

2
Y i + λ

√
5

2
Xi − u(X)

R
yi, φZj − u(X)

R
zj

)
,

induced by the structure defined in (4.15);

2. for p = 2, q = 1, we obtain the
∑

-Silver structures, given by:

A =
1

R2

[
(r21 + r22) + 2λ

√
2

a∑
i=1

xiyi + σAgr
2
3

]

ξ =
1

R

(
(1−A)xi + λ

√
2yi, (1−A) yi + λ

√
2xi, (1−A+

√
2)zj

)
u(X) = λ

√
2

R

 a∑
i=1

(yiXi + xiY i) + λ

b∑
j=1

zjZj


PX =

(
Xi + λ

√
2Y i − u(X)

R
xi, Y i + λ

√
2Xi − u(X)

R
yi, σAgZ

j − u(X)

R
zj
)
,

induced by the structure defined in (4.16);
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3. for p = 3, q = 1, we obtain the
∑

-Bronze structures, given by:

A =
1

R2

[
3

2
(r21 + r22) + λ

√
13

a∑
i=1

xiyi + σBrr
2
3

]

ξ =
1

R

((
3

2
−A

)
xi + λ

√
13

2
yi,

(
3

2
−A

)
yi + λ

√
13

2
xi,

(
3

2
−A+

√
13

2

)
zj

)

u(X) = λ

√
13

2R

 a∑
i=1

(yiXi + xiY i) + λ

b∑
j=1

zjZj


PX =

(
3

2
Xi + λ

√
13

2
Y i − u(X)

R
xi,

3

2
Y i + λ

√
13

2
Xi − u(X)

R
yi, σBrZ

j − u(X)

R
zj

)
induced by the structure defined in (4.17);

4. for p = 1, q = 2, we obtain the
∑

-Copper structures, given by:

A =
1

R2

[
1

2
(r21 + r22) + 3λ

a∑
i=1

xiyi + σCur
2
3

]

ξ =
1

R

((
1

2
−A

)
xi + λ

3

2
yi,

(
1

2
−A

)
yi + λ

3

2
xi,

(
1

2
−A+

3

2

)
zj
)

u(X) = λ
3

2R

 a∑
i=1

(yiXi + xiY i) + λ

b∑
j=1

zjZj


PX =

(
1

2
Xi + λ

3

2
Y i − u(X)

R
xi,

1

2
Y i + λ

3

2
Xi − u(X)

R
yi, σCuZ

j − u(X)

R
zj
)

induced by the structure defined in (4.18);

5. for p = 1, q = 3, we obtain the
∑

-Nickel structures, given by:

A =
1

R2

[
1

2
(r21 + r22) + λ

√
13

a∑
i=1

xiyi + σNir
2
3

]

ξ =
1

R

((
1

2
−A

)
xi + λ

√
13

2
yi,

(
1

2
−A

)
yi + λ

√
13

2
xi,

(
1

2
−A+

√
13

2

)
zj

)

u(X) = λ

√
13

2R

 a∑
i=1

(yiXi + xiY i) + λ

b∑
j=1

zjZj


PX =

(
1

2
Xi + λ

√
13

2
Y i − u(X)

R
xi,

1

2
Y i + λ

√
13

2
Xi − u(X)

R
yi, σNiZ

j − u(X)

R
zj

)
,

induced by the structure defined in (4.19).

In conclusion, we can obtain Σ-metallic structures (P,< ·, · >, ξ, u,A), induced on
the sphere S2a+b−1(R) of codimension 1 in the Euclidean space E2a+b by the metallic
structure Jλ from E2a+b, for various positive integer values of p and q.
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5 On the normality of Σ-metallic Riemannian struc-
tures

Let NJ be the Nijenhuis torsion tensor field of J , defined by:

(5.1) NJ(X,Y ) := [JX, JY ] + J2[X,Y ]− J [JX, Y ]− J [X,JY ],

for any X,Y ∈ X (M). It is known that the Nijenhuis tensor of J verifies ([11]):

(5.2) NJ(X,Y ) = (∇JXJ)(Y )− (∇JY J)(X)− J [(∇XJ)(Y )− (∇Y J)(X)],

for any X,Y ∈ X (M).
Thus, we remark that if the metallic structure J on M is parallel with respect to

∇, then NJ = 0.
We shall define a normal Σ-metallic Riemannian structure on the submanifold M

in the metallic Riemannian manifold (M, g, J).

Definition 5.1. A Σ-metallic Riemannian structure defined on a submanifold (M, g)
of codimension r in a Riemannian manifold (M, g) is said to be normal if:

(5.3) NP = 2

r∑
α=1

duα ⊗ ξα.

In the following considerations, let M be a submanifold in the locally metallic
Riemannian manifold (M, g, J) and let ∇ be the Levi-Civita connection determined
by the induced metric g on M .

We denote by Bα =: PAα−AαP and remark that g(BαX,Y ) = −g(BαY,X), for
any X,Y ∈ X (M).

Theorem 5.1. If M is a submanifold of codimension r in a locally metallic Rie-
mannian manifold (M, g, J) and Σ = (P, g, uα, ξα, (aαβ)r) is the structure induced
on the Riemannian manifold (M, g), then the Nijenhuis torsion tensor field of the
(1, 1)-tensor field P and the 1-forms uα verify the equalities:

(5.4) NP (X,Y ) =

r∑
α=1

[g(X, ξα)BαY − g(Y, ξα)BαX − g(BαX,Y )ξα],

(5.5) 2duα(X,Y ) = −g(BαX,Y ) +

r∑
β=1

[lαβ(X)g(Y, ξβ)− lαβ(Y )g(X, ξβ)],

for any X,Y ∈ X (M), where lαβ are the coefficients of the normal connection ∇⊥ in
the normal bundle T⊥(M).

Proof. By using (3.10) and (5.2), we get:

NP (X,Y ) =

r∑
α=1

[g(AαPX, Y )− g(AαPY,X)]ξα+
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+

r∑
α=1

[g(Y, ξα)AαPX − g(X, ξα)AαPY ]−
r∑

α=1

[g(Y, ξα)P (AαX)− g(X, ξα)P (AαY )]

and from g(AαPY,X) = g(P (AαX), Y ) we obtain that the Nijenhuis torsion tensor
field of the (1, 1)-tensor field P from the Σ-metallic Riemannian structure has the
form:

NP (X,Y ) = −
r∑

α=1

g((PAα −AαP )(X), Y )ξα−

−
r∑

α=1

g(Y, ξα)(PAα −AαP )(X) +

r∑
α=1

g(X, ξα)(PAα −AαP )(Y ),

for any X,Y ∈ X (M) which implies (5.4).
From 2duα(X,Y ) = X(uα(Y ))− Y (uα(X))− uα([X,Y ]) we have:

2duα(X,Y ) = (∇Xuα)(Y )− (∇Y uα)(X),

for any X,Y ∈ X (M) and using (3.11) we obtain:

2duα(X,Y ) = g(AαY, PX)− g(AαX,PY )+

+

r∑
β=1

[g(AβX,Y )− g(AβY,X)]aαβ +

r∑
β=1

[g(Y, ξβ)lαβ(X)− g(X, ξβ)lαβ(Y )].

From g(AβX,Y ) = g(AβY,X) we have:

g(AαX,PY )− g(AαY, PX) = g((PAα −AαP )(X), Y ) = g(BαX,Y )

and we obtain that the 1-forms uα of the Σ-metallic Riemannian structure induced
on M verify the equality (5.5). �

Remark 5.2. Let M be a submanifold of codimension r in a locally metallic Rieman-
nian manifold (M, g, J) and let Σ = (P, g, uα, ξα, (aαβ)r) be the structure induced
on the Riemannian manifold (M, g). If the (1, 1)-tensor field P of the Σ-metallic
Riemannian structure on M commutes with the Weingarten operators Aα, for any
α ∈ {1, ..., r} (i.e. Bα = 0), then the Nijenhuis torsion tensor field of P vanishes on
M (i.e. NP = 0).

From (5.4) and (5.5) we obtain:

Theorem 5.2. If M is a submanifold of codimension r in the locally metallic Rie-
mannian manifold (M, g, J), then:

(5.6) NP (X,Y )− 2

r∑
α=1

duα(X,Y )ξα =

r∑
α=1

[g(X, ξα)BαY − g(Y, ξα)BαX]−

−
r∑

α=1

r∑
β=1

[lαβ(X)g(Y, ξβ)− lαβ(Y )g(X, ξβ)]ξα,

for any X,Y ∈ X (M), where lαβ are the coefficients of the normal connection in the
normal bundle T⊥(M).
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Remark 5.3. If the Σ-metallic Riemannian structure induced on M is normal and
the normal connection ∇⊥ of M vanishes identically (i.e. lαβ = 0), then we obtain:

(5.7)

r∑
α=1

g(X, ξα)(PAα −AαP )(Y ) =

r∑
α=1

g(Y, ξα)(PAα −AαP )(X)

and this equality does not depend on the choice of a basis in the normal space T⊥x (M),
for any x ∈M .

Theorem 5.3. Let M be a submanifold of codimension r in a locally metallic Rie-
mannian manifold (M, g, J). If the normal connection ∇⊥ vanishes identically on
the normal bundle T⊥(M) and the (1, 1)-tensor field P of the Σ-metallic Rieman-
nian structure induced on M commutes with every Weingarten operator Aα, then the
induced Σ-metallic Riemannian structure on M is normal.

Remark 5.4. The matrix A := (aαβ)r of the structure Σ induced on an invariant
submanifold M by the metallic structure J from the Riemannian manifold (M, g) is
a metallic matrix, that is a matrix which verifies:

A2 = pA+ qIr,

where Ir is the identically matrix of order r ([8]).
If A := (aαβ)r is a metallic matrix, then

∑r
γ=1 aαγaγβ = paαβ + qδαβ and from

(3.4)(i) we obtain uβ(ξα) = 0, which implies that P 2ξα = pPξα+qξα and Jξα = Pξα,
for any α ∈ {1, ..., r}.

Theorem 5.4. Let M be a submanifold of codimension r ≥ 2 in a locally metallic
Riemannian manifold (M, g, J). If the normal connection ∇⊥ vanishes identically on
the normal bundle T⊥(M) and M is a non-invariant submanifold with respect to the
metallic structure J , then the vector fields {ξ1, ..., ξr} are linearly independent.

Proof. From (3.4)(i) we have:

g(ξα, ξβ) = qδαβ + paαβ −
r∑

γ=1

aαγaγβ .

Let x1, ..., xr be real numbers with the property x1ξ1 + ... + xrξr = 0 in any point
x ∈ M . Applying g(ξα, ·) in the last equality (α ∈ {1, ..., r}), we obtain a linear
system, given by:

(5.8)

r∑
i=1

xiΓij = 0

for any j ∈ {1, ..., r}, where Γii = q + paii −
∑
γ a

2
iγ and Γij = paij −

∑
γ aiγaγj for

i 6= j and i, j ∈ {1, ..., r}.
The determinant of the matrix of the linear system (5.8) is the determinant of the

matrix B = qIr+pA−A2, where A = (aαβ)r. Using the last remark, we observe that
the determinant of the matrix B is not zero when M is a non-invariant submanifold
with respect to the metallic structure J . Therefore, the linear system of equations
(5.8) has the unique solution x1 = ... = xr = 0. Thus, the vector fields {ξ1, ..., ξr} are
linearly independent. �
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Theorem 5.5. Let M be a submanifold of codimension r ≥ 1 in a locally metallic
Riemannian manifold (M, g, J). If the normal connection ∇⊥ vanishes identically
on the normal bundle T⊥(M) and M is a non-invariant submanifold with respect to
the metallic structure J , then the induced Σ-metallic Riemannian structure on M
is normal if and only if the (1, 1)-tensor field P commutes with every Weingarten
operator Aα, for any α ∈ {1, ..., r}.

Proof. We assume that the induced Σ-metallic Riemannian structure on M is normal
and we prove that the (1, 1)-tensor field P commutes with every Weingarten operator
Aα (i.e. PAα = AαP ), for any α ∈ {1, ..., r}.

If the normal connection vanishes identically (thus lαβ = 0), then:

(5.9)

r∑
α=1

g(X, ξα)BαY =

r∑
α=1

g(Y, ξα)BαX.

Multiplying the equality (5.9) by Z ∈ X (M), we obtain:

(5.10)

r∑
α=1

g(X, ξα)g(BαY,Z) =

r∑
α=1

g(Y, ξα)g(BαX,Z),

for any X,Y, Z ∈ X (M).
Inverting Y by Z in the last equality and using that Bα is g-skew symmetric (i.e.

g(BαY, Z) + g(BαZ, Y ) = 0), by summing these relations we obtain:

r∑
α=1

g(Y, ξα)g(BαX,Z) +

r∑
α=1

g(Z, ξα)g(BαX,Y ) = 0.

Therefore:

(5.11)

r∑
α=1

g(Y, ξα)BαX +

r∑
α=1

g(BαX,Y )ξα = 0.

Inverting X by Y in the last equality and summing these relations we obtain:

r∑
α=1

g(Y, ξα)BαX +

r∑
α=1

g(X, ξα)BαY = 0

and multiplying this equality by Z ∈ X (M) we get:

(5.12)

r∑
α=1

g(Y, ξα)g(BαX,Z) +

r∑
α=1

g(X, ξα)g(BαY, Z) = 0.

Using (5.10) and (5.12) it follows that:

(5.13)

r∑
α=1

g(Y, ξα)g(BαX,Z) = 0,

for any X,Y, Z ∈ X (M).
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If M is non-invariant submanifold of codimension r ≥ 2 in a locally metallic
Riemannian manifold (M, g, J) and the normal connection ∇⊥ vanishes identically
on the normal bundle T⊥(M), from the Theorem (5.4) we obtain that the vector
fields ξ1, ..., ξr are linearly independent in any point x ∈ M . Due to these r linearly
independent vector fields on M we have r ≤ n. It follows that there exists a vector
field Y ∈ X (M) which is orthogonal on the space spanned by {ξ1, ..., ξr} − {ξα} and
g(Y, ξα) 6= 0. Hence, we obtain BαX = 0 which is equivalent to PAα = AαP , for any
α ∈ {1, ..., r}.

For r = 1 we have g(Y, ξ)BX = 0 (where B = PA− AP ) and for Y = ξ we have
g(ξ, ξ)BX = 0. But g(ξ, ξ) = q + pa− a2 6= 0 (M is non-invariant submanifold) and
we obtain BX = 0, for any X ∈ X (M), which is equivalent to PA = AP . �

Remark 5.5. If M is a non-invariant totally umbilical (or totally geodesic) n-
dimensional submanifold of codimension r ≥ 1 in a locally metallic Riemannian
manifold (M, g, J) such that the normal connection ∇⊥ vanishes identically, then
the Σ-metallic Riemannian structure induced on the submanifold M is normal.
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