On a gradient Ricci soliton in the plane
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Abstract. The object of the present paper is to introduce a special Rie-
mannian metric and study the gradient Ricci solitons for this special met-
ric. We also characterize the potential function for such gradient Ricci
soliton.
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1 Introduction

In 1982, Hamilton [6] introduced the notion of Ricci flow to find a canonical metric on
a smooth manifold. Then Ricci flow has become a powerful tool for the study of Rie-
mannian manifolds, especially for those manifolds with positive curvature. Perelman
([10], [11]) used Ricci flow and its surgery to prove Poincare conjecture. The Ricci
flow is an evolution equation for metrics on a Riemannian manifold (M, g) defined as
follows:

&g(t) = —2Ric,
where Ric is the Ricci tensor.

A Ricci soliton emerges as the limit of the solutions of the Ricci flow. A solution
to the Ricci flow is called Ricci soliton if it moves only by a one parameter group
of diffeomorphism and scaling. A Ricci soliton (g,V, p) on a Riemannian manifold
(M, g) is a generalization of an Einstein metric such that ([4], [7])

1
(1.1) §£Vg+Ric:pg,

where £y is the Lie derivative operator along the vector field V on M and p is a real
number. The Ricci soliton is said to be shrinking, steady and expanding according as
p is negative, zero and positive respectively.

Moreover, if the vector field V' is the gradient of some smooth function f (called
potential function) on M then the Riemannian manifold (M, g) is said to be gradient
Ricci solition. A Riemannian manifold (M, g) is called a gradient Ricci soliton [2]
if there exists a smooth function f : M — R, sometimes called potential function,
satisfying

(1.2) Rij + fi5 = pgij,
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where p is a real number and R;; are the components of the Ricci tensor. The gradi-
ent Ricci solitons have been studied by several authors such as [3], [5], [8] and many
others.

In the present paper, we introduce a special Riemannian metric and study the
gradient Ricci solitons for this special metric. The paper is organized with some
preliminaries. Section 2 is concerned as follows. Section 3 is devoted to the study
of gradient Ricci solitons of a special Riemannian metric. We also characterize the
potential function for such gradient Ricci soliton.

In 1988, Nesterov and Nemirovskii developed a general, polynomial time frame-
work for convex programming problems, presented in their extensive monograph [9].
This framework for interior point methods relies on the notion of self-concordant bar-
rier functions. These functions are special, convex penalty functions which intricately
regulate their own behaviour and growth. Then Udriste [12] study self-concordant
barrier functions of the Riemannian context of optimization methods. Thus the no-
tion of self-concordant function has been introduced on Riemannian manifolds due
to the necessity to develop a large class of optimization methods. In this section we
obtain the condition of potential function of such constructed gradient Ricci soliton
to be c-concordant barrier.

2 Preliminaries

This section deals with some preliminaries, which will be required in the sequel.

Let (M, g) be an n-dimensional Riemannian manifold and (U, z%, 22, --- ,2™) be
a coordinate chart on M. The Christoffel symbols of the Levi-Civita connection is
denoted by T'¥., is defined by [2]

35
T 1 kl (agli n 8gjl 891‘3‘) .

oxd  Oxt ox!

1] 2

Using the Christoffel symbols, the components of the Riemann curvature tensor R
can be expressed in the following form [2]

ik = i Oxk
and the Ricci tensor (Ric) is defined by R;; = R, .

If f: M — R is a smooth function, then we consider [2]

of __%f  Ofy
2a 19 = Ggiggs ~Liitme Lar= 3%

Also we recall the following:

+ I}, = T7 T,

(2.1) fi= —Thifuj = Thjfie

Definition 2.1. [2] The second covariant derivative of the function f : M — R is
defined by

0% f
Oxt0xI

(2.2) Vaf = ( — rfjf,k) de' ® da?,

is called the Hessian of f.
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Definition 2.2. [1] The function f is said to be c-self-concordant barrier, ¢ > 0,
with respect to the Levi-Civita connection V defined on M if the following conditions
holds:

(2.3) (df (z) (X,))* < ¢ V2f(z) (Xy, X,), Yo eM and X, € T, M.

3 Gradient Ricci solitons

In this section we introduce a special Riemannian metric and study the gradient Ricci
solitons for this special metric.

Let us consider M = R? be a Riemannian manifold endowed with the metric of
diagonal type (warped metric) g, given by

_ ~ [ag(z?) 0
) et = ("0 0.

where g is a smooth positive function, (z!,2?) are the global coordinates on R? and
a,f eRT.
The Lagrangian of energy associated with the above metric is of the form

(32) L= Slag(a?) (@) + Bg(a") (i),

Hence we get

e
(3.3) oL _ i1 oL _ 1y.4.2
o = ag(x®)it, o = Bg(a')i?,
(3.4) 4 (SF) = ag(@?)i' + ag/ (a?)i' a2,
% (55) = Bg(ah)i? + By (a")i' 42

the geodesic equations for the metric g are given by

x2)

(3.5)

{x"l + gg'((rz)x'lxé _ B¢ (#2)? = 0,

Comparing (3.5) with the usual geodesic equations i* 4 I'}j;i'i/ = 0, we obtain the
Christoffel symbols for our metric as

(3.6)

(x? )
{I‘h—o; F%szélzg( ). F%2:7L));

I3, =0; I'f, =03 =
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Next, for an arbitrary function f(x!,22) on M, we compute

*f of of
(3.7) fu = @y Fh@ - F%l@

Ff | ad@®) of

A(zh)? 28 g(xt) 0x2’

2
(3.8) fi2=f2a = o J - T of 2 Of

Ozxtox? 1291 12942

Ff g of g f

0x10x2  2g(2?) 0z'  2g(x') a2’

Pf o Of e Of

O(x2)? 2 9! 22 92
’f . B g af

d(x2)2  2a g(x2) 02’

(3.9) fo2 =

Also for 2-dimensional manifolds, the components of Ricci tensor are

(3.10) {RH = Ri); + RYy,  Riz = Ry + Riy,

Ro1 = Riyy + R3yy,  Raz = Ryyp + R
In view of (3.6), we compute by direct calculation that

, o ({0 20" D) | {g@) - 20(a)g" (@)
(3.11) Rm—w( o(@)g(@?) )* o))} ’

(3-12) Rhl =0, R%m =0, R%zz =0,

B {g=Hy B g | {g (=)} 29" (2%)g(2?)
da g(zt)g(x?) 2o g(2?) H{g(z?)}?

By virtue of (3.11)-(3.13), we obtain from (3.10) that

(3.13) R%m = ) 3522 =0.

o N2 VV2 20" (£2) o (22 "2 —2g(zt e (o)
R11=@({g( P2l >)+{g< =2l @),
(3.14) Ri2 =0,
_ B {dEYY B¢, L@@ 20" (rP)g(a?)
R22 = 35 5GMg(e®) ~ 2a g@?) T e :

Using (3.14), the relation (1.2) reduces to the following equations:

R+ f11 = pgi1,
(3.15) Riz + f12 = pgi2,
Roo + f 22 = pgas.
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Feeding (3.7), (3.8), (3.9) and (3.14) in (3.15) we get respectively the followings:

a {g'(a?)}? —2¢"(2*)g(=?)  {g'(z")}* —2g(at)g"(z)) = O*f

3.16 — + +
GBI BT e g(a)? B2
o ’( ) af 2
0% f g (%) of g¢'(z') Of
(3.17) 1902 ( 2)71_ ( 1)72:07
Ox10x 2g(x?) Ox 2g(xt) Ox
2 1 1\12 "
1) R L BgE) O B g g
z?)? 20 9(502) dz! ~ dag(zl)g(z?) 2a g(z?)
{g'(=%)}? — 29" (2)g(2?) 1
+ = Bpg(z).
T po)
The Hessian of the function f with respect to metric (3.1) is
(3.19)
4+ ad@) o o g of _ g'(zh) of
H, = a(x1)2 28 g(z1) 812 dx1ox? Qg(xz) ozt 2g(zt) Ox2
f O*f _ g'%) of _ ¢'(z') of f L B g of
Oz10z? 2g(x?) Ozt 2g(z!) 0z2 8(w2)2 2a g( 2) Ozt

Imposing the condition det (Hy¢) > 0, we get

*f  9*f +gg($2) of 9°f B g of 9f
A(xz1)?2 9(x2)2 28 g(x ) 0x2 0(x?)? 2« g(x?) Oxt O(xt)?
Pf[g'(x*) of ) Of
+6x10m2{ 9(2%) 0at 1)8x2}
0> f {g (x2>}2 Af\' | 1g'(a)g' (=) Of Of
- (axlax2> +4{9(#)}2( ) !

4 g(zVg(a?) Ot dx?
Thus we can state the following:

(3.20)

+

Theorem 3.1. Let M = R? be a Riemannian manifold endowed with the metric §
given in (3.1). If the following conditions are satisfied

a {g' (@*)}2—2¢" (22)g(z> ! 2—2g(z')g" («* o « z°) O .
E{g( )g}(xl);](x(Z) )9(z*) | {d'(z )ﬁ{g(ff)}z)g( )Jra(xlf)z +25Z<(x1)) 8;; apg(x?);
oo 9@ of (@) of _
e ZQ(I?)?z 29@1){31(2 DY 8" | {g @)} -2¢" (a?)g(=?)

o x o e x "(x T
hT + I S ot dm gt — 3 ey T e = Bpg(at)

then (R2%, §) is a gradient Ricci soliton having f : M — R as potential function, where
the Hessian of f is given in (3.19) and the condition for the potential function f of
the metric (3.1) to define a Riemannian metric of Hessian type is given in (3.20).

If we take g(z!) = % = constant and o = 1 in (3.1) then we can state the following:
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Corollary 3.2. Let M = R? be a Riemannian manifold endowed with the metric
of diagonal type g, where g(zt,2%) = diag(g(x?), 1), with g positive function, of C>
class. If the following conditions are satisfied

2 (2 12N 2 —20" (£2) g (22
6(6?301]”)2 + 9 (. ) 8f + =7) 492&2)( )g(z”) = pg(2?);
*f g(mz) oy -
8:8;8%2 2g(;c2) ozt 5 ,
T —2 T T
6?12’]0)2 + (¢’ (=*)) 4g(£;2)( )9(x”) P

then (R%,§) is a gradient Ricci soliton having f : M — R as potential function [2],
where the Hessian of f is given in

o%f 4 g'(=*) of %f _ g'(z®) af
Hf _ < o(x1)2 2  Ox2 Ox1oz? 2g(z?) Ozt >

0% g'(e%) of 0% f
Ox1dz? 2g(z?) Ozt 0(xz?)2

and the condition for the potential function f of the metric g(zt,z?) = diag(g(z?),1)
to define a Riemannian metric of Hessian type is given by

*f 0*f +g'(ff2) of o*f 0*f g'(=®) of

0(x1)? 9(x?)? 2 0x29(x2)2 ' 91022 g(x?) dat
°f \* | {d@Hy (or\®
- (axla:ﬁ) T i) <6x>

Following the same treatment of [2], if we take

{h:aafléf’hz ot

ox2 8w128;r2’
k: — ﬂ = Ok _ 9k

Ox2 ox2 = Oxlox?-

then from (3.17) we obtain

oh _ g'(z) g'(«")
(3.21) {M - 2gg<x2)h 2g<x1>k

ok __ T z)
Oz — gg((m’?))h + 2gg((ﬂcl)]€

Taking an integration of first equation of (3.21) with respect to 22 and second equation
of (3.21) with 2! respectively, we get

Theorem 3.3. The potential function [ of the gradient Ricci soliton in Theorem 3.1
must satisfies the following conditions:

{af_ax1 /7332 _,_gg((i) ( 2)’
2 = M)A + £ (2.

We now prove the following:

Theorem 3.4. The potential function f of the gradient Ricci soliton in Theorem 3.1
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s c-concordant barrier, if

of of [ 02 a g'(z?) 0 N
. 2L < =
o) (ot o ) < | (o + 35 ax2 “
r an g/($2) g/(ml) 8][

* (j_<6x13x2 ~ 29(a?) aat 1 29($1)3x2> ““]

>’ f B g'(a') of 2
+ | (o * g ey o) ¥
Proof. The proof can be done immediatly if we replace X, = (u,v) in the Definition
2.2. ([

If we take g(z1) = % = constant and o = 1 in (3.1) then we can state the following:

Corollary 3.5. The potential function f of the gradient Ricci soliton in Corollary
3.1 is c-concordant barrier, if

(Mc+1 cd@%)u;+< 2 g (2?)

K2(z)2 242 kala? 2zt

k2c+1
2 2
g(z )) uv + kQ(x2)2U <0.
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