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1 Introduction

The study of submanifolds of a Riemannian space form (in particular complex space
form) has been an area of interest for many differential geometers for many years. In
[2], Barros studied the properties of compact minimal submanifolds of the Euclidean
sphere S™ and obtained a characterization of S™. Moreover using Obata’s theorem [9],
Okumura [10] proved that an (n — 1)-dimensional complete simply connected totally
umbilical submanifold with non-zero constant mean curvature of an n-dimensional
locally product Riemannian manifold is isometric to a sphere. In [6], Rio, Kupeli and
Unal characterized Euclidean sphere using a standard differential equation which is
the another version of Obata’s differential equation.

On the other hand, Djoric and Okumura [5] discussed n -dimensional C'R-submanifolds
with (n — 1) as CR-dimension in a complex projective space and established an in-
equality between Ricci tensor, the scalar curvature and the mean curvature. Later,
Pak and Kim [12] studied C'R-submanifolds with (n — 1) as C'R-dimension in a com-
plex hyperbolic space.

Recently, we studied of the geometry of complete submanifolds of a Riemannian
space form and proved the follwoing [8]; Let M™ be a complete submanifold of a
Riemannian space form M"*P(c), (¢ # 0) with the Ricci curvature bounded from
below and without boundary. If M admits a real valued non-constant function f such
that Af + Af =0 and A < nc, then M™ is either isometric to a sphere S™ for A > 0
or isometric to a warped product of the Euclidean line and a complete Riemannian

d? A
manifold whose warping function 1 satisfies the equation % +—1 = 0. And, let M™
n

be a complete n-dimensional C'R-submanifold without boundary and with the Ricci
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curvature bounded from below and C' R-dimension(n — 1) in the complex space form

s (4). If f: M™ — R is any smooth function on M" satisfying the conditions
Af+Af=0and A <n, then M" is isometric to one of the following;:
(a) connected component of the hyperbolic space,

(b) warped product of the Euclidean line and a complete Riemannian manifold,
d? A
where the warping function v satisfies the equation ﬁqf + -y =0,
n
(¢) Euclidean sphere.

The purpose of the paper is devoted to study the geometry of a totally real sub-
manifolds of a complex projective space. The main result of the paper is the following;:
Theorem Let M™ be a complete totally real submanifold of a complex projective space
M™ with the Ricci curvature bounded from below and without boundary. If M admits
a real valued non-constant function f such that Af + Af =0 and A < n, then M™ is
isometric to one of the following:

(a) connected component of the hyperbolic space,

(b) warped product of the Euclidean line and a complete Riemannian manifold,
d? A
where the warping function ¥ satisfies the equation el + — =0,
n
(¢) Euclidean sphere.

We remark in the future we want to apply these way of this paper to CR-

submanifolds in quaternionic space forms which was defined by M. Barros, B-Y Chen
and F. Urbano [1].

2 Preliminaries

Let M™ be the n-dimensional complex projective space with the Fubini-Study meric
of constant holomorphic sectional curvature 4 and let M™ be a complete subman-

ifold of M. Let us consider an immersion 1) : M™ — M™ and let {e1,e2,...,¢€n,
Jei,...,Je,} be an adapted orthonormal frame of M™ such that {ej,eq,...,e,} is
an orthonormal frame to M™ and {Jes,..., Je,} is an orthonormal frame of the nor-

mal bundle T'M + of M™, where J is the complex sturucture of M"™. We denote by
V and V the Levi-Civita connection on M (n) and M", respectively. Then the Gauss
and Weingarten formulas are given by

(2.1) VxY =VxY +h(X,Y),

VxJe; = —A; X +VxJe, i=1,2,...,

for any vector X,Y tangent to M™ [4], where A; is given by Aj.,. Here V* denotes
the normal connection induced from V in the normal bundle TM~* of M™, and h and
A, are the second fundamental form and the shape operator corresponding to Je;,
respectively. Further, h and A; are related as

(2.3) h(X,Y) = i g(A,X,Y) e

i=1
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Then we have the following equation

g(h(es,e5), Jer) = g(Aiej, ex).
1 n
. The mean curvature vector H is given by H = — Z(trAi)Jei. The equation of
n
i=1
Gauss is given by
RX,Y,Z,W) = g(Y,2)9(X, W) —g(Y,W)g(X, Z) + g(JY, Z)g(JX, W) — g(J X, Z)g(JY, W)
+29(X, JY)g(JZ, W) + g(h(Y, Z), h(X, W)) — g(h(X, Z), h(Y, W)).

Then we have

(2.4)

n

Ric(e;, ;) = (n — Dglei,e;) + > (tr Ap)g(Areie;) — Y glhlex, ei), hiej, ex)).
k=1 k=1

The following generalized maximum principle due to Omori [11] and Yau [13] will be
used in order to prove our theorems.

Theorem 2.1. Let M™ be a complete Riemannian manifold whose Ricci curvature
is bounded from below and f € C*(M) a function bounded from above on M™. Then,
for any € > 0, there exists a point p € M™ such that

f(p) >supf — e, ||gradf]| < e, Af(p) <e

For a function f : M™ — R, Bochner formula is given by [2]

(25) SAIVSIE = [Hess £ +Rie(VA, V) + 9(f, V(AS)

where Hess, Ric and A stand for the Hessian form, Ricci tensor and the Laplacian,
respectively, and the square of the norm of an operator A is given by ||A|* = tr(AA*).

3 Application of Bochner formula in space forms

The results of the paper will be proved by appying Bochner formula. To prove theo-
rem, we need the following lemma which we will state and prove first.

Lemma 3.1 Let M™ be a submanifold without boundary of a complex projective space
M™, Let f : M™ — R be any function on M™ and X be the first eigenvalue of the
Laplacian of M™, i.e. Af + f =0. Then for any t € R we have

[Fess fII* = Hess f —t/11° ~ (2t + ") (IVFI2 = JAF),

where Hess f and I denote the Hessian operator of f and the identity operator, re-
spectively. The norm of any operator A is Euclidean, i.e. ||A|| = tr(AA*).
Proof. We have

|Hess f —tfI]|> = |[Hess f|* + t2f*||I||* — 2t fTHess/.
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for any ¢ € R. Tt is clear that ||I||* = tr(I1*) = n and IHess f = trHess f. Now
Af = gijvjvif = ViV, f = trHessf.

Therefore
|Hess f — tfI||> = |[Hess f||> + nt>f2 + 2tAf2,

which implies that
t2
(3.1) [Hess f — tfI]|> = ||Hess f||> + (2t + ”T)Af%

Also we know that

AfP=2fAf+2|VfI.
This gives
1
(32) AP =IVFIP = 5Af

From equations (3.1) and (3.2) we get

[Hess f —tfI||* = |[Hess f|* + (2t + —)(IIVfH ),

which implies that

2
(33)  Hess fI = [Hess £~ tf1* — 2t + ")(IVFIE - JA).

Proof of Theorem:
Equation (2.4) yields

ZRiC(fieiafjej) = Z(n_l)ftf]g €4, €5 +Zf1fjg euei)ah(ejvej))
i,J

- Zfzfjg (eiren), (ej,ek»,

i,k

where Vf = Z fie;. This gives us

> Ric(fiei, fie;) = (n—1DIVFI*+ D fifig(h(ei,e:), hleje;))
i i

_Zf’bfjg 61 ek (ejaek))

4,5,k

:(’n—l)HVfH2++Zfifjg< ei,e;),h(ej,ej)) Zg (Vf,e),h(Vf e))

]

(3.4) = (n =D IV + D fifig(hlei i) hle;, e5) Znhvm

(2]
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It reminds Bochner formula (2.4)
1 .
SANVIP = [Hess fI° + Rie(Vf, V) +9(Vf, V(Af)).

Now plugging the values of ||[Hess f||> and Ric(Vf, Vf) from equations (3.3) and
(3.4) into equation (2.4), we get

1 2 2 nt2 2 1 9 2
SAIVET = [[Hess f = tfI]" = (2t + =)V = 5A) + (n = DIV S]]
+Zfzfjg cirei)hles3)) = D IV el = ATV

Ri
Also according to the definition of the first eigenvalue A we must have m >
A

- [3], [9] and the assumption of Af + Af = 0 and hence

1 1 t2
SAIVSI® = [Hess = t£1]* + 5 (2t + Z)Af?

H= DIV + 3 afig(hles e heseep) = 3 1T, P (- )2V
1,7
2
L N Y N2

A
If t = —— then the R.H.S. of the above equation reduces to
n

2

1
(3.5) —A||Vf|\2+iAf2— HHeSS f+5fl > 0.
2 2n n

It is easy to see that

2

A
(3.6) HHess f+ ﬁfl > 0.

From the assumption of the Ricci curvature bounded from below and equations (3.5),

(3.6) we conclude that
2

)

HHessf + %f]

A
which implies that Hessf + — fI = 0. The above result for A < 0 breaks up into two
n

possible isometries of M™ given by
(i) M™ is isometric to a connected component of the hyperbolic space if (Vf), =0
at some p € M™ [6].
(ii) M™ is isometric to the warped product of the Euclidean line and a complete
Riemannian manifold if V f is non-vanishing, where warping function 1) on R satisfies
the equation [6]

d?v

o + A =0,9 > 0.
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Further if X satisfies the inequality 0 < A < n, then from equation (3.5) we have

2

1
(3.7) 7A||Vf||2—|—iAf2— HHessf—&—)\fI > 0.
2 2n n

But we clearly have

2

(3.8) HHessf + %f] > 0.

Combining the assumption of the Ricci curvature bounded from below and the in-
equalities (3.7), (3.8), we obtain

2

HHessf + éfI =0,
n

which gives

A
Hessf + —fI =0 for 0 < A <n.
n

Hence M™ is isometric to a sphere [9]. This completes the proof of the theorem.
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