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1 Introduction

The study of submanifolds of a Riemannian space form (in particular complex space
form) has been an area of interest for many differential geometers for many years. In
[2], Barros studied the properties of compact minimal submanifolds of the Euclidean
sphere Sn and obtained a characterization of Sn. Moreover using Obata’s theorem [9],
Okumura [10] proved that an (n− 1)-dimensional complete simply connected totally
umbilical submanifold with non-zero constant mean curvature of an n-dimensional
locally product Riemannian manifold is isometric to a sphere. In [6], Rio, Kupeli and
Unal characterized Euclidean sphere using a standard differential equation which is
the another version of Obata’s differential equation.

On the other hand, Djoric and Okumura [5] discussed n -dimensional CR-submanifolds
with (n − 1) as CR-dimension in a complex projective space and established an in-
equality between Ricci tensor, the scalar curvature and the mean curvature. Later,
Pak and Kim [12] studied CR-submanifolds with (n− 1) as CR-dimension in a com-
plex hyperbolic space.

Recently, we studied of the geometry of complete submanifolds of a Riemannian
space form and proved the follwoing [8]; Let Mn be a complete submanifold of a
Riemannian space form M̄n+p(c), (c 6= 0) with the Ricci curvature bounded from
below and without boundary. If M admits a real valued non-constant function f such
that ∆f + λf = 0 and λ ≤ nc, then Mn is either isometric to a sphere Sn for λ > 0
or isometric to a warped product of the Euclidean line and a complete Riemannian

manifold whose warping function ψ satisfies the equation
d2ψ

dt2
+
λ

n
ψ = 0. And, let Mn

be a complete n-dimensional CR-submanifold without boundary and with the Ricci
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curvature bounded from below and CR-dimension(n− 1) in the complex space form

M̄
(n+p)

2 (4). If f : Mn −→ R is any smooth function on Mn satisfying the conditions
∆f + λf = 0 and λ ≤ n, then Mn is isometric to one of the following:

(a) connected component of the hyperbolic space,
(b) warped product of the Euclidean line and a complete Riemannian manifold,

where the warping function ψ satisfies the equation
d2ψ

dt2
+
λ

n
ψ = 0,

(c) Euclidean sphere.
The purpose of the paper is devoted to study the geometry of a totally real sub-

manifolds of a complex projective space. The main result of the paper is the following:
Theorem Let Mn be a complete totally real submanifold of a complex projective space
M̄n with the Ricci curvature bounded from below and without boundary. If M admits
a real valued non-constant function f such that ∆f + λf = 0 and λ ≤ n, then Mn is
isometric to one of the following:

(a) connected component of the hyperbolic space,
(b) warped product of the Euclidean line and a complete Riemannian manifold,

where the warping function ψ satisfies the equation
d2ψ

dt2
+
λ

n
ψ = 0,

(c) Euclidean sphere.

We remark in the future we want to apply these way of this paper to CR-
submanifolds in quaternionic space forms which was defined by M. Barros, B-Y Chen
and F. Urbano [1].

2 Preliminaries

Let M̄n be the n-dimensional complex projective space with the Fubini-Study meric
of constant holomorphic sectional curvature 4 and let Mn be a complete subman-
ifold of M̄ . Let us consider an immersion ψ : Mn −→ M̄n and let {e1,e2, . . . , en,
Je1, . . . , Jen} be an adapted orthonormal frame of M̄n such that {e1, e2, . . . , en} is
an orthonormal frame to Mn and {Je1, . . . , Jen} is an orthonormal frame of the nor-
mal bundle TM⊥ of Mn, where J is the complex sturucture of M̄n. We denote by
∇̄ and ∇ the Levi-Civita connection on M̄ (n) and Mn, respectively. Then the Gauss
and Weingarten formulas are given by

∇̄XY = ∇XY + h(X,Y ),(2.1)

∇̄XJei = −AiX +∇⊥XJei, i = 1, 2, . . . ,(2.2)

for any vector X,Y tangent to Mn [4], where Ai is given by AJei . Here ∇⊥ denotes
the normal connection induced from ∇̄ in the normal bundle TM⊥ of Mn, and h and
Aα are the second fundamental form and the shape operator corresponding to Jei,
respectively. Further, h and Ai are related as

(2.3) h(X,Y ) =

n∑
i=1

g(AiX,Y )Jei.
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Then we have the following equation

g(h(ei, ej), Jek) = g(Aiej , ek).

. The mean curvature vector H is given by H =
1

n

n∑
i=1

(trAi)Jei. The equation of

Gauss is given by

R(X,Y, Z,W ) = g(Y,Z)g(X,W )− g(Y,W )g(X,Z) + g(JY, Z)g(JX,W )− g(JX,Z)g(JY,W )

+2g(X, JY )g(JZ,W ) + g(h(Y, Z), h(X,W ))− g(h(X,Z), h(Y,W )).

Then we have

(2.4)

Ric(ei, ej) = (n − 1)g(ei, ej) +

n∑
k=1

(tr Ak)g(Akei, ej) −
n∑
k=1

g(h(ek, ei), h(ej , ek)).

The following generalized maximum principle due to Omori [11] and Yau [13] will be
used in order to prove our theorems.

Theorem 2.1. Let Mn be a complete Riemannian manifold whose Ricci curvature
is bounded from below and f ∈ C2(M) a function bounded from above on Mn. Then,
for any ε > 0, there exists a point p ∈Mn such that

f(p) ≥ supf − ε, ||gradf || < ε,∆f(p) < ε.

For a function f : Mn −→ R, Bochner formula is given by [2]

(2.5)
1

2
∆ ‖∇f‖2 = ‖Hess f‖2 + Ric(∇f,∇f) + g(∇f,∇(∆f))

where Hess, Ric and ∆ stand for the Hessian form, Ricci tensor and the Laplacian,
respectively, and the square of the norm of an operator A is given by ‖A‖2 = tr(AA∗).

3 Application of Bochner formula in space forms

The results of the paper will be proved by appying Bochner formula. To prove theo-
rem, we need the following lemma which we will state and prove first.
Lemma 3.1 Let Mn be a submanifold without boundary of a complex projective space
M̄n, Let f : Mn −→ R be any function on Mn and λ be the first eigenvalue of the
Laplacian of Mn, i.e. ∆f + λf = 0. Then for any t ∈ R we have

‖Hess f‖2 = ‖Hess f − tfI‖2 − (2t+
nt

λ
)(‖∇f‖2 − 1

2
∆f2),

where Hess f and I denote the Hessian operator of f and the identity operator, re-
spectively. The norm of any operator A is Euclidean, i.e. ‖A‖ = tr(AA∗).
Proof. We have

‖Hess f − tfI‖2 = ‖Hess f‖2 + t2f2 ‖I‖2 − 2tfIHessf.
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for any t ∈ R. It is clear that ‖I‖2 = tr(II∗) = n and IHess f = trHess f. Now

∆f = gij∇j∇if = ∇i∇if = trHessf.

Therefore
‖Hess f − tfI‖2 = ‖Hess f‖2 + nt2f2 + 2tλf2,

which implies that

(3.1) ‖Hess f − tfI‖2 = ‖Hess f‖2 + (2t+
nt2

λ
)λf2.

Also we know that
∆f2 = 2f∆f + 2 ‖∇f‖2 .

This gives

(3.2) λf2 = ‖∇f‖2 − 1

2
∆f2.

From equations (3.1) and (3.2) we get

‖Hess f − tfI‖2 = ‖Hess f‖2 + (2t+
nt2

λ
)(‖∇f‖2 − 1

2
∆f2),

which implies that

(3.3) ‖Hess f‖2 = ‖Hess f − tfI‖2 − (2t+
nt2

λ
)(‖∇f‖2 − 1

2
∆f2).

Proof of Theorem:
Equation (2.4) yields∑

i,j

Ric(fiei, fjej) =
∑
i,j

(n− 1)fifjg(ei, ej) +
∑
i,j

fifjg(h(ei, ei), h(ej , ej))

−
∑
i,j,k

fifjg(h(ei, ek), h(ej , ek)),

where ∇f =
∑
i

fiei. This gives us

∑
i,j

Ric(fiei, fjej) = (n− 1) ‖∇f‖2 +
∑
i,j

fifjg(h(ei, ei), h(ej , ej))

−
∑
i,j,k

fifjg(h(ei,ek), h(ej , ek))

= (n− 1) ‖∇f‖2 + +
∑
i,j

fifjg(h(ei, ei), h(ej , ej))−
∑
i

g(h(∇f, ei), h(∇f, ei))

(3.4) = (n− 1) ‖∇f‖2 +
∑
i,j

fifjg(h(ei, ei), h(ej , ej))−
∑
i

‖h(∇f, ei)‖2 .
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It reminds Bochner formula (2.4)

1

2
∆ ‖∇f‖2 = ‖Hess f‖2 + Ric(∇f,∇f) + g(∇f,∇(∆f)).

Now plugging the values of ‖Hess f‖2 and Ric(∇f,∇f) from equations (3.3) and
(3.4) into equation (2.4), we get

1

2
∆ ‖∇f‖2 = ‖Hess f − tfI‖2 − (2t+

nt2

λ
)(‖∇f‖2 − 1

2
∆f2) + (n− 1) ‖∇f‖2

+
∑
i,j

fifjg(h(ei, ei), h(ej , ej))−
∑
i

‖h(∇f, ei)‖2 − λ ‖∇f‖2 .

Also according to the definition of the first eigenvalue λ we must have
Ric(∇f,∇f)

(n− 1)||∇f ||2
≥

λ

n
[3], [9] and the assumption of ∆f + λf = 0 and hence

1

2
∆ ‖∇f‖2 = ‖Hess f − tfI‖2 +

1

2
(2t+

nt2

λ
)∆f2

+(n− 1) ‖∇f‖2 +
∑
i,j

fifjg(h(ei, ei), h(ej , ej))−
∑
i

‖h(∇f, ei)‖2 − (n− 1)
λ

n
‖∇f‖2

−(2t+
nt2

λ
+ λ− (n− 1)

λ

n
) ‖∇f‖2 .

If t = −λ
n

then the R.H.S. of the above equation reduces to

1

2
∆ ‖∇f‖2 +

λ

2n
∆f2 −

∥∥∥∥Hess f +
λ

n
fI

∥∥∥∥2 ≥ 0.(3.5)

It is easy to see that

(3.6)

∥∥∥∥Hess f +
λ

n
fI

∥∥∥∥2 ≥ 0.

From the assumption of the Ricci curvature bounded from below and equations (3.5),
(3.6) we conclude that ∥∥∥∥Hessf +

λ

n
fI

∥∥∥∥2 = 0,

which implies that Hessf +
λ

n
fI = 0. The above result for λ ≤ 0 breaks up into two

possible isometries of Mn given by
(i) Mn is isometric to a connected component of the hyperbolic space if (∇f)p = 0
at some p ∈Mn [6].
(ii) Mn is isometric to the warped product of the Euclidean line and a complete
Riemannian manifold if ∇f is non-vanishing, where warping function ψ on R satisfies
the equation [6]

d2ψ

dt2
+ λψ = 0, ψ > 0.
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Further if λ satisfies the inequality 0 < λ ≤ n, then from equation (3.5) we have

(3.7)
1

2
∆ ‖∇f‖2 +

λ

2n
∆f2 −

∥∥∥∥Hessf +
λ

n
fI

∥∥∥∥2 ≥ 0.

But we clearly have

(3.8)

∥∥∥∥Hessf +
λ

n
fI

∥∥∥∥2 ≥ 0.

Combining the assumption of the Ricci curvature bounded from below and the in-
equalities (3.7), (3.8), we obtain∥∥∥∥Hessf +

λ

n
fI

∥∥∥∥2 = 0,

which gives

Hessf +
λ

n
fI = 0 for 0 < λ ≤ n.

Hence Mn is isometric to a sphere [9]. This completes the proof of the theorem.
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