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Abstract. In the present paper, we consider pseudo conharmonically sym-
metric manifold denoted by (PCHS),. In the first section, we give the
definition of this manifold. In the second section, we prove some theorems
including some properties of this manifold. In the last section, we give an
example for the existence of this manifold.
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1 Introduction

As we know, in differential geometry, symmetric spaces play an important role. In
the late twenties, Cartan [4] initiated Riemannian symmetric spaces and obtained a
classification of these spaces. Let (M, g) be an n-dimensional Riemannian manifold
with the Riemannian metric g and the Levi-Civita connection V. If the Riemannian
curvature tensor of a Riemannian manifold satisfies the condition VR = 0 then this
manifold is called locally symmetric [4]. For every point P of this manifold, this sym-
metry condition is equivalent to the fact that the local geodesic symmetry F'(P) is
an isometry [12]. The class of Riemannian symmetric manifolds is very natural gen-
eralization of the class of manifolds of constant curvature. Many authors have been
studied the notion of locally symmetric manifolds extending several manifolds such as
conformally symmetric manifolds [5], recurrent manifolds [25], conformally recurrent
manifolds [2], conformally symmetric Ricci-recurrent spaces [18], pseudo-Riemannian
manifold with recurrent concircular curvature tensor [13], semi-symmetric manifolds
[23], pseudo-symmetric manifolds [6, 14, 15], weakly symmetric manifolds [24], projec-
tive symmetric manifolds [22], almost pseudo-concircularly symmetric manifolds [7],
decomposable almost pseudo-conharmonically symmetric manifolds [3], etc. A non-
flat Riemannian manifold (M, g) (n > 2) is said to be a pseudo-symmetric manifold
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[6] if its curvature tensor R satisfies the condition

(VxR)(Y, Z)W =2A(X)R(Y, Z)W + A(Y)R(X, Z)W + A(Z)R(Y, X)W
(1.1) + AW)R(Y, Z2)X + g(R(Y, Z)W, X)p,

where A is a non-zero 1-form, p is a vector field defined by
(1.2) 9(X, p) = A(X),

for all X and V denotes the operator of the covariant differentiation with respect to
the metric tensor g. The 1-form A is called the associated 1-form of the manifold. If
A = 0, then the manifold reduces to a symmetric manifold in the sense of E.Cartan.
An n-dimensional pseudo-symmetric manifold is denoted by (PS),. This is to be
noted that the notion of pseudo-symmetric manifold studied in particular by Deszcz
[11] is different from that Chaki [6]. The notion of weakly symmetric manifolds was
introduced by Tamassy and Binh [24]. If the curvature tensor of type (1,3) of an
n-dimensional Riemannian manifold (n > 2) satisfies the condition

(VxR)(Y, Z)W =A(X)R(Y, Z)W + B(Y)R(X, Z)W + D(Z)R(Y, X)W
(1.3) + E(W)R(Y, Z)X + g(R(Y, Z)W, X)p,

where V denotes the Levi-Civita connection on (M, g) and A,B,D,E and p are 1-forms
and a vector field respectively, which are non-zero simultaneously, then this manifold
is denoted by (WS),,. Many authors have been studied weakly symmetric manifolds
8,9, 16, 17, 19], etc.

Conformal transformation of a Riemannian structure is an important object of
study in differential geometry. The conharmonic transformation which is a special
type of conformal transformations preserves the harmonicity of smooth functions.
Such transformation has an invariant tensor which is called the conharmonic curvature
tensor. It is easy to verify that this tensor is an algebraic curvature tensor, that is, it
possesses the classical symmetry properties of the Riemannian curvature tensor.

Let M and N be two Riemannian manifolds with the metrics g and g, respectively
related by

(1.4) g=¢g,

where o is a real function. Then M and N are called conformally related manifolds,
and the correspondence M and N is known as conformal transformation [21]. Tt is
known that a harmonic function is defined as a function whose Laplacian vanishes. In
generally, the harmonic function is not invariant. In 1957, Ishii obtained the conditions
which a harmonic function remains invariant and he introduced the conharmonic
transformation as a subgroup of the conformal transformation (1.4) satisfying the
condition

(1.5) crf}l + aﬁlcrfl =0,

where comma denotes the covariant differentiation with respect to the metric g.
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A rank-four tensor H that remains invariant under conharmonic transformation
of a Riemannian manifold (M, g) is given by

H(X,Y,Z,U) = R(X,Y, Z,U) ﬁ [9(Y, 2)S(X.U) — g(X, 2)S(Y, )
(1.6) +9(X,U)S(Y, 2) — g(YV,U)S(X, Z)],

where R and S denote the Riemannian curvature tensor of type (0,4) defined by
R(X,Y,Z,U) =g(R(X,Y)Z,U) and the Ricci tensor of type (0,2), respectively. The
curvature tensor defined by (1.6) is known as conharmonic curvature tensor. A man-
ifold whose conharmonic curvature tensor vanishes at every point of the manifold is
called conharmonically flat. Thus, this tensor represents the deviation of the man-
ifold from conharmonic flatness. Many authors have been studied the conharmonic
curvature tensor, [1, 21]. The present paper deals with an n-dimensional pseudo-
conharmonically symmetric Riemannian manifold (M, g) (non-conharmonically flat)
whose conharmonic curvature tensor H satisfies the condition

(VxH)(Y,Z,U,V) =2A(X)H(Y, Z,U,V) + A(Y)H(X, Z,U,V)
+ AZ)H(Y, X, U, V) + AU)H(Y, Z, X, V)
(1.7) + A(WV)H(Y, Z,U, X),

where A has the meaning already mentioned in (1.2). Such a manifold is called a
pseudo-conharmonically symmetric manifold [6] and denoted by (PCHS),. Since
the conformal curvature tensor vanishes identically for n = 3, we assume that n > 3
throughout the paper. This paper is organized as follows:

Section 2 deals with some properties of (PCHS),,.

In this section, we find the conditions on the scalar curvature if the curvature
tensor is generalized recurrent and the conharmonic curvature tensor is generalized
recurrent. We also find that if the conharmonic curvature tensor of (PCHS), is
Codazzi type, then the scalar curvature of this manifold must be zero. We prove
that, in a (PCHS),, r is an eigenvalue of the Ricci tensor S corresponding to the
eigenvector P of this manifold admits pseudo-symmetric curvature tensor whose the
associated 1-form is the same with the 1-form of (PCHYS),, where g(X, P) = A(X).

In this section, we also show that if a (PC'HS),, with non-constant scalar curvature
admits torse-forming vector field obtained by the associated 1-form then the torse-
forming vector field ¢ and the associated 1-form A are collinear.

In the last section, we give an example for the existence of these manifolds.

2 Some properties of pseudo-conharmonically
symmetric Riemannian manifold

Let L denote the symmetric endomorphism of the tangent space at each point of the
manifold corresponding to the Ricci tensor S of type (0,2), that is

(2.1) g(LX,Y) = S(X,Y).
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Let e;, (1 < i < n) be an orthonormal basis of the tangent space at any point of
the manifold. From (1.6), we have

(2:2) HX,Y) =Y H(X.eie,Y) =Y H(ei X,Y,e)) = ————g(X.Y)
i=1 =1

and

(2.3) > H(eiei, X,Y) =Y H(X,Y,e;e;) =0,
1=1 =1

where r is the scalar curvature of the manifold. Also, from (1.6) it follows that [20]

H(X,Y,Z,U) = —H(Y, X, Z,U)
H(X,Y,Z,U) = —H(X,Y,U, Z)
H(X,Y,Z,U)=H(Z,U,X,Y)

(2.4) H(X,Y,Z,U)+ H(X,Z,UY)+ H(X,U,Y, Z) = 0.

We assume that our manifold is (PCHS),,. Thus, the relation (1.7) holds.

Theorem 2.1. If the Ricci tensor of a (PCHS),, with non-zero scalar curvature is
recurrent then the recurrence vector field and the associated 1-form of this manifold
are related by

2n +4

n

AX) = ( )A(X).

Proof. If we assume that (PCHYS),, admits recurrent Ricci tensor then we have

(2.5) (VxS)(Y, Z) = NX)S(Y, Z).
By taking the covariant derivative of (1.6), we get
(VwH)(X,Y,Z,U) =(VwR)(X,Y, Z,U)

[0V, 2) (Vi S)(X,U) ~ g(X, 2)(VwS) (Y, U)
(2.6) +9(X.U)(VwS)(Y, Z) — g(Y.U)(VwS) (X, Z)].
By putting (2.5) in (2.6), we find

(VwH)(X,Y, Z,U) =(VwR)(X,Y, Z,U)

- % [9(Y,2)S(X,U) — g(X, 2)S(Y,U)
(2.7) +9(X,U)S(Y, Z) — g(Y,U)S(X, Z)].

Comparing (1.6) and (2.7), we obtain

(VwH)(X,Y,Z,U) = (VwR)(X,Y, Z,U) + \(W)(H(X,Y, Z,U) — R(X,Y, Z,U))
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(VwH)(X,Y,Z,U) - X\W)H(X,Y,Z,U) =(VwR)(X,Y,Z,U)
(2.8) - AMW)R(X,Y,Z,U).
If we put (1.7) in (2.8), it can be found that
QAW)H(X,Y, Z,U) + AX)H(W,Y, Z,U) + AY)H(X, W, Z,U)
+AZ)H(X, YW, U)+ AU)H(X,Y,Z, W) - \W)H(X,Y, Z,U)
(2.9) =(VwR)(X,Y,Z,U) - A\W)R(X,Y, Z,U).

Firstly, contracting on X and U in (2.9), secondly contracting on Y and Z in the last
equation and using (1.6), we get

(2.10) (2n +4)A(X) — nA(X))r = 0.
Assuming that r is non-zero, we obtain

(2.11) AX) = ( )A(X).

This completes the proof. O

2n+4
n

Definition 2.1 A non-flat n-dimensional Riemannian manifold (M, g),(n > 2) is
called a generalized recurrent manifold if its curvature tensor R of type (0,4) satisfies
the condition

(2.12) (VxR)(Y, Z,U,W) = a(X)R(Y, Z,U, W) + B(X)G(Y, Z,U, W),
where G(Y, Z, U W) = (¢(Y,W)g(Z,U) — g(Y,U)g(Z,W)), a and S are non-zero
1-forms, [10].

Theorem 2.2. If a (PCHS),, admits generalized recurrent curvature tensor then the
scalar curvature of this manifold is in the following form

n?(n —1)B(X) n
"7 2n + 9)AX) — na(X) (A(X) # 5 0 X)),
where B and o are the recurrence vector fields and A is the associated 1-form of this
manifold.

Proof. If we assume that (PCHS), admits generalized recurrent curvature tensor
then from (2.12), we also have

(2.13) (VxS)(Z.U) = a(X)S(Z,U) + (n — 1)B(X)g(Z.U).
By taking the covariant derivative of (1.6) and putting (2.12) and (2.13) in the last
equation, we find

(VxH)(Y, Z,U,W) =a(X)[R(Y, Z,U, W)

- A U)SY W) — gV, 0)S(Z, 1)
+9(Y,W)S(Z,U) = g(2,W)S(Y, U))]

(2.14) — B (X)(9(Z.U)g(Y, W) — (Y. U)g(Z,W)).
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By putting (1.6) in (2.14), we obtain

n

(2.15)  (VxH)(Y,Z,UW) =a(X)H(Y,Z,U W) —

SBXOGY. Z,UW),

where G(Y, Z, U, W) = (¢9(Y,W)g(Z,U) — g(Y,U)g(Z,W)). Contracting on Y, W in
(2.15), after that contracting on Z, U and using (1.6), we get

r[(2n + 4)A(X) — na(X)] = n?*(n — 1)B(X)

n?(n — 1)B(X)
(2n +4)A(X) —na(X)’

where A(X) # a(X). Thus, the proof is completed. O

n
2n—+4
Theorem 2.3. If the conharmonic curvature tensor of a (PCHS),, is generalized
recurrent then the scalar curvature of this manifold is in the following form

a2 =) - DAX)
2(n+2)A(X) — na(X)’

where a(X 2n+2) A(X). And if a(X) > 2nt2) A(x , then this manifold is of
n n
positive scalar curvature or, if a(X) < WA(X), then it is of negative scalar

curvature, where 8 have positive values.

Proof. If we assume that the conharmonic curvature tensor of (PCH.S),, is generalized
recurrent, from (2.12), we can write

(2.16) (VxH)(Y,Z,UW)=a(X)H(Y, Z,UW) + B(X)G(Y, Z,U W),

where G(Y, Z,U, W) = (g(Y,W)g(Z,U) — g(Y,U)g(Z, W)).
Comparing the equation (2.16) with (1.7), we get

a(X)H(Y,Z,U,W) + B(X)(g(Z,U)g(Y, W) = g(Y,U)g(Z,W))

= 2A(X)H(Y, Z,U,W) + AY)H(X, Z,U,W) + AZ)H(Y, X,U, W)
(2.17) +AWU)H(Y,Z, X, W)+ AW)H(Y, Z,U,X).
Contracting on Y, W and again contracting on Z,U in (2.17) and using (1.6), we get
(2(n +2)A(X) — na(X))r =n(2 —n)(n — 1)B(X)

ie.,

n(2—n)(n - 1)B(X)

(2.18) "T 21 2)AX) — na(X)’

where a(X) # WA(X). Assuming that B(X) have positive values. Thus, if
a(X) > 2("7:2)14(X) , from (2.18) then the scalar curvature is positive; if a(X) <

WA(X ) then the scalar curvature is negative. Thus, the proof is completed. [
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Corollary 2.1. If the conharmonic curvature tensor of (PCHS), with non-zero
scalar curvature is recurrent then the recurrence vector field and the associated 1-
form of this manifold are related by the following form

2(n+2)

a(X) = -

A(X).

Proof. If we assume that the conharmonic curvature tensor of (PCHS),, is recurrent,
from Theorem 2.3, for S(X) = 0, we get

(2.19) r(2(n+2)A(X) — na(X)) = 0.

Considering that (PCHS),, admits non-zero scalar curvature, by the aid of (2.19),
we find that

Thus, the proof is completed. O

Theorem 2.4. If the conharmonic curvature tensor of a (PCHS),, is Codazzi type
then this manifold must be of zero scalar curvature.

Proof. Let us assume that the conharmonic curvature tensor of (PCHS),, is Codazzi
type then we have

(2.20) (VH)(Y,V) - (Vv H)(Y, X) = 0.
Contracting (1.7) on Z, U and using (2.2) and (2.20) we finally get
(2.21) (n+2)A(X)r =0.

Since A(X) # 0, the scalar curvature of (PCHS),, must be zero. This completes the
proof. O

Theorem 2.5. In a (PCHS),, r is an eigenvalue of the Ricci tensor S corresponding
to the eigenvector P if this manifold admits pseudo-symmetric curvature tensor whose
associated 1-form is the same with the 1-form of (PCHS),,, where

9(X, P) = A(X),
for every vector field P and non-zero 1-form A.

Proof. We assume that the curvature tensor of (PCHS),, is pseudo-symmetric then
we have the equation (1.1).
By using (1.1) we get

(2.22) +AY)S(X, Z)
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By changing X,Y and Z in (2.22) and putting these four equations in (1.7), we finally
get
A(QX) = (r/n)A(X).

Thus, we can say that r is an eigenvalue of the Ricci tensor S corresponding to the
eigenvector P. The proof is completed. O

Definition 2.2. A vector field ¢ in a Riemannian manifold M is called torse-forming
if it satisfies the following condition

(2.23) Vxé = pX + $(X)E,

where X € TM, ¢(X) is a linear form and p is a function [26] .
In local transcription, this reads

(2.24) & = poi + €y,

where ¢ and ¢; are the components of ¢ and ¢, and §” is the Kronecker symbol. A
torse-forming vector field £ is called

i) recurrent, if p =0

i) concircular, if the form ¢; is gradient covector, i.e., there is a function v such that

¢ = dp(X).
i4i) convergent, if it is concircular and p = const.exp(¢) Therefore, recurrent vector
fields are characterized by the following equation

(2.25) Vx§ = d(X)E.

Also, from Definition2.2, for concircular vector field &, we get

(2.26) (V&)X = pg(X,Y)
for all X,Y € TM.

Theorem 2.6. If a (PCHS), with non-constant scalar curvature admits torse-
forming vector field obtained by the associated 1-form then the torse-forming vector
field ¢ and the associated 1-form A must be collinear.

Proof. Contracting on Y,V; Z,U in (1.7) and using (1.6), we get

(2.27) Vxr=212

By taking the covariant derivative of (2.27), we find

2(n+2)

(2.28) VyVxr = [(Vy A)(X)r + A(X)(Vyr)).
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Substituting (2.27) in (2.28), it can be easily seen that

2(n + 2) L 2An+2)

(2.29) VyVxr =
n

[(Vy A)(X) AX)AY)]r.

If we assume that the 1-form A is a torse-forming vector field, from (2.24), we have
(2.30) (VyA)(X) = pg(X,Y) + ¢(Y)A(X),

where p is a function, ¢(Y') is a linear form. By putting (2.30) in (2.29), we obtain

20 +2) 20 +2)

(2.31) VyVxr =
n

[pg(X,Y) + o(Y)A(X) + AX)AY)]r.

By changing X and Y in (2.31) and subtracting these two equations, we get
(Y)A(X) — ¢(X)A(Y) =0.

Finally, we can say that ¢ and A are collinear. Thus, the proof is completed. O

3 An example of (PCHS),

In this section we will give an example for (PCHS),, satisfying the conditions (1.6)
and (1.7).
We define a Riemannian metric on R™ (n > 4) by the formula, [18]

(3.1) ds® = p(dz")? + kopdr®da® + 2da'dz™,

where [kqg] is & symmetric and non-singular matrix consisting of constant and ¢ is
a function of ', z2,...,2" ! and independent of 2™. Let each Latin index runs over
1,2,..,n and each Greek index runs over 2,3, .., (n — 1).

In the metric considered, the only non-vanishing components of Christoffel sym-

bols, the curvature tensor and the Ricci tensor are, according to [18]

1 1 1
F% = kaﬁ‘?,aa 't =501 e =35¢a

T2 2 2
1 L g
(3.2) Riapr = 5 Pab; Ry = §l€ ©,a8;
where ”,” denotes the partial differentiation with respect to the coordinates and &k

are the elements of the matrix inverse to [kqgs].
We consider kg as the Kronecker symbol d,5 and ¢ as, [10]

(3.3) Y= Magscazﬁe(ml)z,

where M, are constants and satisfy the relations
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Mo #0 for «o,8=2,.,(n—1)
n—1
(3.4) > Mo =0.
a=2
In this case, we have the following relations

@,aﬂ _ 2Ma5€(m1)2

n—1

(3.5) 5 Mag =Y Moo =0.
a=2

Thus, from (3.3) and (3.5), we have

(3.6) 6P 0p = 0.

By using (3.2), we find the only non-zero components for Ry;;x and S;; as

1 1\2
Rlaﬁl = iw,aﬁ = Maﬁe(w )

1
(3.7) Sy = 5@,@;5“@ =0.
Hence, the only non-zero components of the conharmonic curvature tensor Hy;ji, are
1
Hlaal - Rlaal - m(gaasll)
(3.8) = Mype® )’

which never vanish. From (3.8), the only non-zero components of the derivative of
Hj,j1, are found as

Hlaﬁl,l = 2$1Maﬂ€($1)2
(3.9) = 22" Hiap.

Let us consider the associated 1-form as

(3.10) Ai(z) = {2» fori=1

0, otherwise

at any point x € V,,.
To verify the relation (1.7) it is sufficient to prove that the equation

(3.11) Hiop1,1 = 4A1Hiap1.

By using (3.9) and (3.10), we can easily see that (3.11) is satisfied. The other com-
ponents of each term of (1.7) vanish identically and the relation (1.7) holds trivially.
Under our assumptions (3.1), (3.3) and (3.4), this manifold is a (PCHS),,. O
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