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Abstract. This paper deals with the study of a special class of almost con-
tact metric manifold, called trans-Sasakian manifold. We also study the
properties of the Ricci solitons in generalized recurrent, Weyl semisymmet-
ric, Einstein semisymmetric, Weyl pseudo symmetric and partially Ricci
pseudo symmetric trans-Sasakian manifolds. Example of trans-Sasakian
manifold is given in the last section to validate our results.
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1 Introduction

A class of almost contact metric manifold known as trans-Sasakian manifold was
introduced by Oubino [24] in 1985. In [17], Gray-Hervella classification of the almost
Hermite manifolds appeared as a class Wy of the Hermitian manifolds which are
closely related to the locally conformally Kéhler manifolds. An almost contact metric
structure on an almost contact metric manifold M is called a trans-Sasakian structure
if the product manifold M x R belongs to the class Wy. The trans-Sasakian structures
also provide a large class of generalized quasi-Sasakian structures. The local structures
of trans-Sasakian manifolds of dimension n > 5 have been completely characterized
by Marrero [21]. He proved that a trans-Sasakian manifold of dimension n > 5 is
either cosymplectic or «—Sasakian or f—Kenmotsu manifold. Many authors studied
the properties of trans-Sasakian manifolds (for instance, [13], [25], [31]).

In 1982, Hamilton [18] made the fundamental observation that the Ricci flow is
an excellent tool for simplifying the structure of a manifold. It is a process which
deforms the metric of a Riemannian manifold by smoothing out the irregularities. It
is given by
(1.1) % = —2Ricg.
where ‘g’ is a Riemannian metric, ‘Ric’ is the Ricci curvature tensor and 't’ is time.
Let ¢ : M — M,t € R be a family of diffeomorphisms which is one parameter group
of transformations, then it gives rise to a vector field, called infinitesimal generator and
integral curves. Ricci soliton moves under the Ricci flow simply by diffeomorphisms
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of the initial metric, that is they are stationary points of the Ricci flow in space of
metrics of ¢; : M — M. Here the metric ¢(t) is the pull back of the initial metric g(0)
of ;. Ricci soliton in a Riemannian manifold (M, g) is a special solution to the Ricci
flow based on a natural generalization of an Einstein metric, which is defined via the
triplet (g, V, A), where g is a Riemannian metric, V' a vector field and A a real scalar
such that

(1.2) Lyg+25+2X\g =0,

where S is a Ricci tensor and Ly is the Lie-derivative along the vector field V on M
and A is a real number. The Ricci soliton is said to be shrinking, steady and expanding
when \ is negative, zero and positive respectively. In [28], Sharma initiated the study
of Ricci soliton in contact Riemannian geometry. Later Tripathi [30], Nagaraja et
al. [23] and others extensively studied Ricci soliton in contact metric manifolds. But
the study was extended by Calin et al. [4], Bagewadi et al. [1], Debnath et al. [13],
for f—Kenmotsu, Lorentzian a—Sasakian and Trans-Sasakian manifolds respectively
using L. P. Eisenhart problem [16] and also by many others ([10], [19], [20]). It is
well known that, if the potential vector field is zero or Killing then the Ricci soliton
is an Einstein metric. In ([5], [11], [22]), authors proved that there are no Einstein
real hypersurfaces of non-flat complex space forms.

Motivated by the above studied, authors start the study of trans-Sasakian mani-
folds. We organize our present work as: after introduction, we brief the basic known
results of trans-Sasakian manifolds and definitions in section 2. Sections 3 and 4 deal
with study of Ricci soliton and generalized recurrent trans-Sasakian manifolds. We
study the properties of Ricci solitons in Weyl semisymmetric, Einstein semisymmet-
ric, Weyl pseudo symmetric, partially Ricci pseudo symmetric and Weyl Ricci pseudo
symmetric trans-Sasakian manifolds in sections 5, 6, 7, 8 and 9 respectively. Next
section concerns with the example of trans-Sasakian manifold and hence we validate
our results.

2 Preliminaries

A differentiable manifold M (dimM = n = 2m + 1) is said to be an almost contact
metric manifold if it admits a (1,1) tensor field ¢, a vector field ¢, a 1—form 1 and
the Riemannian metric g, which satisfy

(2.1) C?=-I+n®( n)=1, (=0, n(eX)=0,

(2.2) 9(pX,9Y) = g(X,Y) —n(X)n(Y), n(X)=g(X, ),

for all vector fields X,Y on M. An almost contact metric manifold M (p,(,n,g) is
said to be trans-Sasakian manifold if (M x R, J, G) belongs to the class Wy of the
Hermitian manifold, where J is the almost complex structure of M x R defined by

d d

for all vector field Z on M and smooth function f on M x R and G is the product
metric on M x R. This is expressed by the following restriction

(2.3) (Vxp)Y = B{g(pX,Y)¢ = n(Y)pX} + af{g(pX,Y)( —n(Y) X},
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where « and § are some scalar functions and such a structure is said to be the
trans-Sasakian structure of type («,3). Here V denotes the Levi-civita connection
of g. We note that trans-Sasakian manifolds of type (0,0), («,0) and (0, 3) are the
cosymplectic, a—Sasakian and f—Kenmotsu manifolds respectively. In particular, if
a=1,=0and a =0, =1, then a trans-Sasakian manifold reduces to a Sasakian
and Kenmotsu manifolds respectively. From (2.3), it follows that

(2.4) Vx(¢={X —n(X)¢} — apX,

(2.5) (Vxn)Y = —ag(pX,Y) + Bg(p X, pY).

The trans-Sasakian manifold with structure tensor (p,(,n,g) on M satisfies the fol-
lowing relations:

RX,Y)( = 2aﬁ[n( )X — (X) Y]+ (Ya)eX — (Xa)pY + (Y B)p*X
(2.6) —(XB)@?Y + (o? = 82) [n(YV)X —n(X)Y],
R, X)Y = (o =B){g(X, V) —n(Y)X} +2aB{g(pY, X)¢
—n(Y)pX} + (Ya)pX + g(¢Y, X)(grada)
(2.7) +HYB)(X = n(X)E) — g(pX, pY)(gradp).
(2.8) 206 + Ca =0,

(29)  S(X,0) = ((n—1)(a® =) = B)n(X) - (n = 2)(XP) — (¢pX)a,

(2.10) Q¢ = ((n—1)(a® = %) = (B)¢ — (n — 1) grad B — p(grad a),

where R is curvature tensor, while @ is the Ricci operator given by S(X,Y) =
9(QX,Y). Further if a trans-Sasakian manifold of type («, ) satisfies

(2.11) (n—1)grad B = p(grad o),

then from (2.6), (2.7), (2.9), (2.10) and (2.11), for constants o and S, we have

(2.12) R(X,Y)¢ = (a® = ) {n(Y)X — n(X)Y},

(2.13) R(G, X)Y = (o® = B*){g(X,Y)¢ = n(Y)X},
(2.14) N(R(X,Y)Z) = (o® = B*){g(Y. 2)n(X) — 9(X, Z)n(Y)},
(2.15) S(X,¢) = (n—1)(a® = B*)n(X),

(2.16) Q¢ = (n—1)(a” - *)C.
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An important consequence of (2.4) is that ( is a geodesic vector field, i. e., V(= 0.
Also for arbitrary vector field X, we have dn(¢, X) = 0.

The (—sectional curvature K. on (M,g) is the sectional curvature of a plane
spanned by ¢ and a unitary vector field X. From (2.12), we conclude that

(2.17) K¢ =g(R(X,0)¢, X) = (a® = 5%),

for arbitrary vector field X on M. It follows from (2.17), (—sectional curvature does
not depend on X.

For an n—dimensional almost contact metric manifold M, the Weyl conformal
curvature tensor W is given by

W(X,Y)Z = R(X,Y)Z- ﬁ{sa/, )X - S(X,2)Y +g(Y,Z)QX
(2.18) —g(X7Z)QY}+m{g(Y, 2)X —9(X,2)Y},

where k represents the scalar curvature of the manifold. In consequence of (2.1),
(2.2), (2.13), (2.15), (2.16) and (2.18), we find that

W((,Y)Z = m[’f— (n—1)(® = B)Hg(Y, 2)¢ —n(Z)Y}
(2.19) g (S 20— n(2)QY ),
WY = m[“ (1) — (V)¢ - Y}
(2.20) —ﬁ{m ~1)(0? - BAn(Y)E - QYY,
(2.21) W, ¢Q)Z =o.

Here we illustrate some definitions that are useful to deduce our results.

Definition 2.1. An n—dimensional trans-Sasakian manifold (M, g) is called gener-
alized recurrent [12] if its non-vanishing curvature tensor R satisfies the following
restriction

(2.22) (VxR)(Y, 2)U = (X)R(Y, 2)U + x(X){9(Z, U)Y — g(Y,U)Z},

for arbitrary vector fields X, Y, Z and U on M, where 9 and x are 1—forms such
that x is non-zero and are defined by

(2.23) P(X) =9(X,A), x(X) =9(X, B),

where A and B are vector fields associated with 1—forms ¢ and x respectively and V
is the Riemannian connection of g. In particular if x = 0, then generalized recurrent
manifold reduces to recurrent manifold ([26], [27]).
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Definition 2.2. An n—dimensional trans-Sasakian manifold (M, g) is called gener-
alized Ricci recurrent [12] if its Ricci tensor S satisfies the following restriction

(2.24) (Vx9)(Y, Z) = 4(X)S(Y, Z) + (n — 1)x(X)g(Y, Z),
where 1 and x are 1—forms, y is non-zero and these are defined by (2.23).

Definition 2.3. An n—dimensional trans-Sasakian manifold (M, g) is called gener-
alized concircular recurrent [12] if its concircular curvature tensor C' [32].

5 K

(2.25) C(X,Y)Z=R(X,Y)Z — m{g(y, 2)X — g(X, Z)Y},

satisfies the following condition
(220)  (VxO)Y. DU = 9(X)C(Y, 2)U +x(X){9(Z, V)Y - g(¥,U)Z},
where 1 and x are defined as in (2.23) and & is the scalar curvature of (M, g).

Definition 2.4. An n—dimensional trans-Sasakian manifold (1, g) is called Weyl-
semisymmetric [29] if R- W = 0.

Definition 2.5. An n—dimensional trans-Sasakian manifolds (M, g) is called Einstein-
semisymmetric [29] if R - E = 0, where E is the Einstein tensor given by

(2.27) E(Y,2) = S(Y, 2) = ~g(Y. 2).

Definition 2.6. An n—dimensional trans-Sasakian manifold (M, g) is called Weyl
pseudosymmetric [14, 15] if the tensors R - W and Q(g, W) are linearly dependent
that are defined by

(2.28) R-W = LyQ(g, W),
holds on the set (Jj;, = {x € M : W #0 at x}, where Ly, is some function on (Jyy, -

Definition 2.7. An n—dimensional trans-Sasakian manifold (M, g)is called partially
Ricci-pseudosymmetric [3] if and only if the relation defined by

(2.29) R-S=f(q) Qy,9),

holds on the set |y ={z € M : Q(g,5) # 0 at x }, where f € C>°(M) for ¢ € |.
R-S, Q(g,5) and (X Ay Y) are respectively defined as

(2.30) (R(X,Y) - 8)(U,V) = —S(R(X,Y)U,V) — S(U, R(X,Y)V).
(2.31) Qg,9) = (X N Y)-9)(U,V).
(2.32) (X A Y)Z = g(Y, Z)X — g(X, 2)Y,

for all X,Y,U and V on M.
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Definition 2.8. An n—dimensional trans-Sasakian manifold (M, g) is called Weyl
Ricci pseudosymmetric [14, 15] if the tensors W-S and Q(g, S) are linearly dependent,
that is defined by

(2.33) W-S=LsQ(g,5),

and holds on the set (Jg = {x € M : W # 0 at z}, where Lg is some function on

Us-

The different classes of symmetric spaces in different extents have been studied by
many authors in ([26], [27], [29], [14], [15], [3], [12], [6], [7], [8], [9]).
3 Ricci solitons on (M, ¢, (,n,9)
We call the notion of Ricci soliton from [11]. Thus from equation (1.2) we have
(3.1) (Lvg)(X,Y) +25(X,Y) + 22g(X,Y) =0,

where Ly is the Lie-derivative operator along the vector field V' and X is a real
constant. We have two natural situations regarding the vector field V: V € Span(
and V L (. We investigate only the case V = £. A straightforward calculation from
(2.4) gives

(3.2) (Leg)(X,Y) = 28{g9(X,Y) —n(X)n(Y)}.

With reference to (3.2), equation (3.1) reduces to

(3.3) S(X,Y) = =(B+ Ng(X,Y) + An(X)n(Y),
(3.4) S(X,¢) = 5(¢, X) = =An(X),

(3.5) S(¢.0) = =A,

(3.6) QX = —(8 + )X+ Bn(X)E,

(3.7) K =—An—(n— 1),

(3.8) Q¢ =—AX¢E,

(3.9) A=—(n—-1)(a®—- ) =—(n-1)K,.

In a 3—dimensional trans-Sasakian manifold [31], we have

K

(3.10)  S(X,Y)= {5 — (a® — 52)} 9(X,Y) - {g -3(a® - 62)} n(X)n(Y).
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Let us consider
(3.11) MX,Y) = (Leg)(X,Y)+25(X,Y).
In view of (3.2) and (3.10), equation (3.11) reduces to
R(X,Y) = { K —2(a® — 8) +28} (X, V) — { 5 —6(a? — B2) + 28} n(X)n(Y).
Replacing X =Y = ( in (3.11), we yield
(3.12) B¢ Q) = 4(o? — 62).
Before going to state our result, we will recall the

Theorem 3.1. Let (M, p,(,n,9) be a trans-Sasakian manifold with non-vanishing
&—sectional curvature and endowed with a tensor field h € T(TY(M)) which is sym-
metric and p—skew-symmetric. If h is parallel with respect to V then it is a constant
multiple of the metric tensor g (p. 221, [31]).

In view of theorem 3.1 and equation (3.12), we are in position to state the result
as follow:

Theorem 3.2. Let (MS‘7 ©,¢,1m, g) be a 3—dimensional trans-Sasakian manifold, then
(9,¢, A) yields a Ricci soliton on (M>,,(,1,9).

As a consequence of theorem 3.2, we have

Corollary 3.3. A Ricci soliton generated by (g,(,\) in a 3—dimensional trans-
Sasakian manifold (MS, ©, (M, 9)

(1) of type (0,0), i.e. cosymplectic, is always steady,

(i) of type (a,0), i. e. a—Sasakian, is always shrinking,

(#i1) of type (0,8), i. e. f—Kenmotsu, is always expanding.

4 Generalized recurrent trans-Sasakian manifolds

In this section we illustrate following theorems that are related to generalized recurrent
trans-Sasakian manifolds.

Theorem 4.1. If (M,g) is a generalized recurrent trans-Sasakian manifold, then
KCT/) +x=0.

Proof. Let (M, g) be is a generalized recurrent trans-Sasakian manifold. From (2.22)
taking Y = U = { we obtain

(4.1) (VxR)(¢, Z2)¢ = (X)R(C, Z)¢ + x(X){9(Z, )¢ = 9(¢, () 2}
It is clear that
(VxR)((, Z)C = VxR((,Z2)( — R(Vx(, Z)¢ — R((, Vx Z)¢ — R(C, Z)VxC.
In view of (2.1), (2.2), (2.4), (2.5), (2.12) and (2.13), above equation takes the form

(4.2) (VxR)(¢, Z)¢ =0.
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Keeping in mind (4.2), equation (4.1) has the result

{(a® = B)(X) + x(X)} (n(Z)¢ - Z) = 0.

It is remarkable that the equality n(Z)( — Z = 0 does not hold on (M, g), provided
n > 1. Thus we have

(4.3) (o® = B)P(X) + x(X) =0,
for all X € T(M). That is independent of choice of the vector field X. Thus we yield
K¢y 4+ x = 0. Proof is completed. a

Theorem 4.2. If (M, g) is a generalized Ricci recurrent trans-Sasakian manifold,
then K¢ + x is everywhere zero.

Proof. 1t is clear that if (M, g) be a generalized Ricci recurrent trans-Sasakian mani-
fold. Then from (2.24) taking Y = Z = ¢ and adopting (VxS)(¢,¢) = 0, we obtain
that K((/J-FX:O. O

Corollary 4.3. If (M, g) is a generalized recurrent trans-Sasakian manifold, then the
scalar curvature k of (M, g) satisfies the following restriction

k=n(n—1)K.
Proof. Making use of Bianchi’s identity in (2.22), we get

PX)R(Y, Z)W + x(X){g(Z, W)Y —g(Y, W) Z} + x(Y){g(X, W)Z — g(Z, W)X}
F(Y)R(Z, X)W + Y (Z2)R(X, Y)W + x(2){g(Y, W)X — g(X, W)Y} = 0.

The contraction of above equation along the vector field Y gives

P(X)S(Z,W) + (n = )x(X)g(Z, W) + ¢(R(Z, X)W) + x(Z)g(X, W)
—X(X)g(Z, W) = (2)S(X, W) = (n = 1)x(Z)g(X, W) = 0,

which is equivalent to
P(X)QW + (n = 2)x(X)W — R(W, A) X
—S(X,W)A—(n—-2)g(X,W)B =0.
Again contracting last expression along W, we find that
k(X)) +n(n—2)x(X) —2S(4,X) — (n—2)g(X,B) =0.

Putting X = ( in last equation and then use of (2.1), (2.2), (2.23), (2.17) and (4.3)
in it, we find
Ik — n(n — DEJ(4) = 0.

Since n # 0 on almost contact metric manifold (in general), therefore above equation
gives the statement of the corollary. |
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Theorem 4.4. If (M, g) be a generalized concircular recurrent trans-Sasakian man-
ifold, then following restriction

Km - 7¢(an—1)) W(X) + x(X) + né[f]l) o,

holds for every vector field X on (M,g).

Proof. Assume that (M, g) is a generalized concircular recurrent trans-Sasakian man-
ifold. Then replacing Y = U = ( in (2.26), we have

(4.4) (VxC)(¢ 2)¢ = 9(X)C(¢ 2)¢ + x(X){9(2,¢)¢ — 9(¢,¢) 2}

By definition of covariant derivative and then use of (2.1), (2.2), (2.4), (2.5), (2.8),
(2.12), (2.13) and (2.25), we have

(4.5) ©x)6 2 = - { 2w - 21

where X [x] indicates the derivative of £ with respect to the vector field X. In view of
(4.5) and (2.17), equation (4.4) takes the form

ae)  [(re- g )0+ a0 + 2z - 21 -0

It is remarkable that the equality 7(Z){ — Z = 0 does not hold on (M, g). Thus (4.6)
complete the proof. O

5 Ricci Soliton in Weyl semisymmetric
trans-Sasakian manifolds

We suppose that the trans-Sasakian manifold (M, g) is Weyl semisymmetric. Then
from definition 2.4, we get

(5.1) (R(X,Y)-W)(U,V)Z =

With reference to (7), we write it as
(5.2) 5 y y y
R(X,YYW(U,V)Z-W(R(X,Y)UV)Z-W (U, R(X,Y)V)Z-W(U,V)R(X,Y)Z =

Replacing X = ¢ in (5.2) and keeping in mind the equation (2.13), we have

"W(U, V,2,Y)¢ - n(W(U,V)2)Y = g(Y. U)W ((V)Z + (U)W (Y, V)Z
(Y. VIW(U.Q)Z +n(VIW(U.Y)Z = g(Y, 2)W(U, V)¢ +n(Z)W(U, V)Y =

which gives

'W(U,VleY)—n(W(U V)Zn(Y) —g(Y,U)n (W
(U)W (Y, V)2) = g(¥, V)u(W(U,¢)Z) +a(V)n(W(U,Y)Z)
(5-3) —9(Y, Z)n(W(U, V)¢) + n(Z)n(W (U, V)Y) = 0,
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where equations (2.1) and (2.2) are used. Let {e;,s = 1,2,...,n} be a set of orthonor-
mal basis of the tangent space each point of the manifold. Setting Y = U = ¢; in
(5.3) and then taking the summation over 4, 1 < i < n, we find that

(5.4)
S W eV, Zoe) +0(Z) S Wen Ve = (n— Dn(W(C, V)Z) + n(W(Z,V)0).

i=1 =1

In consequence of (2.1), (2.2), (2.12), (2.13), (2.14), (2.15), (2.16), (2.18) and (2.19),
we can find that

WEZ) = g | (@ )] G0e(r. 2) - 0 el 2)
(55) L X)S(Y, 2) ~ n(¥)S(X, 7)),
WWENZ) = L [-smz) 4 - @ - e 2)
(5.6) - i 5 {n - o —n(a® = B%) | n(Y)n(2),
5.7 a(W(X,Y)e) = 0,
and
(5.8) Y "Wes,V, Z,e;) =0.

i=1

In view of (5.7) and (5.8), (5.4) gives
(5.9) n(W(¢,Y)Z) =0.

Thus equation (5.6) becomes

510 5(.2)= |- - @ = ) 0. 2) - | = nta? = 82| v nc2),

n —

which is an n—Einstein trans-Sasakian manifold. Putting U = ¢ in (5.3) and then
considering the equation (5.9), we observe that

v

(5.11) n(W(X,Y)Z) =0

and therefore

v

(5.12) W(X,Y)Z) = 0.

That is the manifold under consideration is conformally flat. Converse part is obvious.
Thus we can state
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Lemma 5.1. A trans-Sasakian manifold (M, g) of dimensionn > 2 is Weyl semisym-
metric if and only if it is conformally flat and the Ricci tensor satisfies the relation
(5.10).

Let us suppose that the scalar curvature of the manifold consider the form x =
n(n —1)(a? — B?) and therefore equation (5.10) takes the form

(5.13) S(X,Z) = (n—1)(a® = B*)g(X, Z).
Therefore we cite the result as the lemma.

Lemma 5.2. Every Weyl semisymmetric trans-Sasakian manifold (M, g) is an Ein-
stein manifold, provided k = n(n — 1)(a? — B?).

Let (M,g) be a Weyl semisymmetric trans Sasakian manifold and £ = n(n —
1)(a? — B?). With the help of (1.2) and (5.13), we conclude that

(5.14) (Lvg)(X,Z) = =2\ + (n = 1)(a” — *)]g(X, Z).
Before going to state our result, we will recall the following definition

Definition 5.1. A vector field V on a Riemannian manifold of dimension n is said
to be conformal Killing if

(5.15) Lyg =9,
for some scalar function ¢ on M.

From equations (5.14) and (5.15), it is clear that the vector field V' in the triplet
(g,V, ) is a conformal Killing vector field for ¥ = —2[A + (n — 1)(a? — 8?)].

Theorem 5.3. Let (g, V, \) be a generator of a Ricci soliton in a Weyl semisymmetric
trans-Sasakian manifold (M, g) with k = n(n — 1)(a® — 8%). Then V is conformal
Killing.

Remark 5.2. The authors in [2] studied the properties of Weyl semisymmetric trans-
Sasakian manifold but their expression for Ricci tensor was different from our expres-
sion (5.10).

6 Trans Sasakian manifolds satisfy R- R =R - W

Now we are going to prove the following:

Theorem 6.1. If (g,V, ) is a generator of a Ricci soliton in trans-Sasakian manifold
(M, g), then (M, g) satisfies R- R = R-W if and only if V is conformal Killing and
(9,¢, ) ts shrinking and expanding according as K¢ > 0 and < 0 respectively.

Proof. Let (g,V,A) be generator of a Ricci soliton and V' is a conformal Killing vector
field on (M, g), then from(1.2) we obtain

(6.1) S=— ()\g + ;ng> .
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In view of (5.15) and (6.1), we get

(6.2) S(X,Y) = — ()\ + 2) g(X,Y).

In consequence of (2.18) and (6.2), we find that

(6.3) W(X,Y)Z=R(X,Y)Z + L(AJF (Y. 2)X —g(X, 2)Y}.

It is well known that

(R(X,Y) - W)U, V)Z = RX,Y))W(U,V)Z-W(RX,Y)U,V)Z

(6.4) ~-W(U,R(X,Y)V)Z —W(U,V)R(X,Y)Z.

In view of (6.3) and (2.11), we can easily find that

(6.5) R-W=R-R.

Conversely we suppose that (M, g) satisfies R- R =R - W, that is
R(X,YYW(U,V)Z - W(R(X,Y)U,V)Z —W(U,R(X,Y)V)Z

(
~W(U,V)R(X,Y)Z = R(X,Y)R(U,V)Z — R(R(X,Y)U,V)Z
(6.6) ~R(U,R(X,Y)V)Z — R(U,V)R(X,Y)Z.

(X,
Changing X with ¢ in (6.6) and then utilizing equation (2.13) in it, we have

WUV, ZY)C=n(W(U V)Y = g(V,U)W((V)Z + (U)W (Y, V)Z
—g(Y,V)W(U,Q)Z +n(V)W(U,Y)Z = g(Y, Z)W (U, V)¢ +n(Z2)W (U, V)Y
=" R(U,V,Z,Y)C =n(R(U,V)Z2)Y — g(Y,U)R(C,V)Z +n(U)R(Y,V)Z
—9(Y,V)R(U,¢)Z +n(V)R(U,Y)Z - g(Y, Z)R(U,V)C +n(Z)R(U, V)Y,
provided o — 32 # 0. Inner product of above equation with ¢ gives
WUV, Z,Y) = n(W(UV)Z)n(Y) = g(Y, U)n(W (V) Z) + n(U)n(W (Y, V)2)
— gV, V(W (U, Q) 2) +n(V)n(W(U,Y)Z) = g(Y, Z)n(W (U, V)()
+n(Z)n(W(U,V)Y) =" R(U,V, Z,Y) = n(R(U,V)Z)n(Y)
—g(Y,U)n(R(C, V) Z) +n(U)n(R(Y,V)Z) — g(Y, V)n(R(U, ) Z)
+n(V)n(R(U,Y)Z) — g(Y, Z)n(R(U,V)C) + n(Z)n(R(U, V)Y).

Putting Y = U = ¢; in (6.7) and then taking the summation over i, 1 < i < n, we
find that

(6.8) S(V,Z) = {r—(n=1)*(e” = 8*)}g(V. Z) — {r — n(n = 1)(a® = B*)}n(V)n(Z).

Again taking Z =V =e; in (6.8) and then taking the summation over i, 1 <i < n,
we obtain

(6.7)

(6.9) K =n(n—1)(a? - B?).
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Putting the value of k from (6.9) into (6.8), we obtain
(6.10) S(V.Z) = (n—1)(a® = p*)g(V, 2),

which shows that the manifold under consideration is an Einstein manifold. From
equations (1.2) and (6.8), we find that

(6.11) (Lvg)(X, Z) = Vg(X, Z),

where ¥ = —2[(n — 1)(a?® — %) + A]. Thus the vector field V on M is conformal
Killing. Again equations (3.3) and (6.10) give

(6.12) {(n=1)(a® = %) + A+ BYg(Y, Z) = Bn(Y)n(Z) = 0.

Putting Y = ¢ in (6.12), we get the result A = —(n — 1)K,. Thus the Ricci solitons
(9,¢,A) on (M, g) are expanding or shrinking as K¢ < 0 or > 0 respectively. Hence
proof is completed. O

7 Solitons in Einstein semisymmetric
trans-Sasakian manifolds

We consider the Einstein semisymmetric trans-Sasakian manifold (M, g). From (2.27),
we get

Above equation can be written as

(7.1) E(R(X,Y)Z,U) + E(Z,R(X,Y)U) = 0.

In view of (2.27) and (7.1), we obtain

(7.2) S(R(X,Y)Z,U)+ S(Z,R(X,Y)U) = g{g(R(X, Y)Z,U) + g(Z, R(X,Y)U}.
Replacing X = ¢ in (7.2) and then using Z = ¢ and equations (2.1), (2.2), (2.13) and
(2.15) in it, we can easily find

(7.3) S(Y,U) = (n—1)(a® - 5*)g(Y, U),

provided o — 32 # 0. Therefore we cite the result as the lemma.

Lemma 7.1. Every Einstein semisymmetric trans-Sasakian manifold (M, g) is Ein-
stein manifold.

Theorem 7.2. Let (g,V,\) be a generator of a Ricci soliton in a trans-Sasakian
manifold (M, g). Then (M, g) is Einstein semisymmetric if and only if V' is conformal
Killing and the triplet (g,{, \) is shrinking or expanding as K > 0 or < 0 respectively.

Proof. Let (g,V,\) be a generator of a Ricci soliton and V' is conformal Killing vector
field on (M, g). From (2.27) and (7.2), we have

(R(X,Y)-E)(2Z,U) = S(R(X,Y)Z,U)+S(Z R(X,Y)U)
(7.4) —g{g(R(X, Y)Z,U) + g(Z,R(X,Y)U}.
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In view of (6.2), we have from (7.4)
(7.5) (R(X,Y) E)(Z,U) = 0.

This implies that the trans-Sasakian manifold (M,g) is an Einstein semisymmet-
ric. Conversely, if (M, g) be an Einstein semisymmetric trans-Sasakian manifold and
(9, V, ) be a Ricci soliton on (M, g). Then from (1.2) and (7.3), we get

(7'6) (ng)(X7 Z) :ﬁg(X, Z)7

where ¥ = —2 (£ + \), i. e, V is conformal Killing. Also from (3.3) and (7.3), we
have

(7.7) (5 +2+8) 9(x. 2) = Bn(X)m(2) = 0.

Putting X = ¢ in (7.7), we get the result A = —(n — 1)K,. Thus the Ricci soli-
ton (g,(,A) to be expanding or shrinking as K < 0 or > 0 respectively. Proof is
completed. 0

8 Ricci soliton in Weyl pseudosymmetric
trans-Sasakian manifolds

We consider the Weyl pseudosymmetric trans-Sasakian manifold (M, g), then by def-
inition 2.6 we have

(R(X,Y) - W)(U,V)Z = Ly { Qg, W)(U,V, Z; X, Y )}
Above equation can be written as
R(X,Y)W(U,V)Z - W(R(X,Y)U,V)Z —W(U,R(X,Y)V)Z
~W(U,V)R(X,Y)Z = Ly {(X A, Y)W(U,V)Z
(8.1) —W((X Ay YU, V)Z = W(U,X Ny Y)V)Z = W(U, V)X A, Y)Z}.
Assuming X = U = ( in (8.1) and using (2.1), (2.2), (2.13) and (2.32), we yield
{Lyy — (@2 = B} (Y, W({V)Z)C = n(W (V) Z)Y + W (Y, V)Z = (Y)W ((,V)Z
+n(VIW((Y)Z =gV, VIW((, O Z +n(Z)W (G, V)Y —g(Y, 2)W((, V)Y =0,
which shows that either Ly, = (o — % or
82) ] ) )
gV, W(CV)Z)C ~ n(W(CVIZY + W (Y, V)Z — ()W (V)2
+n(VIW(C,Y)Z = g(Y,VIW((, Q) Z +n(Z)W(C V)Y —g(Y, Z)W (¢, V) = 0.
Contracting (8.2) along the vector field Y, we get
(8:3) n(W(¢,V)Z) =0.
In view of (5.6) and (8.3), we conclude that
B SW.2) = | - @2 0 2) - | -l = )] v n2),

which shows that the manifold under consideration is an n—FEinstein manifold. There-
fore we cite the result as:
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Theorem 8.1. A Weyl pseudosymmetric trans-Sasakian manifold (M, g) is either
Ly, = K¢ or an n— Einstein manifold.

Consequently we will prove the following corollary as:

Corollary 8.2. A generator (g,V, A) of Ricci soliton in Weyl pseudosymmelric trans-
Sasakian manifold (M, g) with k = n(n — 1)K¢ is shrinking or expanding accordingly
KC >0o0r <0, if Ly #KC.

Proof. We consider that (M, g) is a Weyl pseudosymmetric trans-Sasakian manifold
equipped with Ricci soliton (g,V, ) and x = n(n — 1)(a?® — $?). In particular, we
suppose that Ly # K¢ and £ = n(n — 1)(a® — $2), then equation (8.4) gives

(8.5) S(Y, Z) = nfn — 1)(a® — 8)g(Y, 2).

Again from equations (3.3) and (8.5), we get

(8.6) {(n—=1)(a® = B%) + A+ BYg(Y,U) = Bn(Y)n(U) = 0.

Putting Y = ¢ in (8.6), we get the result A = —(n — 1)K,. The Ricci soliton (g, (, A)
of M to be shrinking or expanding if K > 0 or < 0. Thus the proof is completed.
O

9 Ricci soliton in partially Ricci pseudosymmetric
trans-Sasakian manifold

We suppose that (M, g) be a partially Ricci pseudo symmetric trans Sasakian mani-
fold. Then by definition 2.7

(9.1) (R(X,Y)-5(Z,U) = f(a{(X A Y) - 5)(Z,U)}.

In view of (2.30) and (2.31), equation (9.1) reduces to

(9.2) S(R(X,Y)Z,U)+S(Z, R(X,Y)U) = f(q)[S(XAgY)Z,U)+5(Z, (XN, Y)U)].
Taking X = U = ¢ in (9.2), we have

(93) S(R(C.Y)Z,() + S(Z,R(¢,Y)C) = f(@)[SU(C Ay Y)Z,() + S(Z,(C Ag Y)O)].
Applying (2.1), (2.2), (2.13), (2.15) and (2.32) in (9.3), we yield

(9-4) {f(a) = (& = B*)}(n = 1)(a® = B*)g(Y, Z) = S(Y. Z)] = 0.

That implies that either f(g) = (a® — %) or

(9-5) S(Y,Z) = (n—1)(a® = *)g(Y, 2).

Therefore we cite the result as:

Theorem 9.1. A partially Ricci pseudosymmetric trans-Sasakian manifold (M, g) is
an Einstein manifold provided f(q) # K.
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Theorem 9.2. A generator (g,(, ) of a Ricci soliton in a partially Ricci pseudosym-
metric trans Sasakian manifold (M, g) is shrinking or expanding as K > 0 or <0

respectively if f(q) # K.

Proof. Assume that (M, g) is a partially Ricci pseudosymmetric trans Sasakian man-
ifold equipped with Ricci soliton (g, ¢, A). Then from (3.3) and (9.5), we get

(9.6) {(n=1)(a® = B%) + A + BYg(X, Z) — Bn(X)n(Z) = 0.

Putting X = ¢ in (9.6), we get the result A = —(n — 1)K,. Hence the Ricci soliton
on (M,g) to be shrinking or expanding as K. > 0 or < 0 respectively. Proof is
completed. (Il

10 Weyl Ricci pseudosymmetric
trans-Sasakian manifolds

Let (M,g) be a Weyl Ricci pseudosmmetric trans Sasakian manifold. Then from
(2.33) we have

v

(10.1) (W(X,Y)-S)(U, V)= LsQ(g,5)(U,V; X,Y).

Equation (10.1) can be written as
(10.2
S(V%/(X,Y)U, V) + S(U,W(X,Y)V) = Ls[S(X A, YU, V) + S(U, (X A, Y)V)].

Adopting X =V = ( in (10.2), we yield
(10.3) SW(C.Y)U.Q) + SUW(C.Y)S) = Ls[S((C Ag YIU. ) + S(U, (¢ Ag YO)I-
In view of (2.15), (2.19), (2.20) and (2.32), equation (10.3) reduces to

K —(n—1)(* - 5%
(n—1)(n-2)
1

(10.4) ———{n- D(a® - BAHS(U,Y) — S(U,QY)} = 0.

It can be hold only if

—Lg| [(n—1)(a® = %)g(Y,U) = S(Y.U)]

(10.5) S(Y,U) = (n—1)(a® = BHg(Y,U).

Conversely, if we suppose that the trans Sasakian manifold satisfies equation (10.5),
then from equations (10.1), (10.2) and (10.5) it is obvious that the manifold to be
Weyl Ricci pseudosymmetric trans Sasakian manifold. Therefore we cite the result
as:

Theorem 10.1. A trans Sasakian manifold (M, g) is the Weyl Ricci pseudosymmetric
if and only if it is an Finstein manifold.

Theorem 10.2. A generator (g,(,\) of a Ricci soliton in Weyl Ricci pseudosym-
metric trans Sasakian manifold (M, g) is shrinking or expanding as K > 0 or < 0

respectively if f(q) # K.
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Proof. Assuming that (M, g) is a Weyl Ricci pseudosymmetric trans Sasakian mani-
fold equipped with Ricci soliton (g, ¢, A). Then from (3.3) and (10.5), we get

(10.6) {(n—1)(a® = %) + A + Bg(Y,U) = Bn(Y)n(U) = 0.
Putting ¥ = ¢ in (10.6), we get the result A = —(n — 1)K,. Thus the proof of the
theorem. g

11 Examples of 3—dimensional
trans-Sasakian manifolds

Example 11.1. We consider a 3—dimensional manifold M = {(JU, y,2) ERS 2 # 0} ,
where (z,y, z) are the standard coordinates of %3. Let the vector fields

0 0 0 0 0
_ 2z Fo = — -2z 2 _ Fq=—
Er=e (3x+3y>’ 2 € <8x 8y>’ 5792

are linearly independent at each point of M. Let g be the Riemannian metric defined
by

|0 for i#j
9(Ei E4) = { 1 for i=j

and 7 be the 1—form defined by n(V) = ¢g(V, E3) for any V € T(M). Let ¢ be the
(1,1) tensor field defined by ¢ By = Es, ¢ F5 = —E;, ¢ E5 = 0. Then we have

n(Es) =g(Es, B3) =1, ¢°V ==V +4n(V)Es g(¢V,¢W)=g(V,W)—n(V)n(W),

for any VW € T(M). Let V be the Riemannian connection with respect to the metric
g. Then we obtain

[ElvEZ] :Oa [ElvES] :2E17 [E27E3] :2E2
The Riemannian connection V of the metric g is given by Koszul’s formula

29(VxY,Z) = Xg(Y,Z2)+Yg(Z,X)— Zg(X,Y)
(11'1) —g(X, [Y,ZD—g(Y, [X>Z])+9<Z7 [X’Y])

From (11.1) we have
(11.2) 29(Ve, B3, E1) =4, 29(Vg, E3, Ey) =0, 29(Vg, B3, E3) =0.

Thus Vg, B3 = 2E;. Also from (11.1) we get 29(V g, E3, E1) =0, 29(Vg,Es, E2) =

4, 29(Vg,Es,E3) = 0. Therefore Vx( = —a¢ X + 8(X — n(X) ) holds on M for

a =0, f=2. Thus (M, g) is a 3—dimensional trans Sasakian manifold of type (0, 3).
Further we get from (11.1)

Vg E3 =2E,, Vi Ei = —2E3, Ve Er =0,

Vi, Es = 2B, Vg, By =0, Vg, B =0,
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Vg, Es =0, Vi, By = —2E;, Vg, Er =0.

Using the above relations, we can easily calculate the components of the curvature
tensor R and Ricci tensor S as follows:

R(Ey, E2)Ey = —AE,, R(Ey,Es)Ey =4Es, R(Ey, E3)E, = AE;,

R(E3, E3)Ey =0, R(Es,E3)E3 = —AE,, R(Ey,E))E, = 4E,,

R(E1, E3)Ey =0, R(E,E3)Es = —4E;, R(Ey,Ey)Es =0,
(11.3) S(Ey,Ey) =—8, S(Ey E))=-8,  S(Es E3)=-8.

Since {E1, E2, E3} form a basic for M3(¢, €, 7, g), then any vector X,Y, Z,U € T(M)
can be written as

X=a1FE1+bEs+c1FE3, Y =a0FE] +byEy + coF3,
(114) Z = G,3E1 + ngQ + 63E3, U= a4E1 + b4E2 + C4E3.
where a;,b;,c; € ®T for all i = 1,2, 3 such that a;, b;, ¢; are not proportional. Then

(115) R(X, Y)Z = 463(b1b2 - albg)El - 2(b1b263)E2 — 2(b1b2b5)E3

(116) R(X, Y)U = 4C4(b1b2 - (leg)El - 2(b1b264)E2 — 2(b1b2b4)E3

In view of (2.18) and (11.5), we have

v

W(X, Y)Z = 4{(b1 — al)bgbg =+ (201 =+ CQ)CLQCg + (2b1b3 — a1a3)a2 — CL1b2b3}E1
+ 4{(4b2 — 302)6103 + (b3 — 203)b1b2 -+ (2&1b2 — 3b1a2)a3 -+ 2b16203}E2
(117) +4 {(36103 + 2&1&3)62 + (262()1 — Clbg)bg — 361(12&3} FEs.

and hence
S(W(X,Y)Z,U) = —32{(4by — 3cz)c1csby + (bs — 2¢3)bibaby
—|—(2a1b2 — 3b1a2)a3b4 + 2b1b46203} — 32{(30163
(118) —|—2a1a3)0204 + (262b1 — Clbg)b304 - 301040,2&3}.

Similarly we can easily calculate

S(Z,W(X,Y)U) = —32{(4by — 3cz)c1cabs + (by — 2¢4)bibabs
—|—(2a1b2 - 3b1a2)a4b3 + 2b1b36204} - 32{(36104
(119) +2a1a4)0203 + (262b1 - Clbg)b463 - 361(12(1403}.

Also, we have

9(X, Z) = a1a3 + bsb1 + cic3, g(Y,U) = azas + baba + c2c4,
(1110) g(X, U) = ajaq4 + byby + c1c4, g(Yv7 Z) = agag + bsby + cacs.

and

S(i/7 Z) = 78(21)3[)2 + 0263), S(X, Z) == 78(2()11)2 + 0163)
(11.11) S(K U) = —8(2b4b2 + 0264), S(X, U) = —8(2b1b4 + 01(34).
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Also from (11.10) and (11.11), we obtain

9(Y, 2)S(X,U) — g(X, 2)S(Y,U) + g(Y,U)S(X, Z) — g(X,U)5(Y, Z)
—(2aga3 + c1¢3)b1by + (bibs + aras + c1cs + 2a1az2)cacy

=8 72(0,2(14 + 0204)b1b3 + (2b2l)3 — 2a2a3)clc4 7& 0.
7(b3b2 + a2a4)0103 + (2b2b3 -+ 0263)(11(14

(11.12)

Since a;, b;, ¢; are not proportional and assume that

—(2@2&3 + 61C3)b1b4 + (blbg + aijas + cic3 + 2&10,2)0204 — 2(&2&4 + CQC4)b1b3
+(2b2b3 — 2a2a3)clc4 — (bgbg + a2a4)01C3 + (2b2b3 + 0203)a1a4 #0.

Again from (11.8) and (11.9), we have

S(W(X,Y)Z,U)+ 8(Z,W(X,Y)U)

(2a2a3 + c1c3)biby — (b1bs + aras + crc3 + 2a1a2)cacy
=32 —|—2(a2a4 + CQC4)b1b3 — (2b2b3 — 2&2&3)6104

+(b3b2 + 0,2(14)0163 — (2b2b3 + 0263)(11(14

(11.13)

Let we assume the function
(11.14) Lg = —4.
In view of (11.12), (11.13) and (11.14), we conclude that

S(W(X,Y)Z,U)+ S(Z,W(X,Y)U)
=Lslg(Y, 2)S(X,U) — g(X, 2)S(Y,U) + g(Y,U)S(X, Z) — g(X,U)S(Y, Z)].

Thus the structure M3(¢, &, 7, g) under consideration is Weyl pseudosymmetric trans
Sasakian manifold. Also equation (11.3) tell us that (M3, g) is an Einstein manifold.
Thus theorems 10.1 and 10.2 verified. In the similar way, we can also verify the
theorem 9.1.
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