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Abstract. As a generalization of geodesic function, in the present paper,
we introduce the notion of geodesic ϕ-convex function and deduce some
basic properties of ϕ-convex function and geodesic ϕ-convex function. We
also introduce the concept of geodesic ϕ-convex set and ϕ-epigraph and
investigate a characterization of geodesic ϕ-convex functions in terms of
their ϕ-epigraphs.
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1 Introduction

Convex sets and convex functions play an important role in the study of the theory
of nonlinear programming and optimization. But in many situations only convexity
is not enough to provide a satisfactory solution of a problem. Hence it is necessary to
generalize the concept of convexity notion. Again, due to the curvature and torsion of
a Riemannian manifold highly nonlinearity appears in the study of convexity on such
a manifold. Geodesics are length minimizing curves, and the notion of geodesic convex
function arises naturally on a complete Riemannian manifold and such a concept is
investigated recently in ([13], [12], [4]).

In 2016 Eshaghi Gordji et. al. [3] defined the notion of ϕ-convex function and
deduced Jensen and Hadamard type inequalities for such functions. In the present
paper, we have obtained some other proerties of ϕ-convex functions. Again, gener-
alizing the concept of ϕ-convex function, we have introduced the notion of geodesic
ϕ-convex function on a complete Riemannian manifold and showed its existence by
a proper example (see Example: 2.10). Convex sets on a Riemannian manifold have
been generalized in different ways such as geodesic E-convex function [6], geodesic
semi-E-convex function [7], geodesic semi E-b-vex functions [8] etc. We have also in-
troduced a new class of sets, called, geodesic ϕ-convex sets on a complete Riemannian
manifold.

The paper is organized as follows. Section 2 deals with the rudimentary facts of
convex functions and convex sets. Section 3 is devoted to the study of some properties
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of mean value like inequalities of ϕ-convex functions. In section 4, we study some
properties of geodesic ϕ-convex functions on a complete Riemannian manifold and
prove that such notion is invariant under a diffeomorphism. We also define and study
sequentially upper bounded functions on a complete Riemannian manifold and prove
that supremum of such sequence of functions is a geodesic ϕ-convex function. We also
obtain a condition for which a geodesic ϕ-convex function has a local minimum. The
last section is concerned with ϕ-epigraphs on a complete Riemannian manifold and
obtain a characterization of geodesic ϕ-convex functions in terms of their ϕ-epigraphs
(see Theorem 5.1).

2 Preliminaries

In this section, we recall some definition and known results of convex and ϕ-convex
functions and also some results about Riemannian manifolds which will be used
throughout the paper. For the detailed discussion of Riemannian manifold we re-
fer [9].

Case of real numbers set

Let I = [a, b] be an interval in R and ϕ : R× R→ R be a bifunction [3].

Definition 2.1. A function f : I → R is called convex if for any two points x, y ∈ I
and t ∈ [0, 1]

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y).

Definition 2.2. [3] A function f : I → R is called ϕ-convex if

f(tx+ (1− t)y) ≤ f(y) + tϕ(f(x), f(y)), (1.1)

for all x, y ∈ I and t ∈ [0, 1].

Definition 2.3. [3] The function ϕ : R×R→ R is called non negatively homogeneous
if ϕ(λx, λy) = λϕ(x, y) for all x, y ∈ R and for all λ ≥ 0, and called additive if
ϕ(x1 + x2, y1 + y2) = ϕ(x1, y1) + ϕ(x2, y2) for all x1, x2, y1, y2 ∈ R. If ϕ is both
nonnegatively homogeneous and additive then ϕ is called nonnegatively linear.

Recently, Hanson’s [5] generalized convex sets and introduced the concept of invex
sets, defined as follows:

Definition 2.4. [5] A set K ⊆ R is said to be invex if there exists a function η :
R× R→ Rn such that

x, y ∈ K,λ ∈ [0, 1]⇒ y + λη(x, y) ∈ K.

Definition 2.5. [3] Let K ⊆ R be an invex set with respect to η. A function
f : K → R is said to be G-preinvex with respect to η and ψ if

f(y + tη(x, y)) ≤ f(y) + tψ(f(x), f(y)),

for all x, y ∈ K, t ∈ [0, 1].
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Case of Riemannian manifold
Let (M, g) be a complete Riemannian manifold with Riemannian metric g and

Levi-Civita connection ∇. We recall that a geodesic is a smooth curve α whose

tangent is parallel along the curve α, that is, α satisfies the equation ∇ dα(t)
dt

dα(t)
dt = 0.

We shall denote the geodesic arc connecting x ∈ M and y ∈ M by αxy : [0, 1] → M
such that αxy(0) = x ∈M , αxy(1) = y ∈M .

Definition 2.6. [13] A non-empty subset A of M is called totally convex if it contains
every geodesic αxy of M whose end points x and y belong to A.

Definition 2.7. [13] If A is a totally convex set of M , then f : A → R is called
geodesically convex if

f(αxy(t)) ≤ (1− t)f(x) + tf(y),

holds for every x, y ∈ A and t ∈ [0, 1]. If the inequality is strict then f is called
strictly geodesically convex.

Generalizing the notion of ϕ-convex function in a Riemannian manifold, we intro-
duce the concept of geodesic ϕ-convex function, defined as follows:

Definition 2.8. If A is a totally convex set in M , then f : A→ R is called geodesic
ϕ-convex if

f(αxy(t)) ≤ f(x) + tϕ(f(y), f(x)),

holds for every x, y ∈ A and t ∈ [0, 1].

If the above inequality is strict then f is called strictly geodesic ϕ-convex function.

Remark 2.9. We note that if f is differentiable, then f is called geodesic ϕ-convex
if and only if

dfxα̇xy ≤ ϕ(f(y), f(x)),

where dfx is the differential of f at the point x ∈ A ⊂ M and dot denotes the
differentiation with respect to t.

In the following example we show that geodesic ϕ-convex function on M need not
be geodesic convex.

Example 2.10. Let M = R× S1 and define f : M → R by f(x, s) = x3. Then f is
not geodesic convex in M . Now define ϕ : R×R→ R by ϕ(x, y) = x3 − y3. We note
that for any two points (x, s1) and (y, s2) the geodesic joining them is a portion of a
helix of the form α(t) = (tx+ (1− t)y, ei[tθ1+(1−t)θ2]), for 0 ≤ t ≤ 1, where eiθ1 = s1

and eiθ2 = s2 for some θ1, θ2 ∈ [0, 2π]. Hence

f(α(t)) = (tx+ (1− t)y)3

= t3(x− y)3 + t2(3x2y − 6xy2 + 3y3) + t(3xy2 − 3y3) + y3

≤ y3 + t(x3 − y3) = f(y, s2) + tϕ(f(x, s1), f(y, s2)).

This proves that f is geodesic ϕ-convex in M .

Barani et. al. [1] extended the work of [5] to a Riemannian manifold and defined
geodesic invex sets and geodesic η-preinvex functions.
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Definition 2.11. [1] Let M be an n-dimensional Riemannian manifold and η : M ×
M → TM be a function such that for every x, y ∈ M , η(x, y) ∈ TyM . A non-empty
subset S of M is said to be geodesic invex set with respect to η if for every x, y ∈ S,
there exists a unique geodesic αxy : [0, 1]→M joining x and y such that

αxy(0) = y, α̇xy(0) = η(x, y), αxy(t) ∈ S, ∀ t ∈ [0, 1].

Definition 2.12. [1] Let S be an open subset of M which is geodesic invex with
respect to η : M ×M → TM . A function f : S → R is said to be geodesic η-preinvex
if

f(αxy(t)) ≤ tf(x) + (1− t)f(y),

for every x, y ∈ S, t ∈ [0, 1].

We generalize the above definition as follows:

Definition 2.13. Let S ⊆ M be geodesic invex with respect to η. A function
f : S → R is said to be geodesic ϕ-preinvex with respect to η and ϕ, if

f(αxy(t)) ≤ f(y) + tϕ(f(x), f(y)),

for every x, y ∈ S, t ∈ [0, 1].

3 Some properties of ϕ-convex functions

The notion of ϕ-convex functions have been studied in [3], where Jensen type inequal-
ity and Hermite-Hadamard type inequality have been deduced for ϕ-convex function.
This section deals with some properties of ϕ-convex functions. Let f : I → R be a
ϕ-convex function. For any two points x1 and x2 in I with x1 < x2, each point x in
(x1, x2) can be expressed as

x = tx1 + (1− t)x2, where t =
x2 − x
x2 − x1

.

Hence a function f is ϕ-convex if

f(x) ≤ f(x2) +
x2 − x
x2 − x1

ϕ(f(x1), f(x2)), for x1 < x < x2 in I.

Rearranging the above terms we get

f(x2)− f(x)

x2 − x
≥ ϕ(f(x1), f(x2))

x1 − x2
for x1 < x < x2 in I. (3.1)

So, a function f is ϕ-convex if it satisfies the inequality (3.1).

Theorem 3.1. If f : I → R is differentiable and ϕ-convex in I and f(x1) 6= f(x2)

then there exist ξ, η ∈ (x1, x2) ⊂ I such that f ′(ξ) ≥ ϕ(f(x1),f(x2))
f(x1)−f(x2) f

′(η) ≥ f ′(η).
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Proof. Since f is ϕ-convex, from (2.1) we get

f(x2)− f(x)

x2 − x
≥ ϕ(f(x1), f(x2))

x1 − x2
for x ∈ (x1, x2) ⊂ I,

=
ϕ(f(x1), f(x2))

f(x1)− f(x2)

f(x2)− f(x1)

x2 − x1
.

Now applying mean value theorem, the above inequality yields

f ′(ξ) ≥ ϕ(f(x1), f(x2))

f(x1)− f(x2)
f ′(η) (3.2)

for some ξ ∈ (x1, x) ⊂ (x1, x2) and η ∈ (x1, x2). Again by setting t = 1 in (1.1) we
get ϕ(f(x1), f(x2)) ≥ f(x1)− f(x2). Hence (3.2) implies that

f ′(ξ) ≥ ϕ(f(x1), f(x2))

f(x1)− f(x2)
f ′(η) ≥ f ′(η). (3.3)

�

Theorem 3.2. Let f : I → R be a differentiable ϕ-convex function. Then for each
x, y, z ∈ I such that x < y < z the following inequality holds:

f ′(y) + f ′(z) ≤ ϕ(f(x), f(y)) + ϕ(f(y), f(z))

x− z
.

Proof. Since f is ϕ-convex in each interval [x, y] and [y, z], hence

f(tx+ (1− t)y) ≤ f(y) + tϕ(f(x), f(y)),

and

f(ty + (1− t)z) ≤ f(z) + tϕ(f(y), f(z)).

From the above two inequalities, we obtain

f(tx+ (1− t)y)− f(y) + f(ty + (1− t)z)− f(z)

t
≤ ϕ(f(x), f(y)) + ϕ(f(y), f(z)).

Now setting t→ 0, we have

f ′(y)(x− y) + f ′(z)(y − z) ≤ ϕ(f(x), f(y)) + ϕ(f(y), f(z)).

Again z > y implies that x− z < x− y and x < y implies that x− z < y − z. Thus
we get (x− z)(f ′(y) + f ′(z)) ≤ f ′(y)(x− y) + f ′(z)(y − z). Hence we obtain

f ′(y) + f ′(z) ≤ ϕ(f(x), f(y)) + ϕ(f(y), f(z))

x− z
.

�
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4 Properties of geodesic ϕ-convex functions

Let (M, g) be a Riemannian manifold.

Theorem 4.1. Let A be a totally convex set in M . Then a function f : A → R
is geodesic ϕ-convex if and only if for each x, y ∈ A, the function gxy = f ◦ αxy is
ϕ-convex on [0, 1].

Proof. Let us suppose that gxy is ϕ-convex on [0, 1]. Then for each t1, t2 ∈ [0, 1],

gxy(st2 + (1− s)t1) ≤ gxy(t1) + sϕ(gxy(t2), gxy(t1)), ∀s ∈ [0, 1].

Now taking t1 = 0 and t2 = 1 we get

gxy(s) ≤ gxy(0) + sϕ(gxy(1), gxy(0)),

i.e.,
f(αxy(s)) ≤ f(x) + sϕ(f(y), f(x)),∀x, y ∈ A and ∀s ∈ [0, 1].

Conversely, let f be a ϕ-convex function. Now restricting the domain of αxy to [t1, t2],
we get a geodesic joining αxy(t1) and αxy(t2). Now reparametrize this restriction,

γ(s) = αxy(st2 + (1− s)t1), s ∈ [0, 1].

Since f(γ(s)) ≤ f(γ(0)) + sϕ(f(γ(1)), f(γ(0))),
i.e.,

f(αxy(st2 + (1− s)t1)) ≤ f(αxy(t1)) + sϕ(f(αxy(t2)), f(αxy(t0))),

it follows that

gxy(st2 + (1− s)t1)) ≤ gxy(t1) + sϕ(gxy(t2), gxy(t1)).

So, we prove that gxy is ϕ-convex in [0, 1]. �

Theorem 4.2. Let A ⊂ M be a totally convex set, f : A → R geodesic convex
function and g : I → R be non-decreasing ϕ-convex function with Range(f) ⊆ I.
Then g ◦ f : A→ R is a geodesic ϕ-convex function.

Proof. Since f is geodesic convex in A, so for any x, y ∈ A

f(αxy(t)) ≤ (1− t)f(x) + tf(y),

where αxy : [0, 1] → M is a geodesic arc connecting x and y. Now as g is non-
decreasing and ϕ-convex, we have

g ◦ f(αxy(t)) ≤ g((1− t)f(x) + tf(y))

≤ g ◦ f(x) + tϕ(g ◦ f(y), g ◦ f(x)).

Hence g ◦ f is geodesic ϕ-convex in A. �

Remark. In Theorem 4.2, if g is strictly ϕ-convex, then g ◦ f is also strictly geodesic
ϕ-convex.
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Theorem 4.3. Let fi : A→ R be geodesic ϕ-convex functions for each i = 1, 2, · · · , n
and ϕ be nonnegatively linear. Then for λi ≥ 0, i = 1, 2, · · · , n, the function f =∑n
i=1 λifi : A→ R is geodesic ϕ-convex.

Proof. Let x, y ∈ A. Then

f(αxy) =

n∑
i=1

λifi(αxy) ≤
n∑
i=1

λi[fi(x) + tϕ(f(y), f(x))]

=

n∑
i=1

[λifi(x) + tϕ(λif(y), λif(x))]

= f(x) + tϕ(f(y), f(x)).

Hence f is geodesic ϕ-convex in A. �

Let M and N be two complete Riemannian manifolds and ∇ be the Levi-Civita
connection on M . If F : M → N be a diffeomorphism, then F∗∇ = ∇1 is an affine
connection of N . Hence if γ is a geodesic in (M,∇), then F ◦ γ is also a geodesic in
(N,∇1), see [13, pp. 66].

Theorem 4.4. Let f : A → R be a geodesic ϕ-convex function. If F : (M,∇) →
(N,∇1) is a differmorphism then f ◦F−1 : F (A)→ R is a geodesic ϕ-convex function,
where ∇1 = F∗∇.

Proof. Let x, y ∈ A and αxy be a geodesic arc joining x and y. Since F is a diffeo-
morphism, hence F (A) is totally geodesic [13] and F ◦ αxy is a geodesic joining F (x)
and F (y). Now we have

(f ◦ F−1)(F (αxy)) = f(αxy) ≤ f(x) + tϕ(f(y), f(x))

= (f ◦ F−1)(F (x)) + tϕ((f ◦ F−1)(F (y)), (f ◦ F−1)(F (x))))

i,e., f ◦ F−1 is geodesic ϕ-convex on F (A). �

Theorem 4.5. Let f : B → R be a geodesic ϕ-convex function and ϕ be bounded
from above on f(B)× f(B) with an upper bound Mϕ, where B is a convex set in Rn
with Int(B) 6= φ. Then f is continuous on Int(B).

Proof. Let a ∈ Int(B). Then there exists an open ball B(a, h) ⊂ Int(B) for some
h > 0. Now choose r (0 < r < h) such that the closed ball B̄(a, r + ε) ⊂ B(a, h) for
some arbitrary small ε > 0. Choose any x, y ∈ B̄(a, r). Set z = y + ε

‖y−x‖ (y − x) and

t = ‖y−x‖
ε+‖y−x‖ . Then it is obvious that z ∈ B̄(a, r + ε) and y = tz + (1 − t)x. Thus

f(y) ≤ f(x) + tϕ(f(z), f(x)) ≤ f(x) + tMϕ. Hence we get

f(y)− f(x) ≤ tMϕ ≤
‖y − x‖

ε
Mϕ = K ‖y − x‖ ,

where K = Mϕ/ε. And if we interchange the position of x and y, then we also get
f(x)−f(y) ≤ K ‖y − x‖. Hence |f(x)−f(y)| ≤ K ‖y − x‖. Since B̄(a, r) is arbitrary
hence f is continuous on Int(B). �
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Definition 4.1. A bifunction ϕ : R2 → R is called sequentially upper bounded if

sup
n
ϕ(xn, yn) ≤ ϕ(sup

n
xn, sup

n
yn)

for any two bounded real sequences {xn} and {yn}.

Example 4.2. The functions ϕ(x, y) = x + y and ψ(x, y) = xy, ∀(x, y) ∈ R2 are
sequentially upper bounded functions.

Proposition 4.6. Let A ⊆ M be totally convex set and {fn}n∈N be a non-empty
family of geodesic ϕ-convex functions on A, where ϕ is sequentially upper bounded. If
supn fn(x) exists for each x ∈ A then f(x) = supn fn(x) is also a geodesic ϕ-convex
function.

Proof. Let x, y ∈ A and αxy : [0, 1]→M be a geodesic connecting x and y. Then

f(αxy(t)) = sup
n
fn(αxy(t)) ≤ sup

n
{fn(x) + tϕ(fn(y), fn(x))}

≤ sup
n
fn(x) + t sup

n
ϕ(fn(y), fn(x))

≤ sup
n
fn(x) + tϕ(sup

n
fn(y), sup

n
fn(x))

= f(x) + tϕ(f(y), f(x))

Hence f is a geodesic ϕ-convex function on A. �

Theorem 4.7. Let f : A → R be a geodesic ϕ-convex function. If f has local
minimum at x0 ∈ Int(A), then ϕ(f(x), f(x0)) ≥ 0 for all x ∈ A.

Proof. Since x0 ∈ Int(A), B(x0, r) ⊂ A for some r > 0. Take any point x ∈ A. Then
there exists a geodesic αx0x : [0, 1]→M belonging to A and

f(αx0x(t)) ≤ f(x0) + tϕ(f(x), f(x0)).

Now there exists ξ such that 0 < ξ ≤ 1 and αx0x(t) ∈ B(x0, r), ∀t ∈ [0, ξ]. As f has
local minimum at x0, we obtain

f(x0) ≤ f(αx0x(ξ)) ≤ f(x0) + ξϕ(f(x), f(x0)).

Thus,

ϕ(f(x), f(x0)) ≥ 0, ∀x ∈ A.

�

Theorem 4.8. Let f : A→ R be geodesic ϕ-convex and ϕ be bounded from above on
f(A)× f(A) with an upper bound Mϕ. Then f is continuous on Int(A).

Proof. Let a ∈ Int(A) and (U,ψ) be a chart containing a. Since ψ is a differmorphism
so using Theorem 4.5, f ◦ ψ−1 : ψ(U ∩ Int(A)) → R is also ϕ-convex and hence
continuous. Therefore, we get f = f ◦ψ−1 ◦ψ : U ∩ Int(A)→ R is continuous. Since
a is arbitrary, f is continuous on Int(A). �
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Proposition 4.9. Let {ϕn : n ∈ N} be a collection of bifunctions such that f : A→ R
is geodesic ϕn-convex functions for each n. If ϕn → ϕ as n → ∞ then f is also a
geodesic ϕ-convex function.

Proposition 4.10. Let {ϕn : n ∈ N} be a collection of bifunctions such that f : A→
R is geodesic

∑n
i=1 ϕi-convex function for each n. If

∑
n∈N ϕn converges to ϕ then f

is also a geodesic ϕ-convex function.

Theorem 4.11. If f : A→ R is strictly geodesic ϕ-convex with ϕ as antisymmetric
function, then dfxα̇xy 6= dfyα̇xy for any x, y ∈ A, x 6= y.

Proof. Let αxy : [0, 1]→M be a geodesic with starting point x and ending point y.
Now define αyx(t) = αxy(1− t), t ∈ [0, 1]. Then αyx is a geodesic with starting point
y and ending point x and dfyα̇yx = −dfyα̇xy.

On contrary, suppose that dfxα̇xy = dfyα̇xy. Now since f is geodesic ϕ-convex,
we get

dfxα̇xy < ϕ(f(y), f(x))

and
dfyα̇yx < ϕ(f(x), f(y)).

Since dfyα̇yx = −dfyα̇xy, we get

−dfyα̇xy < ϕ(f(x), f(y)).

Using antisymmetry property of ϕ, we obtain

dfyα̇xy > ϕ(f(y), f(x)).

Since dfxα̇xy = dfyα̇xy, we get

dfxα̇xy > ϕ(f(y), f(x)).

Hence ϕ(f(y), f(x)) < ϕ(f(y), f(x)), which is a contradiction. It follows that dfxα̇xy 6=
dfyα̇xy. �

Theorem 4.12. Let S ⊆ M be a geodesic invex set with respect to η. Suppose that
f : S → R is geodesic ϕ-convex and g : I → R is a non-decreasing G-preinvex function
with respect to φ and ψ such that range (f) ⊂ I. Then gof : S → R is a geodesic
ψ-convex function.

Proof. Let x, y ∈ S. Since f is a geodesic ϕ-convex function, we have

f(αxy(t)) ≤ f(y) + tϕ(f(x), f(y)).

Since g is non-decreasing G-preinvex function, we have

g(f(αxy(t))) ≤ g(f(y) + tϕ(f(x), f(y)))

≤ g(f(y)) + tψ(g(f(x)), g(f(y))).

�
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5 ϕ-Epigraphs

In this section we have introduced the notion of ϕ-epigraphs on complete Riemannian
manifolds and obtained a characterization of geodesic ϕ-convex function in terms of
their ϕ-epigraphs.

Definition 5.1. A set B ⊆ M × R is said to be geodesic ϕ-convex if and only if for
any two points (x, α), (y, β) ∈ B imply

(αxy(t), α+ tϕ(β, α)) ∈ B, 0 ≤ t ≤ 1.

If A is a totally geodesic convex subset of M and K is an invex subset of R with
respect to ϕ, then A×K is geodesic ϕ-convex. Now the ϕ-epigraph of f is defined by

Eϕ(f) = {(x, α) ∈M × R : f(x) ≤ α}.

Definition 5.2. [10] A function ϕ : R × R → R is non-decreasing if x1 ≤ x2 and
y1 ≤ y2 implies ϕ(x1, y1) ≤ ϕ(x2, y2) for x1, x2, y1, y2 ∈ R.

Theorem 5.1. Let A be a totally geodesic convex subset of M and ϕ be non-decreasing.
Then f : A→ R is geodesic ϕ-convex if and only if Eϕ(f) is a geodesic ϕ-convex set.

Proof. Suppose that f : A → R is a geodesic ϕ-convex. Let (x, α), (y, β) ∈ Eϕ(f).
Then f(x) ≤ α and f(y) ≤ β. Since f is geodesic ϕ-convex, hence

f(αxy(t)) ≤ f(x) + tϕ(f(y), f(x)),

for any geodesic αxy : [0, 1]→M connecting x and y. Since ϕ is non-decreasing, so

f(αxy(t)) ≤ α+ tϕ(β, α), ∀t ∈ [0, 1].

Hence (αxy(t), α+ tϕ(β, α)) ∈ Eϕ(f) ∀t ∈ [0, 1], that is, Eϕ(f) is a geodesic ϕ-convex
set.

Conversely, assume that Eϕ(f) is a geodesic ϕ-convex set. Let x, y ∈ A. Then
(x, f(x)), (y, f(y)) ∈ Eϕ(f). Hence for any t ∈ [0, 1],

(αxy(t), f(x) + tϕ(f(y), f(x))) ∈ Eϕ(f),

which implies that
f(αxy(t)) ≤ f(x) + tϕ(f(y), f(x)),

for any x, y ∈ A and for any geodesic αxy : [0, 1] → M . So, f is a geodesic ϕ-convex
function. �

Theorem 5.2. Let Ai, i ∈ Λ, be a family of geodesic ϕ-convex sets. Then their
intersection A =

⋂
i∈ΛAi is also a geodesic ϕ-convex set.

Proof. Let (x, α), (y, β) ∈ A. Then for each i ∈ Λ, (x, α), (y, β) ∈ Ai. Since each Ai
is geodesic ϕ-convex for each i ∈ Λ, we get (αxy(t), α + tϕ(β, α)) ∈ Ai, ∀t ∈ [0, 1].
This implies

(αxy(t), α+ tϕ(β, α)) ∈
⋂
i∈Λ

Ai, ∀t ∈ [0, 1].

Hence A is a geodesic ϕ-convex set. �
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As a direct consequence of Theorem 5.1 and Theorem 5.2, we get the following
corollary.

Corollary 5.3. Let {fi}i∈Λ be a family of geodesic ϕ-convex functions defined on a
totally convex set A ⊆ M which are bounded above and ϕ be non-decreasing. If the
ϕ-epigraphs Eϕ(fi) are geodesic ϕ-convex sets, then f = supi∈Λ fi is also a geodesic
ϕ-convex function on A.
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