On the concircular curvature tensor of
a semi-symmetric metric connection
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Abstract. The object of the present paper is to study Lorentzian concir-
cular structure manifolds (briefly (LC'S)2,,+1-manifolds) admitting a semi-
symmetric metric connection, whose concircular curvature tensor satisfies
certain conditions.
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1 Introduction

We say that a (2n + 1)-dimensional Lorentzian manifold M is a smooth connected
para-contact Hausdorff manifold with a Lorentzian metric g, if M admits a smooth
symmetric tensor field g of type (0,2) such that for each point p € M, the tensor
gp : TpM x T,M — R is a non-degenerate inner product of signature(—,+, ..., +),
where T}, M denotes the tangent space of M at p.

In a Lorentzian manifold (M, g) a vector field P defined by

9(X, P) = A(X),
for any vector field X € x(M) is said to be concircular vector field [17] if
(VxA)(Y) = ag(X,Y) +w(X)A(Y)],

where « is a non zero scalar function, A is a 1-form and w is a closed 1-form.
Let M be a Lorentzian manifold admitting a unit time like concircular vector field
&, called the characteristic vector field of the manifold; we have

Since £ is the unit concircular vector field, there exists a non zero 1-form 7 such that

(1.2) 9(X, &) = n(X),
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and an equation of the following form holds

(1.3) (Vxm(Y) = a[g(X,Y) +n(X)n(Y)] (a#0),

for all vector field X,Y, where V denotes the operator of covariant differentiation
with respect to Lorentzian metric g and « is a non zero scalar function satisfying

(1.4) (Vxa) = (Xa) = pn(X),

where p is a scalar function. If we put

(1.5) 0X = LV,
a
in (1.3), we obtain
(1.6) P*X = X +n(X)E,

from which it follows that ¢ is a symmetric (1, 1)-tensor. Thus the Lorentzian manifold
M together with unit time like concircular vector field &, its associated 1-form 7
and the (1, 1)-tensor field ¢ is said to be Lorentzian concircular structute manifold
(briefly (LCS)ap41-manifold) [17]. In particular if & = 1, then we obtain the LP-
Sasakian structure of Matsumoto [15]. The properties of (LC'S)ay+1-manifolds have
been intensively studied (e.g., in [20, 21, 22, 24, 26]). Let M be an n-dimensional
Riemannian manifold of class C*° endowed with the Riemannian metric g and let D
be the Levi-Civita connection on (M™,g). A linear connection V defined on (M7, g)
is said to be semi-symmetric [11] if its torsion tensor T is of the form

(1.7) T(X,Y)=n(Y)X —n(X)Y,
where 7 is an 1-form and £ is a vector field defined by
(1.8) 9(X,¢) = n(X),

for all vector fields X € x(M™); x(M™) is the set of all differentiable vector fields on
M™. A semi-symmetric connection V is called a semi-symmetric metric connection
[12], if it further satisfies

(1.9) Vg =0.

A relation between the semi-symmetric metric connection V and the Levi-Civita
connection D on (M™, g) has been obtained by Yano [28], which is given by

(1.10) VxY =DxY +nY)X — g(X,Y)¢;
we also have
(1.11) (Vxn)(Y) = (Dxn)Y — (X)(Y) +n(§)g(X.Y).

Further, a relation between the curvature tensor R of the semi-symmetric connection
V and the curvature tensor K of the Levi-Civita connection D is given by
(1.12)

RX, Y)W = K(X, Y)W + a(X, W)Y —a(Y, W)X + g(X, W)QY — g(Y,W)QX,
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where « is a tensor field of type (0,2) and @ is a tensor field of type (1, 1), defined by
1
(1.13) oY, W) = g(QY, W) = (Dyn)(W) —n(Y)n(W) + 5n(§)g (Y, W).

In view of (1.12) and (1.13), we get

(1.14) RX, YW, U)=K(X,Y,W,U) —a(Y,W)g(X,U)
+ O‘(X’ W)g(Y, U) - g(Y, W)a(X7 U) + g(X, W)Ot(Y, U)»
where R(X,Y,W,U) = g(R(X,Y)W,U), K(X,Y,W,U) = g(K(X,Y)W,U).

The properties of semi-symmetric connections have been studied in detail, in
[5, 6, 7, 8, 9, 10, 14, 16, 23, 25]. A transformation of an n-dimensional Rieman-
nian manifold M, which transforms every geodesic circle of M into a geodesic circle,
is called a concircular transformation ([13, 27]). A concircular transformation is al-
ways a conformal transformation ([13]). Here geodesic circle means a curve in M
whose first curvature is constant and the second curvature is identically zero. Thus
the geometry of concircular transformations (the concircular geometry) is the general-
ization of inverse geometry in the sense that the change of metric is more general then
the induced by circle preserving diffeomorphisms [2]. An invariant of a concircular
transformations the concircular curvature tensor C, is defined by ([13, 27]).

r

(1.15) C(X,Y)Z = R(X,Y)Z — MmEn+1)

[9(Y; 2)X —g(X, 2)Y],
In view of (1.15), it follows that
(1.16)

~ ~ r

C(Xa)/asz) = R(X7Y7Z7 U) - m [g(sz)g(X’ U) 7g(X’ Z)g(}/v U)]7

and C(X,Y,Z,U) = g(C(X,Y)Z,U), where X,Y,Z U € x(M), C is the concircu-
lar curvature tensor and r is the scalar curvature tensor with respect to the semi-
symmetric metric connection. Riemannian manifolds with vanishing concircular cur-
vature tensor are of constant curvature. Thus the concircular curvature tensor is a
measure of the failure of a Riemannian manifold to be of constant curvature.

The paper is organized as follows: after an introduction in section 2, we define
the (LCS)ap+1-manifolds. Section 3 is devoted to the study of ¢-concircularly flat
(LCS)2p41-manifolds with respect to the semi-symmetric metric connection and also
determines the ¢-sectional curvature of the plane by two vectors. Sections 4 and 5
deal with C'- S = 0 and C - C = 0 in (LCS)a,41-manifolds with respect to such
connections and prove that the manifold is n-Einstein. Finally, in section 6, it is also
shown that concircular ¢-recurrent (LCS)sa,41-manifolds with such connections are
n-Einstein manifolds and that the characteristic vector filed £ and the vector field p
associated to the 1-form A have opposite directions.

2 (LCS)y,+1-manifolds

A differentiable manifold M of dimension (2n 4 1) is called (LCS)s;,+1-manifold if it
admits a (1, 1)-tensor ¢, a contravariant vector field £, a covariant vector field 7 and
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a Lorentzian metric g, which satisfy the following

(2.1) n(€) = -1,

(2.2) ¢?=I+n®E,

(2.3) 9(6X, ¢Y) = g(X,Y) + n(X)n(Y),
(2.4) 9(X, ) = n(X),

(2.5) ¢¢ =0, n(¢X) =0,

For all X, Y € TM, also in an (LC'S)a,+1-manifold, the following relations are satis-
fied [18].

(2:6) N(K(X,Y)Z) = (o® = p) [9(Y. Z)n(X) — g(X, Z)n(Y)],
(2.7) K(X,Y)¢ = (a® = p)[n(Y)X —n(X)Y],

(2.8) K(&X)Y = (a? = p) [g(X,Y)E —n(Y)X],

(2.9) R(&, X)¢ = (a® = p) n(X)€ + X,

(2.10) (Vxo)(Y) = a[g(X, Y)E + 2n(X)n(Y)E + n(Y)X],
(2.11) S(X,€) = 2n(a® = p)n(X),

(2.12) S(¢X,9Y) = S(X,Y) + 2n(a® — p)n(X)n(Y),

where K is the curvature tensor and S is the Ricci curvature tensor of the manifold,
with respect to the Levi-Civita connection.

3 ¢-concircurlarly flat (LCS),, ,,-manifold with
respect to semi-symmetric metric connection

Let C be the Weyl conformal curvature tensor of a (2n + 1)-dimensional manifold
M. Since at each point p € M the tangent space x,(M) can be decomposed into
the direct sum x,(M) = ¢(xp(M)) & L(&p), where L(,) is an 1-dimensional linear
subspace of x, (M) generated by &, there exists the map:

C: xp(M) X xp(M) X xp(M) = ¢(xp(M)) ® L(Ep).

We may consider the following particular cases
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1. C: xp(M) x xp(M) X xp(M) — L(&), i.e. the projection of the image of C
ing(xp(M)) is zero.

)

)i

2. C: xp(M) x xp(M) x xp(M) = ¢(xp(M)), i.e. the projection of the image of
C in L(§,)is zero.

(3.1) C(X,Y)¢=0.

3. C : dp(xp(M)) x ¢(xp(M)) x ¢(xp(M)) — L(&p), ie. when C is restricted
tod( xp(M)) x o(xp(M)) x ¢(xp(M)), the projection of the image of C in
d(xp(M)) is zero. The condition is equivalent to

(3.2) P*C(pX, ¢Y)$Z = 0.

Here the cases 1, 2 and 3 are conformally symmetric, &-conformally flat and ¢-
conformaly flat, respectively. The cases (1.1) and (1.2) where considered in [29] and
[4], respectively. A case (1.3) was considered in [3] when M is a K-contact manifold.
Furthermore, in [1], the author studied such contact metric manifolds. Similar to
definition (1.3) of ¢-conformally and ¢-coformally flatness, we may introduced the
following definitions:

Definition 3.1. A (LCS)a,,+1-manifold is said to be ¢-concircurlarly flat with respect
to the semi-symmetric metric connection if

(3.3) 9(C(¢X,9Y)oZ,oW) = 0,
where X, Y, Z, W € x(M).

Definition 3.2. A (LCS)2;41-manifold is said to be an n-Einstein manifold if its
Ricci tensor S of the Levi-Civita connection is of the form

S(X,Y) = ag(X,Y) + bn(X)n(Y),
where a and b are smooth function on the manifold.

Theorem 3.1. If a (LCS)ayt1-manifold is ¢-concircularly flat with respect to the
semi-symmetric metric connection then the manifold is an n—FEinstein manifold.

Proof. In view of equation (1.3), (1.2) and (1.13), we obtain
(3.4)
R(X, Y)W = K(X,Y)W + [2n(a® — p) + a — 3| {g(X, W)Y — g(Y, W)X}
+[(1 = o) {n(Y)n(W)X — n(X)n(W)Y} '

From (3.4), it is clear that
(3-5)

R(X,Y,W,U) = K(X,Y,W,U) + [2n(a? — p) + a — 1] g(X, W)g(Y, UL) }
+[(1 = )] {n(Y)n(W)g(X,U) — n(X)n(W)

contracting X in (3.5), we get

(3.6) S(Y,W)=8(Y,W)—2n |2n(ca® - p) + o — ﬂ g(Y, W) +2n(1—a)n(Y)n(W);
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substituting W = ¢ in (3.7) and using (2.1) and (2.11), we have

(3.7) S(Y,€) = {(2n(1 - 2n)(a® — p) — n}n(Y);
again, contracting Y and W in (3.6), it follows that
(3.8) r=7—4n*(2n +1)(a® — p) — dna(n — 1) + n(2n + 3),

where 7,5 and 7,5 are the scalar curvature, the Ricci tensor with respect to the
semi-symmetric metric connection and the Levi-Civita connection, respectively.

By substituting X = ¢X,Y = ¢Y, W = ¢W and U = ¢U in (1.16) and using
(1.14), we obtain
(3.9)

9(C(6X, 0. oW, ¢U) = K (X, oY, oW, ¢U) + [2n(a® — p) + & — 3]

{ 9(¢X, oW)g (oY, ¢U) } . { 9(oY, oW)g(¢X, ¢U) } ;
—9(oY, oW )g(oX, 9U) @t | —g(oX, dW)g (Y, ¢U)

again, using (3.3) in (3.9), we get

- 1 r
K(¢X, Y, oW, ¢U) = [2n(0<2—p)+a—2+2n(2n+1)}

(3.10) < { g(oY,oW)g(6X, 6U)—g(¢X,oW)g(6Y,¢U) }.

Let {e1, €2, &} be an orthonormal basis of vector fields in M; then {¢eq, ..., dean ¢}
is also a local orthonormal basis. Putting X = U = e; in (3.10) and summing over
1 =1 to 2n, we get

2n ~ 2n 1
;K(éf?ei,@f oW, ge;) = ; {271(042 —p)ta-— 5t 2"(2;‘*‘1)}
9(oY, W) g(ges, pe;)
(3.11) . { ~glei, 6W)g(6Y, ge;) } ’
and
312 S(@Y.0W) = @0 +1) [20(a? ) +a - L+ T glov.om)

Using (2.3) and (2.12) in (3.12), we obtain

S, W) = ag(Y, W) +bn(Y)n(W),

where
B 4n2(2n + 1)(a? — p) +2n(2n + 1)(2a — 1) + 2r
“= {(2" -1 { 4n(2n+ 1) H ’
b= ((2n— 1)
4n2(2n +1)(a? — p) +2n(2n + 1)(2a — 1) + 2a — 4n2(2n — 1)(a? — 1)
. { An(2n+ 1) } ‘

These results show that the manifold is an n-Einstein manifold, and proves Theorem
3.1 |
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Definition 3.3. A plane section in x(M) is called ¢-sectional if there exists a unit
vector X in x(M) orthogonal to &, such that {X,¢X} is an orthogonal basis of
the plane section. Then the sectional curvature /K (X, ¢X) is called a ¢-sectional
curvature.

Theorem 3.2. If a (LCS)ay,t1-manifold admits a semi-symmetric metric connection
whose curvature tensor vanishes, then the ¢-sectional curvature of the plane deter-
mined by two vectors X, X € &+ is 2n(a? — p) + o — %

Proof. Let £+ denote the (2n + 1)-dimensional distribution orthogonal to ¢ in a
(LCS)2p41-manifold admitting a semi-symmetric metric connection whose curva-
ture tensor vanishes for any X € ¢+, g(X,€) = 0. Now we shall determine the ¢-
sectional curvature /K at the plane determined by the vectors X, ¢X € £+. Putting
Y =¢X, W =¢X and U = X in (3.5) it can be seen that

R(X.0X.0X,%) = |2n(a = p) +a = ] (90X X)g(6X, 62))]

Therefore

/ _ K(X, ¢X,¢X, X) { 2 _ _1}
(B14) TR 0X) = 0 90X, o%) — g (X, gx2 2@ e
This proves the Theorem 3.2. |

4 A (LCS),,,,-manifolds with respect to semi-symmetric
metric connections satisfying C'- S = 0.

Theorem 4.1. If a (LCS),, , ,-manifold with respect to a semi-symmetric connection
satisfying C - S = 0, then the manifold is an n-FEinstein manifold.

Proof. We consider an (LCS),, , ,-manifold with respect to a semi-symmetric metric
connection satisfying the condition

(Ccwy)-SY((W,X) =0.
Then we have
(4.1) SCUY)W, X))+ SW,C(U,Y)X) =0;
substituting U = £ in (4.1), it follows that
(4.2) S(CE Y)W, X) + S(W,C(E,Y)X) = 0;
putting X = ¢ in (1.15) and using (2.4), (2.8) and (3.8), we get

C(&,Y, W) = [(2n = 1)(a® = p) = a + } = gy | 9V, W)e

(4.3) 2n—1)(c®—p)+a—3
| ST 2T Jaony + - e pmone
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In view of (4.2) and (4.3), it follows that

(20 = 1)(0% = p) — @+ § = 5ty [ {9(V, ©)S(E X) + 9(Y, X)S(W, )}

(4.4) + { (@n-1)(a”—p)+a-3 ] ((W)S(X,Y) +n(X)S(W,Y)}
+(1 - )+ 5@
+(1 = a) {n(Y)n(W)S(& X) +n(Y)n(X)S(W,§)} =0
substituting W = £ in (4.4) and using (2.11) and (3.6), we get
S(X,Y) = ag(X,Y) + bn(X)n(Y),

where
[ {8n3a—871,3p—2na2+2np—4n2a—2na+2n2+n—r}{4n2a2—4n2p—2na2+2n/)+n} ]

a = {8n3a—8n3p—2na?+2np+2n2+n—r}
+n — 2na — 4n’a + 4n2p

B {8n3a78n3p72na2+2np74n2a72na+2n2+n7r}{4n2a274n2p72na2+2np71‘} 7
{8n3a—8n3p—2na’+2np+2n2+n+r}
b= 2n(2n+1)(lfa){4n+8n2(a27p)74n2a2+4n2p}
+ {8n3a—8n3p—2na?+2np+2n2+n+r}
i +2na? — 2np — 2na — 4na® +4n’p+n

This proves Theorem 4.1. (Il

5 A (LCS),,. -manifolds with respect to semi sym-
metric metric connection satisfying C' - C' = 0.

Theorem 5.1. Any (LCS),, ,,-manifold with respect to a semi-symmetric connec-
tion satisfying C - C =0, is an n-FEinstein manifold.

Proof. We consider an (LC'S),, , ;-manifold with respect to a semi-symmetric metric
connection satisfying the condition

(C(X,Y)-C) U, V)W =

Then we have
(5.1)
CX,Y)C) U, VYW-C(C(X,Y)U,VW-C(U,C(X,Y)VYW-C(U,V)C(X, Y)W =

By substituting X = ¢ in (5.1), it follows that
(5.2)

again, by replacing U = ¢ in (5.2), we get
(5.3)

In view of (4.3), we get
(5.4)

o(ams:[(n—l)(a e tiaiayy T

m {=Y —n(Y)E}

2
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using (4.3) and (5.4) in (5.3), it follows that

~ 2n(2n +1)(a® —p) + ]
55) S(V,W)= VW) —[2n(1 — « Vin(W).
) Swwy=| T8 R ) = = ) nvynov)
This proves the Theorem 5.1. (]

6 Concircular ¢-recurrent (LCS),, ,-manifolds with
respect to semi-symmetric metric connections

Definition 6.1. A (LCS),, ,,-manifold is said to be concircular ¢-recurrent [19] if
there exists a non-zero 1-form A such that

¢* (VwO)(X,Y)Z) = AW)C(X,Y)Z,

where A is defined by A(W) = ¢g(W, p) and p is a vector field associated with the 1
-form A.

Theorem 6.1. A concircular ¢—recurrent(LC’S)2n+1—mam'fold with respect to semi-
symmetric metric connection is an n-Finstein manifold.

Proof. Let us consider a concircular ¢-recurrent (LC'S),, , ;-manifold with respect to
the semi-symmetric metric connection defined by

(6.1) »* (VwC)(X,Y)Z) = AW)C(X,Y)Z.

In view of (2.1) and (6.1), we get

(6.2) (ViwO)(X,Y)Z 4+ n((VwC)(X,Y)Z)¢ = AW)C(X,Y)Z.
From (6.2), it follows that

(6.3) g(VwO)(X,Y)Z,U) +n((VwC)(X,Y)Z)g(¢,U) = AW)g(C(X,Y)Z,U),

where
(VwCO)(X,Y)Z + (VwK)(X,Y)Z) = [(4na + 1)pn(W) — 2np] (X, 2)Y
=g, 2)X — p{n(Y)n(Z)n(W)X —n(X)n(Z)n(W)Y'}

(6.4) gW,Y)n(Z2)X — g(W, Z)n(X)Y

+a(l—a) | —gW, X)n(Z2)Y +g(W, Z)n(Y)X
=2n(Y)n(Z)n(W)X = 2n(X)n(Z)n(W)Y
~ oty 9(Y. 2)X — 9(X, Z)Y]

Let {e;},7 = 1,2,...,2n 4+ 1 be an orthonormal basis of the tangent space at some
point of the manifold. Then putting X = U = ¢; in (6.4)and taking summation over
1,1 <i<2n+ 1, we have

65 WO+ E00) =m0 ) )]
' +AW) [S(V.2) = i 9(Y. 2)| ’
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by replacing Z = £in (6.5), we obtain

VW’I’
(2n+1)

on the other hand, we have
(Vw9 (Y, 8) = VwS(Y,§) = S(VwY, &) = S(Y, VwE);
using (1.3), (1.5), (2.11) and (3.6), the above equation reduces to

(VwS)(Y,€) = [2na(l = 2n) —nal {g(Y, W) + n(Y)n(W)} — aS(Y, W)
+2na [2n(a® — p) + a — 3] g(Y, oW).

(6.6)  (VwS)(Y,¢) = n(Y) = AW) |S(Y.2) = ————=mn

(6.7)

In view of (6.6) and (6.7), upon simplification, we get
S(Y,W) = [4n2(a2 —p) 4 2na—n| g(Y, W) + [4n2(a2 —p) + 2na —n| n(Y)n(W).
This proves the Theorem 6.1. (]

Theorem 6.2. In a concircular ¢-recurrent (LC'S)ay,1-manifold admitting a semi-
symmetric metric connection, the characteristic vector field & and the vector p as-
sociated to the 1— form A have opposite directions, and the 1-form A is given by
(6.12).

Proof. Considering (6.2) as well, one has

68  (YwO)(X,Y)Z = —n((VwO)(X,Y)Z)¢ + AW)C(X,Y).Z;
now using (3.4), (6.4) and Bianchi’s identity in (6.8), we obtain
AW)n(K(X,Y)Z) + AX)n(K (Y, W)Z) + AW)n(K(W, X)Z =

AW) [2n(a? = p) +a = 5] {g(X, Z)n(Y) = g(¥, Z)n(X)}

+A(X)[[2n(042—p)+a—1 {9(Y, Z)n(W) — g( )

(6.9) FAW) [2n(a® = p) + a = 3] {g(W, Z2)n(X) — g(X,
AW) {g(¥, Z)n(X) — g(X, Zn(Y))

AX){g(W, Z)n(Y) — g(Y, Z)n(W)}

AY) {g(X, 2)n(W) = g(W, Z)n(X)
<13

substituting Y = Z = £ in (6.9) and taking summation over %, 1
(6.10)
2n{2n(a? — p) +a— 1} AW)n(X) =2n{2n(c® — p) + a — 1 } A(X)n(W)
F o 1 2nAX)n(W) 4 2nA(W)n(X)};

R TICTEsy

}
< 2n+41, we infer

again, replacing X by & in (6.10), we obtain

r

11 4n*(0® —p)+2na—n— ————
(6.11) n°(a® —p)+2na—n @ 1)

{AW) + A(E)n(W)} = 0.
Therefore, we have

(6.12) AW) = —n(W)n(p),

for any vector field W. This proves Theorem 6.2. O
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