
On the concircular curvature tensor of

a semi-symmetric metric connection

S. Yadav, D. Narain and D.L. Suthar
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1 Introduction

We say that a (2n + 1)-dimensional Lorentzian manifold M is a smooth connected
para-contact Hausdorff manifold with a Lorentzian metric g, if M admits a smooth
symmetric tensor field g of type (0, 2) such that for each point p ∈ M , the tensor
gp : TpM × TpM → R is a non-degenerate inner product of signature(−,+, ...,+),
where TpM denotes the tangent space of M at p.

In a Lorentzian manifold (M, g) a vector field P defined by

g(X,P ) = A(X),

for any vector field X ∈ χ(M) is said to be concircular vector field [17] if

(∇XA)(Y ) = α [g(X,Y ) + ω(X)A(Y )] ,

where α is a non zero scalar function, A is a 1-form and ω is a closed 1-form.
Let M be a Lorentzian manifold admitting a unit time like concircular vector field

ξ, called the characteristic vector field of the manifold; we have

(1.1) g(ξ, ξ) = −1.

Since ξ is the unit concircular vector field, there exists a non zero 1-form η such that

(1.2) g(X, ξ) = η(X),
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and an equation of the following form holds

(1.3) (∇Xη)(Y ) = α [g(X,Y ) + η(X)η(Y )] (α 6= 0),

for all vector field X,Y , where ∇ denotes the operator of covariant differentiation
with respect to Lorentzian metric g and α is a non zero scalar function satisfying

(1.4) (∇Xα) = (Xα) = ρη(X),

where ρ is a scalar function. If we put

(1.5) φX =
1

α
∇Xξ,

in (1.3), we obtain

(1.6) φ2X = X + η(X)ξ,

from which it follows that φ is a symmetric (1, 1)-tensor. Thus the Lorentzian manifold
M together with unit time like concircular vector field ξ, its associated 1-form η
and the (1, 1)-tensor field φ is said to be Lorentzian concircular structute manifold
(briefly (LCS)2n+1-manifold) [17]. In particular if α = 1, then we obtain the LP-
Sasakian structure of Matsumoto [15]. The properties of (LCS)2n+1-manifolds have
been intensively studied (e.g., in [20, 21, 22, 24, 26]). Let M be an n-dimensional
Riemannian manifold of class C∞ endowed with the Riemannian metric g and let D
be the Levi-Civita connection on (Mn, g). A linear connection ∇ defined on (Mn, g)
is said to be semi-symmetric [11] if its torsion tensor T is of the form

(1.7) T (X,Y ) = η(Y )X − η(X)Y,

where η is an 1-form and ξ is a vector field defined by

(1.8) g(X, ξ) = η(X),

for all vector fields X ∈ χ(Mn); χ(Mn) is the set of all differentiable vector fields on
Mn. A semi-symmetric connection ∇ is called a semi-symmetric metric connection
[12], if it further satisfies

(1.9) ∇g = 0.

A relation between the semi-symmetric metric connection ∇ and the Levi-Civita
connection D on (Mn, g) has been obtained by Yano [28], which is given by

(1.10) ∇XY = DXY + η(Y )X − g(X,Y )ξ;

we also have

(1.11) (∇Xη)(Y ) = (DXη)Y − (X)(Y ) + η(ξ)g(X,Y ).

Further, a relation between the curvature tensor R of the semi-symmetric connection
∇ and the curvature tensor K of the Levi-Civita connection D is given by
(1.12)
R(X,Y )W = K(X,Y )W + α(X,W )Y−α(Y,W )X + g(X,W )QY − g(Y,W )QX,
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where α is a tensor field of type (0, 2) and Q is a tensor field of type (1, 1), defined by

(1.13) α(Y,W ) = g(QY,W ) = (DY η)(W )− η(Y )η(W ) +
1

2
η(ξ)g(Y,W ).

In view of (1.12) and (1.13), we get

(1.14)
R̃(X,Y,W,U) = K̃(X,Y,W,U)− α(Y,W )g(X,U)

+ α(X,W )g(Y, U)− g(Y,W )α(X,U) + g(X,W )α(Y, U),

where R̃(X,Y,W,U) = g(R(X,Y )W,U), K̃(X,Y,W,U) = g(K(X,Y )W,U).
The properties of semi-symmetric connections have been studied in detail, in

[5, 6, 7, 8, 9, 10, 14, 16, 23, 25]. A transformation of an n-dimensional Rieman-
nian manifold M , which transforms every geodesic circle of M into a geodesic circle,
is called a concircular transformation ([13, 27]). A concircular transformation is al-
ways a conformal transformation ([13]). Here geodesic circle means a curve in M
whose first curvature is constant and the second curvature is identically zero. Thus
the geometry of concircular transformations (the concircular geometry) is the general-
ization of inverse geometry in the sense that the change of metric is more general then
the induced by circle preserving diffeomorphisms [2]. An invariant of a concircular
transformations the concircular curvature tensor C, is defined by ([13, 27]).

(1.15) C(X,Y )Z = R(X,Y )Z − r

2n(2n+ 1)
[g(Y,Z)X − g(X,Z)Y ] ,

In view of (1.15), it follows that
(1.16)

C̃(X,Y, Z, U) = R̃(X,Y, Z, U)− r

2n(2n+ 1)
[g(Y, Z)g(X,U)− g(X,Z)g(Y, U)] ,

and C̃(X,Y, Z, U) = g(C(X,Y )Z,U), where X,Y, Z, U ∈ χ(M), C is the concircu-
lar curvature tensor and r is the scalar curvature tensor with respect to the semi-
symmetric metric connection. Riemannian manifolds with vanishing concircular cur-
vature tensor are of constant curvature. Thus the concircular curvature tensor is a
measure of the failure of a Riemannian manifold to be of constant curvature.

The paper is organized as follows: after an introduction in section 2, we define
the (LCS)2n+1-manifolds. Section 3 is devoted to the study of φ-concircularly flat
(LCS)2n+1-manifolds with respect to the semi-symmetric metric connection and also
determines the φ-sectional curvature of the plane by two vectors. Sections 4 and 5
deal with C · S = 0 and C · C = 0 in (LCS)2n+1-manifolds with respect to such
connections and prove that the manifold is η-Einstein. Finally, in section 6, it is also
shown that concircular φ-recurrent (LCS)2n+1-manifolds with such connections are
η-Einstein manifolds and that the characteristic vector filed ξ and the vector field ρ
associated to the 1-form A have opposite directions.

2 (LCS)2n+1-manifolds

A differentiable manifold M of dimension (2n+ 1) is called (LCS)2n+1-manifold if it
admits a (1, 1)-tensor φ, a contravariant vector field ξ, a covariant vector field η and
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a Lorentzian metric g, which satisfy the following

(2.1) η(ξ) = −1,

(2.2) φ2 = I + η ⊗ ξ,

(2.3) g(φX, φY ) = g(X,Y ) + η(X)η(Y ),

(2.4) g(X, ξ) = η(X),

(2.5) φξ = 0, η(φX) = 0,

For all X,Y ∈ TM , also in an (LCS)2n+1-manifold, the following relations are satis-
fied [18].

(2.6) η(K(X,Y )Z) = (α2 − ρ) [g(Y, Z)η(X)− g(X,Z)η(Y )] ,

(2.7) K(X,Y )ξ = (α2 − ρ) [η(Y )X − η(X)Y ] ,

(2.8) K(ξ,X)Y = (α2 − ρ) [g(X,Y )ξ − η(Y )X] ,

(2.9) R(ξ,X)ξ = (α2 − ρ) [η(X)ξ +X] ,

(2.10) (∇Xφ)(Y ) = α [g(X,Y )ξ + 2η(X)η(Y )ξ + η(Y )X] ,

(2.11) S̃(X, ξ) = 2n(α2 − ρ)η(X),

(2.12) S̃(φX, φY ) = S(X,Y ) + 2n(α2 − ρ)η(X)η(Y ),

where K is the curvature tensor and S̃ is the Ricci curvature tensor of the manifold,
with respect to the Levi-Civita connection.

3 φ-concircurlarly flat (LCS)2n+1-manifold with
respect to semi-symmetric metric connection

Let C be the Weyl conformal curvature tensor of a (2n + 1)–dimensional manifold
M . Since at each point p ∈ M the tangent space χp(M) can be decomposed into
the direct sum χp(M) = φ(χp(M)) ⊕ L(ξp), where L(ξp) is an 1-dimensional linear
subspace of χp(M) generated by ξp, there exists the map:

C : χp(M)× χp(M)× χp(M)→ φ(χp(M))⊕ L(ξp).

We may consider the following particular cases
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1. C : χp(M) × χp(M) × χp(M) → L(ξp), i.e. the projection of the image of C
inφ(χp(M)) is zero.

2. C : χp(M) × χp(M) × χp(M) → φ(χp(M)), i.e. the projection of the image of
C in L(ξp)is zero.

(3.1) C(X,Y )ξ = 0.

3. C : φ(χp(M)) × φ(χp(M)) × φ(χp(M)) → L(ξp), i.e. when C is restricted
toφ(χp(M)) × φ(χp(M)) × φ(χp(M)), the projection of the image of C in
φ(χp(M)) is zero. The condition is equivalent to

(3.2) φ2C(φX, φY )φZ = 0.

Here the cases 1, 2 and 3 are conformally symmetric, ξ-conformally flat and φ-
conformaly flat, respectively. The cases (1.1) and (1.2) where considered in [29] and
[4], respectively. A case (1.3) was considered in [3] when M is a K-contact manifold.
Furthermore, in [1], the author studied such contact metric manifolds. Similar to
definition (1.3) of ξ-conformally and φ-coformally flatness, we may introduced the
following definitions:

Definition 3.1. A (LCS)2n+1-manifold is said to be φ-concircurlarly flat with respect
to the semi-symmetric metric connection if

(3.3) g (C(φX, φY )φZ, φW ) = 0,

where X,Y, Z,W ∈ χ(M).

Definition 3.2. A (LCS)2n+1-manifold is said to be an η-Einstein manifold if its
Ricci tensor S̃ of the Levi-Civita connection is of the form

S̃(X,Y ) = ag(X,Y ) + bη(X)η(Y ),

where a and b are smooth function on the manifold.

Theorem 3.1. If a (LCS)2n+1-manifold is φ-concircularly flat with respect to the
semi-symmetric metric connection then the manifold is an η–Einstein manifold.

Proof. In view of equation (1.3), (1.2) and (1.13), we obtain
(3.4)

R(X,Y )W = K(X,Y )W +
[
2n(α2 − ρ) + α− 1

2

]
{g(X,W )Y − g(Y,W )X}

+ [(1− α)] {η(Y )η(W )X − η(X)η(W )Y } .

From (3.4), it is clear that
(3.5)

R̃(X,Y,W,U) = K̃(X,Y,W,U) +
[
2n(α2 − ρ) + α− 1

2

]{ g(X,W )g(Y, U)
−g(Y,W )g(X,U)

}
+ [(1− α)] {η(Y )η(W )g(X,U)− η(X)η(W )g(Y, U)} ;

contracting X in (3.5), we get

(3.6) S(Y,W ) = S̃(Y,W )−2n

[
2n(α2 − ρ) + α− 1

2

]
g(Y,W )+2n(1−α)η(Y )η(W );
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substituting W = ξ in (3.7) and using (2.1) and (2.11), we have

(3.7) S(Y, ξ) = {(2n(1− 2n)(α2 − ρ)− n}η(Y );

again, contracting Y and W in (3.6), it follows that

(3.8) r = r̃ − 4n2(2n+ 1)(α2 − ρ)− 4nα(n− 1) + n(2n+ 3),

where r,S and r̃,S̃ are the scalar curvature, the Ricci tensor with respect to the
semi-symmetric metric connection and the Levi-Civita connection, respectively.

By substituting X = φX, Y = φY,W = φW and U = φU in (1.16) and using
(1.14), we obtain
(3.9)

g(C(φX, φY, φW, φU) = K̃(φX, φY, φW, φU) +
[
2n(α2 − ρ) + α− 1

2

]{
g(φX, φW )g(φY, φU)
−g(φY, φW )g(φX, φU)

}
− r

2n(2n+1)

{
g(φY, φW )g(φX, φU)
−g(φX, φW )g(φY, φU)

}
;

again, using (3.3) in (3.9), we get

K̃(φX, φY, φW, φU) =

[
2n(α2 − ρ) + α− 1

2
+

r

2n(2n+ 1)

]
(3.10) ×

{
g(φY, φW )g(φX, φU)−g(φX, φW )g(φY, φU)

}
.

Let {e1,...e2n,ξ} be an orthonormal basis of vector fields in M ; then {φe1, ..., φe2n,ξ}
is also a local orthonormal basis. Putting X = U = ei in (3.10) and summing over
i = 1 to 2n, we get

2n∑
i=1

K̃(φei, φY, φW, φei) =

2n∑
i=1

[
2n(α2 − ρ) + α− 1

2
+

r

2n(2n+ 1)

]

(3.11) ×
{
g(φY, φW )g(φei, φei)
−g(φei, φW )g(φY, φei)

}
,

and

(3.12) S̃(φY, φW ) = (2n+ 1)

[
2n(α2 − ρ) + α− 1

2
+

r

2n(2n+ 1)

]
g(φY, φW ).

Using (2.3) and (2.12) in (3.12), we obtain

S̃(Y,W ) = a g(Y,W ) + bη(Y )η(W ),

where

a =

[
(2n− 1)

{
4n2(2n+ 1)(α2 − ρ) + 2n(2n+ 1)(2α− 1) + 2r

4n(2n+ 1)

}]
,

b = ((2n− 1))

×
{

4n2(2n+ 1)(α2 − ρ) + 2n(2n+ 1)(2α− 1) + 2α− 4n2(2n− 1)(α2 − 1)

4n(2n+ 1)

}
.

These results show that the manifold is an η-Einstein manifold, and proves Theorem
3.1. �
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Definition 3.3. A plane section in χ(M) is called φ-sectional if there exists a unit
vector X in χ(M) orthogonal to ξ, such that {X,φX} is an orthogonal basis of
the plane section. Then the sectional curvature /K(X,φX) is called a φ-sectional
curvature.

Theorem 3.2. If a (LCS)2n+1-manifold admits a semi-symmetric metric connection
whose curvature tensor vanishes, then the φ-sectional curvature of the plane deter-
mined by two vectors X,φX ∈ ξ⊥ is 2n(α2 − ρ) + α− 1

2 .

Proof. Let ξ⊥ denote the (2n + 1)-dimensional distribution orthogonal to ξ in a
(LCS)2n+1-manifold admitting a semi-symmetric metric connection whose curva-
ture tensor vanishes for any X ∈ ξ⊥, g(X, ξ) = 0. Now we shall determine the φ-
sectional curvature /K at the plane determined by the vectors X,φX ∈ ξ⊥. Putting
Y = φX, W = φX and U = X in (3.5) it can be seen that

K̃(X,φX, φX,X) =

[
2n(α2 − ρ) + α− 1

2

]
{g(X,X)g(φX, φX)}]

(3.13) −g(X,φX)g(φX,X).

Therefore

(3.14) /K(X,φX) =
K̃(X,φX, φX,X)

g(X,X)g(φX, φX)− g(X,φX)2
=

{
2n(α2 − ρ) + α− 1

2

}
.

This proves the Theorem 3.2. �

4 A (LCS)2n+1-manifolds with respect to semi-symmetric
metric connections satisfying C · S = 0.

Theorem 4.1. If a (LCS)2n+1-manifold with respect to a semi-symmetric connection
satisfying C · S = 0, then the manifold is an η-Einstein manifold.

Proof. We consider an (LCS)2n+1-manifold with respect to a semi-symmetric metric
connection satisfying the condition

(C(U, Y ) · S)(W,X) = 0.

Then we have

(4.1) S(C(U, Y )W,X) + S(W,C(U, Y )X) = 0;

substituting U = ξ in (4.1), it follows that

(4.2) S(C(ξ, Y )W,X) + S(W,C(ξ, Y )X) = 0;

putting X = ξ in (1.15) and using (2.4), (2.8) and (3.8), we get

(4.3)

C(ξ, Y,W ) =
[
(2n− 1)(α2 − ρ)− α+ 1

2 −
r

2n(2n+1)

]
g(Y,W )ξ

+

[
(2n− 1)(α2 − ρ) + α− 1

2
+(1− α) + r

2n(2n+1)

]
η(W )Y + (1− α)η(Y )η(W )ξ.
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In view of (4.2) and (4.3), it follows that

(4.4)

[
(2n− 1)(α2 − ρ)− α+ 1

2 −
r

2n(2n+1)

]
{g(Y, ξ)S(ξ,X) + g(Y,X)S(W, ξ)}

+

[
(2n− 1)(α2 − ρ) + α− 1

2
+(1− α) + r

2n(2n+1)

]
{η(W )S(X,Y ) + η(X)S(W,Y )}

+(1− α) {η(Y )η(W )S(ξ,X) + η(Y )η(X)S(W, ξ)} = 0;

substituting W = ξ in (4.4) and using (2.11) and (3.6), we get

S̃(X,Y ) = ag(X,Y ) + bη(X)η(Y ),

where

a =

[
{8n3α−8n3ρ−2nα2+2nρ−4n2α−2nα+2n2+n−r}{4n2α2−4n2ρ−2nα2+2nρ+n}

{8n3α−8n3ρ−2nα2+2nρ+2n2+n−r}
+n− 2nα− 4n2α+ 4n2ρ

]
,

b =


{8n3α−8n3ρ−2nα2+2nρ−4n2α−2nα+2n2+n−r}{4n2α2−4n2ρ−2nα2+2nρ−r}

{8n3α−8n3ρ−2nα2+2nρ+2n2+n+r}

+
2n(2n+1)(1−α){4n+8n2(α2−ρ)−4n2α2+4n2ρ}

{8n3α−8n3ρ−2nα2+2nρ+2n2+n+r}
+2nα2 − 2nρ− 2nα− 4n2α2 + 4n2ρ+ n

 .
This proves Theorem 4.1. �

5 A (LCS)2n+1-manifolds with respect to semi sym-
metric metric connection satisfying C · C = 0.

Theorem 5.1. Any (LCS)2n+1-manifold with respect to a semi-symmetric connec-
tion satisfying C · C = 0, is an η-Einstein manifold.

Proof. We consider an (LCS)2n+1-manifold with respect to a semi-symmetric metric
connection satisfying the condition

(C(X,Y ) · C)(U, V )W = 0.

Then we have
(5.1)
(C(X,Y )C)(U, V )W−C(C(X,Y )U, V )W−C(U,C(X,Y )V )W−C(U, V )C(X,Y )W = 0.

By substituting X = ξ in (5.1), it follows that
(5.2)
(C(ξ, Y )C)(U, V )W−C(C(ξ, Y )U, V )W−C(U,C(ξ, Y )V )W−C(U, V )C(ξ, Y )W = 0;

again, by replacing U = ξ in (5.2), we get
(5.3)
(C(ξ, Y )C)(ξ, V )W −C(C(ξ, Y )ξ, V )W −C(ξ, C(ξ, Y )V )W −C(ξ, V )C(ξ, Y )W = 0.

In view of (4.3), we get
(5.4)

C(ξ, Y )ξ =

[
(2n− 1)(α2 − ρ) + α− 1

2
+ (1− α) +

r

2n(2n+ 1)

]
{−Y − η(Y )ξ} ;
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using (4.3) and (5.4) in (5.3), it follows that

(5.5) S̃(V,W ) =

[
2n(2n+ 1)(α2 − ρ) + r

2n
− r

2n(2n+1) + 2nα− n

]
g(V,W )− [2n(1− α)] η(V )η(W ).

This proves the Theorem 5.1. �

6 Concircular φ-recurrent (LCS)2n+1-manifolds with
respect to semi-symmetric metric connections

Definition 6.1. A (LCS)2n+1-manifold is said to be concircular φ-recurrent [19] if
there exists a non-zero 1-form A such that

φ2 ((∇WC)(X,Y )Z) = A(W )C(X,Y )Z,

where A is defined by A(W ) = g(W,ρ) and ρ is a vector field associated with the 1
-form A.

Theorem 6.1. A concircular φ-recurrent(LCS)2n+1-manifold with respect to semi-
symmetric metric connection is an η-Einstein manifold.

Proof. Let us consider a concircular φ-recurrent (LCS)2n+1-manifold with respect to
the semi-symmetric metric connection defined by

(6.1) φ2 ((∇WC)(X,Y )Z) = A(W )C(X,Y )Z.

In view of (2.1) and (6.1), we get

(6.2) (∇WC)(X,Y )Z + η((∇WC)(X,Y )Z)ξ = A(W )C(X,Y )Z.

From (6.2), it follows that

(6.3) g((∇WC)(X,Y )Z,U) + η((∇WC)(X,Y )Z)g(ξ, U) = A(W )g(C(X,Y )Z,U),

where

(6.4)

(∇WC)(X,Y )Z + ((∇WK)(X,Y )Z) = [(4nα+ 1)ρη(W )− 2nρ] g(X,Z)Y
= g(Y,Z)X − ρ {η(Y )η(Z)η(W )X − η(X)η(Z)η(W )Y }

+α(1− α)

 g(W,Y )η(Z)X − g(W,Z)η(X)Y
−g(W,X)η(Z)Y + g(W,Z)η(Y )X
−2η(Y )η(Z)η(W )X − 2η(X)η(Z)η(W )Y


− ∇W r

2n(2n+1) [g(Y, Z)X − g(X,Z)Y ]

.

Let {ei}, i = 1, 2, ..., 2n + 1 be an orthonormal basis of the tangent space at some
point of the manifold. Then putting X = U = ei in (6.4)and taking summation over
i, 1 ≤ i ≤ 2n+ 1, we have

(6.5)
−(∇WS)(Y, Z) + ∇W r

(2n+1)g(Y, Z) = − ∇W r
2n(2n+1) [g(Y, Z) + η(Y )η(Z)]

+A(W )
[
S(Y.Z)− r

(2n+1)g(Y,Z)
] ;
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by replacing Z = ξin (6.5), we obtain

(6.6) (∇WS)(Y, ξ) =
∇W r

(2n+ 1)
η(Y )−A(W )

[
S(Y.Z)− r

(2n+ 1)
η(Y )

]
;

on the other hand, we have

(∇WS)(Y, ξ) = ∇WS(Y, ξ)− S(∇WY, ξ)− S(Y,∇W ξ);

using (1.3), (1.5), (2.11) and (3.6), the above equation reduces to

(6.7)
(∇WS)(Y, ξ) = [2nα(1− 2n)− nα] {g(Y,W ) + η(Y )η(W )} − αS(Y, φW )

+2nα
[
2n(α2 − ρ) + α− 1

2

]
g(Y, φW ).

In view of (6.6) and (6.7), upon simplification, we get

S̃(Y,W ) =
[
4n2(α2 − ρ) + 2nα− n

]
g(Y,W ) +

[
4n2(α2 − ρ) + 2nα− n

]
η(Y )η(W ).

This proves the Theorem 6.1. �

Theorem 6.2. In a concircular φ-recurrent (LCS)2n+1-manifold admitting a semi-
symmetric metric connection, the characteristic vector field ξ and the vector ρ as-
sociated to the 1− form A have opposite directions, and the 1-form A is given by
(6.12).

Proof. Considering (6.2) as well, one has

(6.8) (∇WC)(X,Y )Z = −η((∇WC)(X,Y )Z)ξ +A(W )C(X,Y ).Z;

now using (3.4), (6.4) and Bianchi’s identity in (6.8), we obtain

(6.9)

A(W )η(K(X,Y )Z) +A(X)η(K(Y,W )Z) +A(W )η(K(W,X)Z =

A(W )
[
2n(α2 − ρ) + α− 1

2

]
{g(X,Z)η(Y )− g(Y, Z)η(X)}

+A(X)
[
2n(α2 − ρ) + α− 1

2

]
{g(Y, Z)η(W )− g(W,Z)η(Y )}

+A(Y )
[
2n(α2 − ρ) + α− 1

2

]
{g(W,Z)η(X)− g(X,Z)η(W )}

+ r
2n(2n+1)

 A(W ) {g(Y, Z)η(X)− g(X,Z)η(Y )}
+A(X) {g(W,Z)η(Y )− g(Y,Z)η(W )}
+A(Y ) {g(X,Z)η(W )− g(W,Z)η(X)}


;

substituting Y = Z = ξ in (6.9) and taking summation over i, 1 ≤ i ≤ 2n+1, we infer
(6.10)

2n
{

2n(α2 − ρ) + α− 1
2

}
A(W )η(X) = 2n

{
2n(α2 − ρ) + α− 1

2

}
A(X)η(W )

+ r
2n(2n+1) {−2nA(X)η(W ) + 2nA(W )η(X)} ;

again, replacing X by ξ in (6.10), we obtain

(6.11)

[
4n2(α2 − ρ) + 2nα− n− r

2n(2n+ 1)

]
{A(W ) +A(ξ)η(W )} = 0.

Therefore, we have

(6.12) A(W ) = −η(W )η(ρ),

for any vector field W. This proves Theorem 6.2. �
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