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Abstract. In this work we are studying some dynamical processes. The
dynamical processes represent the natural generalization of the dynamical
systems. A discrete time dynamical process having the generators (fn)n∈N
is given by the difference equation xn+1 = fn(xn). The discrete dynamical
systems are particular cases of dynamical processes corresponding to a
constant sequence of generators, i.e. f(xn).

The asymptotic behavior, the stability, the sensitivity of some dynamical
processes is analysed in this paper using the pre-equilibrium points and
we will calculate the Lyapunov exponents.
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1 Introduction

Most of the processes actually proceed from the discrete dynamical systems which,
in their turn, proceed from the discretisation of the systems in continuous time. The
approximations made by the computer to every step lead to the idea that, actually,
following the discretisation of a continuous system we get rather a process than a
dynamical system. It is the case of the discretisation made by variable step.

Then, if a discrete dynamical system is generating by a function f : X → X, a
dynamical processes is given by a functions sequence (fn)n∈N , fn : X → X for all
n ∈ N, with the recurrence

xn+1 = fn(xn), for all n ∈ N.

In many case (for example variable step numerical methods, feed-back control schemes)
it is appropriate to use dynamical processes instead dynamical systems. Many notions
and results coming from the classical theory of dynamical systems can be extended
for dynamical processes.

2 Study of some dynamical processes

Consider the dynamical process

(2.1) xn+1 = fn(xn) for all n ∈ N,
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where fn : X → X and (X, d) is a metric space.

Definition 2.1. Let
(
X, (fn)n∈N

)
be a dynamical process. We call orbit of a point

x0 ∈ X the set:

O(x0) = {x0, f0(x0), f1 ◦ f0 (x0) , ..., fn ◦ fn−1 ◦ ...f0 (x0) , ...}.

Definition 2.2. A point p ∈ X is called fixed point for the dynamical process (2.1)
iff fn(p) = p for all n ∈ N.

Definition 2.3. A point p ∈ X is called pre-equilibrium point for the dynamical
process (2.1) iff

p = lim
n→∞

fn ◦ fn−1 ◦ ...f0 (p) .

The attraction basin for a pre-equilibrium point p is the set

B(p) =
{
x ∈ X | lim

n→∞
fn ◦ fn−1 ◦ ...f0 (x) = p

}
.

Definition 2.4. The system (2.1) is said to be sensitive at a point x0 ∈ X if
there exists a constant δ > 0 such that for any neighborhood U ∈ V (x0), there exists
y0 ∈ U and N ∈ N such that d(fN ◦ fN−1 ◦ ...f0 (y0) , fN ◦ fN−1 ◦ ...f0 (x0)) > δ.

Definition 2.5. The system (2.1) is said to be stable at a point x0 ∈ X if for any
ε > 0 there exists a constant δ > 0 such that for any y0 ∈ X with d(y0, x0) < δ and
any n ∈ N we have d(fn ◦ fn−1 ◦ ...f0 (y0) , fn ◦ fn−1 ◦ ...f0 (x0)) < ε.

Definition 2.6. If X is a closed interval and fn are C1 map for any n ∈ N, we define
the Lyapunov exponent of the system (2.1) by:

λ(x0) = lim sup
n→∞

1

n
ln
∣∣(fn ◦ fn−1 ◦ ...f0)

′
(x0)

∣∣ = lim sup
n→∞

1

n

n∑
k=1

ln |f ′k (xk)| ,

where (xk)k=0,∞ is the orbit of system (2.1) becoming from x0.

We will exemplify with some processes provided by the logistic map. First we
consider

(2.2) xn+1 = cnx
2
n (1− xn) , for all n ∈ N

so
fn (x) = cnx

2
n (1− xn) , for all n ∈ N.

The graphics of these functions are represented in the following figure:
Using the Mathcad software we get the following values:
For cn = 4.1 + 1

2n :
If x0 = 0.2, x5 = 0.0001924, x7 = 9.626 · 10−14, x100 = 0.
If x0 = 0.3, x5 = 0.22804912, x10 = 7.787 · 10−5, x12 = 2.535 · 10−15.
If x0 = 0.3333, x5 = 0.4567808, x10 = 0.51744303, x20 = 0.57656781, x100 =

0.57808688.
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If x0 = 0.5780868809, x5 = 0.60937378, x10 = 0.58216971, x20 = 0.5781341,
x100 = 0.57808688.

If x0 = 0.91, x5 = 0.46433097, x10 = 0.52854822, x20 = 0.57708157, x100 =
0.57808688.

If x0 = 0.92, x5 = 0.33117813, x10 = 0.7183195, x14 = 3.973 · 10−10, x20 = 0.
For cn = 5.1 + 1/2n :
If x0 = 0.732210118, x10 = 0.73716048, x100 = 0.73221018
If x0 = 0.33,x10 = 0.72587071, x100 = 0.73221018
All these results can be summarized as follows:

Proposition 2.1. If we analyze the process (2.2) where the sequence (cn)n decrease
to c ∈ (0, 4), then, we have a unique fixed point a0 = 0 and B(a0) = [0, 1].

If (cn)n decrease to c ∈ (4, 92 ), then, we have also a unique fixed point a0 = 0 and

appear a pre-equilibrium point p = 1
2 + 1

2

√
1− 4

c , which is not a fixed point for the

process. In this case the fixed point keep his attractivity and B(a0) =
[
0, p

′

0

]⋃[
q
′

0, 1
]
,

where p
′

0 = 1
2 + 1

2

√
1− 4

c0
and f0

(
q
′

0

)
= p

′

0, p
′

0 < q
′

0.

Proof. A graphical analysis prove that for (cn)n decrease to c ∈ (0, 4), fn(x) ≤ x, for
all x ∈ [0, 1], with equality only for x = 0.

fn+1(x) ≤ fn(x) for all x ∈ [0, 1] and for all n ∈ N.
So, for any x0 ∈ [0, 1], the sequence (xn)n will be decreasing, xn+1 = fn ◦ fn−1 ◦

...f0 (x0).
But xn ∈ [0, 1] for all n ∈ N, so (xn)n will converge to the only fixed point a0 = 0.
Suppose that the sequence (cn)n decreases to c ∈ (4, 92 ). We may assume that cn ∈
(4, 92 ).

The functions fn both admit a maximum 2
3 and three fixed points for all n ∈ N:

a0 = 0, p
′

n = 1
2 −

1
2

√
1− 4

cn
and pn = 1

2 + 1
2

√
1− 4

cn
and:

• If x ∈
[
0, p

′

n

]⋃
[pn, 1] we have fn(x) ≤ x.

• If x ∈ (p
′

n, pn) we have fn(x) > x.
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Consider y0 = p = 1
2 + 1

2

√
1− 4

c , yn+1 = fn◦fn−1◦ ...f0 (y0) and pn = 1
2 + 1

2

√
1− 4

cn
.

Because (cn)n decrease to c, we have for all n ∈ N:

p′n = 1
2 −

1
2

√
1− 4

cn
< y0 = 1

2 + 1
2

√
1− 4

c <
1
2 + 1

2

√
1− 4

cn
< 1

2 + 1
2

√
1− 4

c0

y0 ∈ (p
′

0, p0), so f0 (y0) > y0, that means y0 < y1.
The maximum value for fn is 4cn

27 < 2
3 , so yn <

2
3 , for all n ∈ N.

We can prove that yn > p
′

n for all n ∈ N:
y0 > p

′

n, so f0(y0) > f0(p
′

n) because all functions fn are increasing on the interval
(0, 23 ) and p

′

n < y0 <
2
3 . Because p

′

n ∈ (p
′

0, p0) we have f0(p
′

n) > p
′

n, i.e., y1 > p
′

n.

In a similar way, y2 > p
′

n,. . . yn > p
′

n.

1. yn ∈ (p
′

n, pn) for all n ∈ N , so fn(yn) > yn, which means yn < yn+1 for all
n ∈ N. So, (yn)n is increasing and yn ∈ [0, 1]. It is also bounded, hence it has
a limit y.

Because yn+1 = fn(yn) we obtain y = f(y), where f(x) = cx2(1 − x) (Dini’s
Lemma).

So y ∈
{

0, 1
2 −

1
2

√
1− 4

c ,
1
2 + 1

2

√
1− 4

c

}
and (yn)n is increasing and positive,

i.e.,

lim
n→∞

yn =
1

2
+

1

2

√
1− 4

c
.

Because 1
2 −

1
2

√
1− 4

c <
1
2 + 1

2

√
1− 4

c = y0 < ... < yn < ...

2. There is N natural such that y
N
∈
[
0, p

′

N

]⋃
[p

N
, 1]. But y

N
> p

′

N
so y

N
> p

N
.

f
N

(y
N

) > f
N

(p
N

) = p
N
, so y

N+1 > p
N
> p

N+1.

So yn > pn for all n ∈ N.
We get fn(yn) ≤ yn, so yn+1 ≤ yn.
Therefore (yn)n will be decreasing and it is also bounded, so it admits a limit
y.

Also in this case we obtain lim
n→∞

yn = 1
2 + 1

2

√
1− 4

c , because yn > pn > 1
2 +

1
2

√
1− 4

c for all n ∈ N.

To prove the last part, we consider y0 ∈ [q′0, 1]. But f0 is decreasing on this
interval, so

f0(y0) ≤ f0(q′0) = p′0 < p′1

Hence y1 ≤ p′1, that means fn(y1) ≤ y1, y2 ≤ y1.

Similarly, yn+1 ≤ yn ≤ p′0, so (yn)n is decreasing and bounded, so has it admits
a limit y ∈ [0, p′0]. So, y = 0.

�

For this process we can find the bf Lyapunov exponent:
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λ(x0) = lim sup
n→∞

1
n ln

∣∣(fn ◦ fn−1 ◦ ...f0)
′
(x0)

∣∣ = lim sup
n→∞

1
n

n∑
k=1

ln |f ′k (xk)| ,

where (xk)∞k=0 is the orbit of system (2.2) starting with x0.

Let y0 = p = 1
2 + 1

2

√
1− 4

c be the pre-equilibrium point.

λ(y0) = lim sup
n→∞

1
n ln

∣∣(fn ◦ fn−1 ◦ ...f0)
′
(y0)

∣∣ = lim sup
n→∞

1
n

n∑
k=1

ln |f ′k (yk)| ,

where (yk)∞k=0 is the orbit of system (2.2) starting with y0.

We already proved that (yk)∞k=0 converges to p = 1
2 + 1

2

√
1− 4

c , so

lim sup
n→∞

1
n ln

∣∣(fn ◦ fn−1 ◦ ...f0)
′
(y0)

∣∣ = lim sup
n→∞

1
n

n∑
k=1

ln |f ′k (yk)| =

ln(p · c · (2p− 3p2)) = ln 3.

Using Theorem 3.1 from [2], since λ(y0) = ln3 > 0, the process will be sensitive at y0.

Remark 2.7. 1. We can also prove that for c ∈ ( 9
2 , 6) the point p = 1

2 + 1
2

√
1− 4

c

is still a pre-equilibrium point.

2. All of the above prove that 4 is a bifurcation point because when c become
grater than 4, appear a pre-equilibrium point.
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