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Abstract. In this paper, we have shown how a gauge transformation
takes a Lorentz space to a space which is Finslerian. Note that the inverse
transformation takes a metric from a Finsler metric back to the Lorentz
metric. This demonstrates a generalized equivalence whereby a transfor-
mation exists which produces a local inertial frame along the world line of
a particle. This means that the motion of a particle along a curved path
might not only be due to a gravitational field derived from a metric, but
might also be due to other metric produced fields.
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1 Introduction

The main benefit is a physical understanding of how a Finsler space might describe a
space which contains a non-gravitational field. That is, it has been shown how a gauge
transformation takes a Lorentz space to a space which is Finslerian. Note that the
inverse transformation takes a metric from a Finsler metric back to the Lorentz metric.
This demonstrates a generalized equivalence whereby a transformation exists which
produces a local inertial frame along the world line of a particle. This means that
the motion of a particle along a curved path might not only be due to a gravitational
field derived from a metric, but might also be due to other metric produced fields. It
will be shown shortly exactly how this occurs. First, though, some standard Finsler
results are presented. A significant point is that these results are developed in terms
of a coordinate transformation of the base space M. This contrasts with the gauge
transformation just depicted which is a vertical diffeomorphism, a transformation
in the fiber space. The gauge transformation is used to get to the Finsler space.
The connections given so far describe the transition to that space. The coordinate
transformation deals with the properties of the resulting Finsler space. It describes
the translation (sometimes called the transplantation) as one moves from one point
to another in the space.
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2 Finsler Gauge Transformations

If a particle in a space-time moves along a curved, non-geodesic path, then it is said
that the particle is under the influence of some external force. In such a case, an
external force term is added to the equation of motions to explain the path of motion.
Alternative point of view is that motion can be explained by a new metric, which
would result from a gauge transformation. In this way, physical force fields can be
geometrized, and general relativistic idea of spacetime curvature determining the path
of the particle will also include fields other than gravitation. For this purpose a class
of gauge transformations which act on tangent space is considered [2].

Under these kind of transformations, the tangent vector yµ transforms as

(2.1) ȳi = Ỹ i
j y

j

where i, j, ... = 0, 1, 2, 3 are indices corresponding the space components, and

Ỹ i
j =

∂ȳi

∂yj
,(2.2)

Ỹ i
kY

k
j = δij(2.3)

where,Y k
j = ∂yk

∂ȳj is the inverse transformation, and these transformations (Y k
j ) are

called Y transformations.
Even though the transformation does not act on the base space coordinates, it will

seen to produce changes in the base space. Thus, these transformations also depend
on the base coordinates, such as

(2.4) Ỹ i
j = Ỹ i

j (x, y)

The Y transformation of the metric tensor is given as

(2.5) ḡij(x, y) = Y α
i (x, y)Y β

j (x, y)gαβ(x, y)

Under this transformation, Finsler metric function is invariant, such as

F̄ 2(x, ȳ) = ḡij ȳ
iȳj

= gαβ(x, y)Y
α
i Y β

j Ỹ i
k Ỹ

j
l y

kyl

= F 2(x, y).(2.6)

Here yj is the contravariant vector and the covariant vector associated with it is yi.
where yi = gijy

j . Covariant vector yi transforms as

(2.7) ȳi = Y α
i yi.

Since

∂ȳi
∂ȳj

= ḡij

= Y α
i Y β

j gαβ + Y β
j

∂Y α
i

∂yβ
yα(2.8)
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The Y transformation of the Finslerian metric tensor does not yield a tensor unless

∂Y α
i

∂yβ
yα = 0(2.9)

The condition (2.9) is called as the metric condition [8].

It is of interest to ask how many of the known Finsler metrics can be obtained by
this sort of gauge transformation. At this point one can only list those for which a
specific Y matrix is known: Randers, Kropina, Beil, Weyl, and metrics where Y gives a
conformal transformation. Obviously, nonlinear metrics are not included. What does
this gauge transformation mean physically? It can be interpreted as what happens
when a nongravitational field is turned on in a region of space. For example, the
field could be electromagnetic. A metric has also been given for the electroweak field
SU(2)× U(1)[7]. The gauge transformation could also be interpreted as a distortion
or deformation of the original Lorentz space. In other words, the gauge field twists or
distorts the space. The relative effect is, by the way, a torsion rather than a curvature.
Although, remarkably, the final outcome is a curved space. The torsion interpretation
has been advocated by Holland[9], who relates the transformation to nonholonomic
frames. The nonholonomic frame viewpoint is explained in a very useful new paper
by Bucataru[8].

It is obvious that Y transformations, when Y i
j is a function of x only, that is

(2.10) Y i
j = Y i

j (x).

satisfy the metric condition. These type of transformations are called K-group or
linear transformations [8].

Y transformations can be interpreted as the transformations from an original space
where there exists no external field, to a space that also contains external fields which
are turned on by some physical potentials contained in Y i

j [6].

It is now time to get to some specific physics using the above developments. There
are several gauge transformations which might give useful results. R.G.Beil[4] had
studied Y transformations for general Finsler (α, β)-metrics.

(2.11) Y i
j =

√
aδij −

1

B2
(
√
a−

√
a+ bB2)BiBj .

where Bj is a vector which can be associated to a physical potential, and B2 =
gijB

iBj . Here b is a constant depending on the physical space that will be ge-
ometrized. The inverse transformation is given by the inverse of the matrix (2.11),
such as

(2.12) Ỹ j
i =

1√
a
δji −

1

B2
(
1√
a
− 1√

a+ bB2
)BjBi.

Remark: If we take a(x, y) = 1 and b(x, y) = k, the nonholonomic Finsler frame
(2.11) is the frame used by R.G.Beil in [4], formula (5.1).
We further use to give some specific examples.

Example:1 The Y transformations for Finsler space with Matsumoto metric, are
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given by

Y i
j =

√
α2(α− 2β)

(α− β)3
δij −

α2

B2α2 − β2

.

{√
α2(α− 2β)

(α− β)3
±

√
−α2(−αβ2 + 2αβ2 + 2β3 +B2α3 − 4B2α2β)

(α− β)4β

}
(
Bi − βyi

α2

)(
Bj −

βyj
α2

)
.(2.13)

Ỹ j
i = δji −

1

C2

(
1±

√
β(α− β)3C2

α4

)
BjBi;(2.14)

where

C2 =
α2(α− 2β)B2

(α− β)3
− (α− 4β)(B2α2 − β2)2

β(α− β)4
.

Example:2 The Y transformations for Finsler space with Infinite series of (α, β)
metric, are given by

Y i
j =

√
2(c1β2 + α2)

β2
δij

− 1

16




β6

(√
2(c1β2+α2)

β2 +
√

2(β4c1−α2β2+2α4B2)
β4

)
α2(α2B2 − β2)

(2.15)

(
4yi

β2
− 4α2Bi

β3

)(
4yj
β3

− 4α2Bj

β3

)]
Ỹ j
i = δji −

1

C2

(
1±

√
1− C2β4

α4 − c21β
4

)
BiBj(2.16)

where

C2 =
2(c1β

2 + α2)

β2
+

4(α2B2 − β2)2

β4
.

3 Charged Classical Particle in Finsler Space-time

In this section, an original metric tensor is used to produce the Finsler metric function
by a specific Y transformation. The original metric is assumed to be Minkowskian for
simplicity. In this case gravitational field effects are neglected, but even in the presence
of electromagnetic fields alone, the physical space-time can be described as curved
Finsler space-time. The results calculated are same as usual classical electrodynamics
which is based on the flat Minkowski space-time, with an additional electromagnetic
field [4, 2].
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3.1 Geodesic Equation

The original metric is chosen as ordinary Minkowskian metric ηij in the form

(3.1) ηij =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


After applying Y transformation (2.11) to this metric, the resulting metric will be

(3.2) ḡij = ηij + kBiBj .

In this case, vector Bi is related to electromagnetic vector potential Ai. The con-
travariant form of the metric tensor (3.1) can be written as

(3.3) ḡij = ηij − k(1 + kB2)BiBj ,

where B2 = ηijB
iBj , so that

(3.4) ḡikḡkj = δij .

If we calculate the geodesic equation resulting from the new metric (3.1), we get

(3.5)
dyi

dτ
+ kBmym(

∂Bi

∂xα
− ∂Bα

∂xi
)yα = 0,

where yα = dxα

dτ , and τ is the proper time.
Since we deal with the geometrization of electrodynamics, with conditions

(3.6) Biy
i =

e

mck

and

(3.7) Bi = Ai,

where e is the charge of the electron, m is the mass of the electron and c is the velocity
of light and k is a constant and will be determined by the field equations.
The geodesic equation (3.4) will take the form

(3.8)
dyi

dτ
+

e

mc
Fijy

j = 0,

where

(3.9) Fij = (
∂Ai

∂xj
− ∂Aj

∂xi
)

is the electromagnetic field tensor.
The geodesic equation (3.7) is identical with the Lorentz equation in Minkowskian

space-time, with corresponding velocity yi.
An important point is that the laws of physics must be invariant under arbitrary

gauge transformations. If we consider an electromagnetic gauge transformation

(3.10) Āi = Ai +
∂Λ(x)

∂xi

where Λ(x) is any arbitrary function, the metric tensor (3.1) is invariant and the
geodesic equation (3.4) remains unchanged.
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3.2 Field Equations

By introducing the condition (3.5), the velocity dependent metric (3.1) reduces to
a Riemannian metric. So field equations are calculated by Riemann geometry. The
Ricci tensor for the metric (3.1) is calculated as

Rmn = − 1

4
k2ḡαnḡliFplFαiBmBn − 1

2
kḡilFnlFmi

− 1

2
k2(1 + kB2)−1ηilFαiB

α(BmBl,n +BnBl,m)

− 1

2
k2(1 + kB2)−1ḡilBi,lB

α(BmFnα +BnFmα)

+
1

2
kḡil(Fml,iBn + Fnl,iBm)

− 1

2
k(1 + kB2)−1ηilBn,lBm,i

− k[
1

2
(1 + kB2)−1ηil − k(1 + kB2)−2BiBl]Bl,nBi,m

+
1

2
(1 + kB2)−1ḡilBi,l(Bl,m +Bm,l)

+
1

2
k(1 + kB2)−1Bα(Fαn,m + Fαm,n),(3.11)

where ,i denotes
∂

∂xi .
The curvature scalar, R = ḡmnRmn is found to be

R = − 1

4
k2B2(1 + kB2)−1ḡαlḡpiFplFαi

− 1

2
kḡmnḡilFnlFmi

+ 2k(1 + kB2)−1ḡilBmFml,i

− k(1 + kB2)−1ḡilḡmn(Bn,lBm,i −Bi,lBm,n)

− 1

2
k2(1 + kB2)−2ηilBmBnFmiFnl.(3.12)
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If the two highest order terms of these equations are considered, then Einstein tensor
can be written as

Gmn = Rmn − 1

2
ḡmnR

=
1

8
kḡmnḡpiFαiFlp

− 1

2
k2ḡαlḡpiFplFαiBmBn

− 1

2
kḡilFnlFmi

− 1

8
kB−2ḡαlḡpiFαiFlpBmBn

− 1

2
kB−2ηilFαiB

α(BmBl,n +BnBl,m)

+
1

2
kḡil(Fml,iBn + Fnl,iBm)

− kB−2ḡilBαFαn,iBmBn

+ kB−2ḡilḡαp(Bα,lBp,i −Bi,lBp,α)BmBn

+
1

4
kB−4ηilBαBpFαiFplBmBn(3.13)

Again by taking the highest order terms and by same simplifications, equation (3.12)
reduces to

Gmn =
1

2
k2ḡκlḡrsFrlFsκBiBj

+
1

2
k(gκlFiκFlj +

1

4
gijg

κlgrsFrlFsκ)(3.14)

It is accepted that the field equations of a particle under the influence of an electro-
magnetic field will be

Gmn = 8πκc−4(ρ0vmvn + Tmn),(3.15)

where κ is the gravitational constant, ρ0 is the proper matter density and Tmn is the
electromagnetic energy tensor. From classical Riemannian geometry, the electromag-
netic energy tensor is

T̄mn =
1

4π
(gαlFmlFnα − 1

4
ḡmnḡ

iαḡjβFijFαβ).(3.16)

If we compare the electromagnetic energy tensor (3.15) with Einstein tensor (3.12)
calculated from metric (3.1), a value for the constant k can be determined as

k =
4κ

c−4
.(3.17)

By this relation, electromagnetic energy tensor, has appeared as part of Einstein
tensor. And also the matter density has appeared as part of curvature. Since every-
thing is expressed in terms of curvature tensor, electromagnetic field is completely
geometrized. An important consequence of comparison of equations (3.12) and (3.15)
is that the particle mass can be derived from electromagnetic field [3,11].
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