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Abstract. The aim of the paper is to construct Noether invariants for
lagrangian non-holonomic dynamics with affine or nonlinear constraints,
considered to be adapted to a foliation on the base space. A set of illustra-
tive examples are given, including linear and nonlinear Appell mechanical
systems.
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A geometric setting to study nonlinear constraints for nonholonomic spaces is that
of a foliation; it is motivated by [3], and used in [14], a form followed effectively in
this paper.

We give a way to construct Noether invariants of nonholonomic spaces in the gen-
eral cases of affine and of nonlinear constraints, using infinitesimal symmetries. The
case of non-conservative Lagrangian systems of type (2.1) is given by Theorems 2.2
and 2.5, it covers the case of nonholonomic spaces with affine constraints. The general
case of a dynamics given by a generalized nonconservative Lagrangian system of type
(3.1) is given by Theorems 3.2 and 3.3, it covers the general case of nonholonomic
spaces with nonlinear constraints. In both cases there are given some illustrative
examples of infinitesimal symmetries and Noether invariants: linear and nonlinear
Appell constraints, as well as the Appell-Hammel dynamic system in an elevator.

1 Symmetries of Lagrangians in a foliate setting

If F is a foliation on the manifold M , then we can consider a foliation FR on R ×
M , where the real parameter is added to the transverse part. Specifically, using
coordinates on M , (xu, xū), coordinates (xu) are tangent coordinates (on the leaves
of the foliation), while the coordinates (xū) are transverse coordinates. If the foliation
F is simple, i.e. its leaves are the fibers of a submersion f : M −→ M̄ , then (xū) are
coordinated on M̄ and (xu) are coordinates on the leaf f−1(xū), giving together the
coordinates (xu, xū) on M . Thus the parameter t ∈ R in coordinates (t, xu, xū) on
R×M is transverse, as (xū).

We follow some ideas used in [15], or, more generally, but giving the same in-
finitesimal result, as in [6], adapted here in the case of a regular Lagrangians and a
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nonconservative system (see also [10, Sect. 7.1]). We give here a global form for the
invariant objects, using foliations.

Let L : NFR → R be a Lagrangian, where a real parameter can be (non-
necessarily) involved. This Lagrangian can be obtained as L = L′ ◦ C, using a
Lagrangian L′ : R× TM −→ R and a nonlinear constraint C : R×NF → R× TM .

One say that the Lagrangian action of L is invariant under a set of an ε–parameter
local group of foliate transformations

(1.1)

 t̄(t) = t+ ετ(t, xu(t), xū(t), yū(t)) + o(ε2),
x̄u(t) = xu(t) + εξu(t, xu(t), xū(t), yū(t)) + o(ε2),
x̄ū(t) = xū(t) + εξū(t, xu(t), xv̄(t), yv̄(t)) + o(ε2),

if there is an other Lagrangian Λ : NFR → R such that

L

(
t̄, x̄u(t̄), x̄ū(t̄),

dx̄ū

dt̄
(t̄)

)
dt̄

dt
(1.2)

= L

(
t, xu(t), xū(t),

dxū

dt
(t)

)
+ ε

d

dt
Λ

(
t, xu(t), xū(t),

dxū

dt
(t)

)
+ o(ε2).

We say that the local group is infinitesimally exact if the vector field
(1.3)

X0 = τ(t, xu, xū, yū)
∂

∂t
+ ξu(t, xu, xū, yū)

∂

∂xu
+ ξū(t, xu, xū, yū)

∂

∂xū
= τ

∂

∂t
+X

(t)
0 ,

called an infinitesimal action, is a global foliated vector field on π∗
NFRT (M × R).

The energy of L is the Lagrangian E(L) = Dv(L) − L, where Dv is the vertical

derivation Dv (L) = yv̄
∂L

∂yv̄
. Let us consider the differential form δ(L) ∈ X ∗(NF)),

given by δL = dL+E(L)dτ , called the Cartan form of L. Using local coordinates, we
have

E(L) =
∂L

∂yv̄
(t, xu, xū, yū)yv̄ − L(t, xu, xū, yū),

δL =
∂L

∂t
dt+

∂L

∂xu
dxu +

∂L

∂xū
dxū +

∂L

∂yū
dyū +

(
yv̄

∂L

∂yv̄
− L

)
dt.,

An almost transverse semi-spray S is a vector field on R × NF that projects on
the C–Liouville-type section. Using local coordinates, S has the form

(1.4) S =
∂

∂t
+ Cu

(
xu, xū, yū

) ∂

∂xu
+ yū

∂

∂xū
+ Sū(t, xu, xū, yū)

∂

∂yū
.

The integral integral curves of the vector field S are solutions of the system of differ-
ential equations

dxu

dt
= Cu

(
xu, xū, yū

)
,

dxū

dt
= yū,

dxu

dt
= Sū(t, xu, xū, yū).
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We denote below by d
dt the action of S on real functions on T (NFR).

We say that the Lagrangian L is invariant up to a gauge term, if for every almost
transverse semi-spray S, corresponding to some non-linear constraints, there is an S–
related vector field X ∈ X (NFR), called an infinitesimal symmetry, and a Lagrangian
Λ : NFR, called the gauge term, such that

(1.5) δL(X) = S(Λ).

Proposition 1.1. If the Lagrangian action of a regular Lagrangian on NFR is in-
variant under (1.1) and the local group is infinitesimally exact, then L is invariant
up to a gauge term Λ, having as a infinitesimal symmetry given by an infinitesimal
action.

We have

τ
∂L

∂t
+ ξu

∂L

∂xu
+ ξū

∂L

∂xū
+

dξū

dt

∂L

∂yū
+

dτ

dt

(
L− dxū

dt

∂L

∂yū

)
(1.6)

=
d

dt
Λ

(
t, xu(t), xū(t),

dxū

dt
(t)

)
.

Notice that the action of the operator d
dt ∈ X (R×NF) has the form

d

dt
=

∂

∂t
+ Cu(xu, xū,

dxu

dt
)

∂

∂xu
+

dxū

dt

∂

∂xū
+

d2xū

dt2
∂

∂yū
(1.7)

=
∂

∂t
+ Cu ∂

∂xu
+ yū

∂

∂xū
+

dyū

dt

∂

∂yū
.

The regularity conditions on Lagrangians and Lagrangian actions we consider in
that follows is to verify the hypothesis of Proposition 1.1 above. Thus an allowed
Lagrangian action corresponds to a regular Lagrangian on NFR, the Lagrangian
action is invariant under (1.1) and the local group is infinitesimally exact.

The existence of Λ in formula (1.5) rise the problem if it depends or not on S. If
Λ comes from a local group action, as in hypothesis of Proposition 1.1, then Λ does
not depend on S. In this case, taking into account the formula (1.4), the equality
(1.6) implies

τ
∂L

∂t
+ ξu

∂L

∂xu
+ ξū

∂L

∂xū
+

(
∂ξū

∂t
+ Cu ∂ξ

ū

∂xu
+ yv̄

∂ξū

∂xv̄

)
∂L

∂yū
+(

∂τ

∂t
+ Cu ∂τ

∂xu
+ yv̄

∂τ

∂xv̄

)(
L− dxū

dt

∂L

∂yū

)
(1.8)

=
∂Λ

∂t
+ Cu ∂Λ

∂xu
+ yv̄

∂Λ

∂xv̄
.

and

(1.9)
∂ξv̄

∂yū
∂L

∂yv̄
+

∂τ

∂yū

(
L− dxū

dt

∂L

∂yū

)
=

∂Λ

∂yū
.

The two relations (1.8) and (1.9) are called Killing equations in the classical case [15],
or [11] in the nonholonomic case.
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2 The case of nonconservative Lagrangian systems

A nonconservative Lagrangian system has the form

d

dt

∂L

∂yū
=

∂L

∂xū
+Qū(t, T, x

u, xū, yū),

dxu

dt
= Cu(t, T, xu, xū, yū),(2.1)

dT

dt
= τ.

This is the case of nonholonomic spaces with affine constraints, as studied for
example in [2, 14].

But we can extend the definition above to the case when

Qū = Qū(t, T, x
u, xū, yū, Y ū =

dyū

dt
).

The dependence can be considered by higher order derivatives, but we need here only
a particular case in the next section.

Two global forms associated with a Lagrangian L are dvL ∈ Γ(π∗
NFR(N

∗F)) (the
vertical differential) andHvL ∈ Γ(π∗

NFR(N
∗F⊗N∗F)) (the vertical Hessian), given by

dvL(Z) = Z(L) and HvL(Z1, Z2), for vertical lifts Z, Z1 and Z2. In local coordinates,

dvL =
∂L

∂yū
dxū,HvL =

∂2L

∂yū∂yv̄
dxū ⊗ dxv̄.

If the vertical Hessian of L is non-degenerated, then L is regular and the nonconser-
vative system (2.1) is said to be also regular.

Proposition 2.1. If the Lagrangian L is regular, then curves on M that are solutions
of a nonconservative Lagrangian system (2.1) are exactly the integral curves of an
almost transverse semi-spray L (called the canonical semispray of the nonconservative
Lagrangian system).

In the autonomous case (i.e. ∂L
∂̇t

= 0), the term
∂

∂t
does not appear in the formula

(1.4) of an almost transverse semi-spray.
If S is an almost transverse semi-spray, one say that an h ∈ F(NFR)) is S–

invariant if S(h) = 0.

Theorem 2.2. Consider an allowed Lagrangian action that corresponds to a regular
Lagrangian L on NFR, let S be the canonical semi-spray of a nonconservative La-
grangian system (2.1) and, supplementary, let us suppose that there is an f ∈ F(NFR)
such that

(2.2)
df

dt
= Qū

(
ξū − τyū

)
− (ξu − τCu)

∂L

∂xu
,

where Γ is the Liouville vector field. Then the function h = τE(L)− dvL(ξ) + Λ + f
is an S–invariant.

In the case Q = 0, one recover the case of a Lagrangian system.
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Corollary 2.3. Consider an allowed Lagrangian action that corresponds to a regular
Lagrangian on NFR, let S be the canonical semi-spray of the Lagrangian system and
let us suppose that there is an f ∈ F(NFR) such that

(2.3)
df

dt
= (τCu − ξu)

∂L

∂xu
.

Then the function h = τE(L)− dvL(ξ) + Λ + f is an S–invariant.

Corollary 2.4. Consider an allowed Lagrangian action that corresponds to a regular
Lagrangian on NFR, let S be the canonical semi-spray of the Lagrangian system, let
us suppose that the infinitesimal symmetry is compatible with constraints and also
τ = 1. Then the function h = E(L)− dvL(ξ) + Λ is an S–invariant.

The case when L : NF → R, or L : ÑF → R, is the case when the Lagrangian
function does not depend on the parameter t. We look now to some special situations
below.

But the existence of a function f is not always possible, even locally (see below,
in an example at the very end of this section). Thus we state the following variant of
Theorem 2.2, that is true in this case.

Theorem 2.5. Consider an allowed Lagrangian action that corresponds to a regu-
lar Lagrangian L on NFR, let S be the canonical semi-spray of a nonconservative
Lagrangian system (2.1). Then

(2.4)
d

dt
(τE(L)− dvL(ξ) + Λ) +Qū

(
ξū − τyū

)
− (ξu − τCu)

∂L

∂xu
= 0.

Corollary 2.3 have the following general form:

Corollary 2.6. Consider an allowed Lagrangian action that corresponds to a regular
Lagrangian L on NFR, let S be the canonical semi-spray of the Lagrangian system
given by L. Then

(2.5)
d

dt
(τE(L)− dvL(ξ) + Λ) + (τCu − ξu)

∂L

∂xu
= 0.

As an example, we consider the linear Appell constraints as in [14, Example 5.1]
(see also, for example, [13]). The manifold is M = R3 × T 2 and the foliation is
the simple foliation defined by the fibers of the canonical projection R3 × T 2 → T 2.
Consider the coordinates (x1, x2, x3) on R3 and (x1̄, x2̄) on T 2. The linear Appell
constraints are given by the formulas

(2.6) C1 = Ry1̄ cosx2̄, C2 = Ry1̄ sinx2̄, C3 = ry1̄.

The Lagrangian is

L =
1

2
α
((

y1
)2

+
(
y2
)2)

+
1

2
β
(
y3
)2

+
1

2
I1

(
y1̄
)2

+
1

2
I2

(
y2̄
)2

+ γx3.

and the constraints are given by (2.6). The induced Lagrangian has the form

Lc(x
1, x2, x3, x1̄, x2̄, y1̄, y2̄) =

1

2

(
I1 + αR2 + βr2

) (
y1̄
)2

+
1

2
I2

(
y2̄
)2

+ γx3

=
1

2
α′′
(
y1̄
)2

+
1

2
I2

(
y2̄
)2

+ γx3,
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An infinitesimal symmetry is given by ξū = yū, ξ3 = 0, τ = τ0 = const. and

Λ =
1

2
α′′
(
y1̄
)2

+
1

2
I2

(
y2̄
)2

, since it verifies Killing relations (1.8) and (1.9), thus

also (1.6). We have Qū = γrδū1̄, thus the equation (2.2) has the form

df

dt
= γrδū1̄y

ū(1− τ) + γrτy1̄ = rγy1̄.

But y1̄ =
dx1̄

dt
, thus one can take f = rγx1̄+c and we can use Theorem 2.2. It follows

that h = −(1+ τ0)Λ+ τ0x
3 + rγx1̄ + c is an invariant along the integral curves of the

linear Appell constraints system, where c is a real constant.

Another infinitesimal symmetry is given by ξū =
1

2
xū, ξ3 = −x3, τ = t and Λ = 0,

since relation (1.6) holds; relations (1.8) and (1.9) also hold, thus this infinitesimal
symmetry is a Killing one.

The equation (2.2) has the form

df

dt
=

rγ

2
x1̄ + γx3.

Since x1̄ and x3 can not be in the form
dg

dt
, in this case we can not find a global

function f to satisfy the above relation, as in the case of the previous symmetry. In
this case, we can not use Theorem 2.2, but Theorem 2.5. Since τE(L)−dvL(ξ)+∆ =

(t− 1)∆− tγx3,where ∆ =
1

2
α′′
(
y1̄
)2

+
1

2
I2

(
y2̄
)2

, it follows that along the integral

curves of the linear Appell constraints system, we have

d

dt

(
(t− 1)Λ− tγx3

)
+

rγ

2
x1̄ + γx3 = 0.

3 The case of generalized nonconservative Lagrangian
systems

A generalized nonconservative Lagrangian system is a dynamic system of the form

d

dt

∂L

∂yū
=

∂L

∂xū
+ būv̄(t, T, x

u, xū, yū)
dyv̄

dt
+Qū(t, T, x

u, xū, yū),

dxu

dt
= Cu(t, T, xu, xū, yū),(3.1)

dT

dt
= τ.

We say that the Lagrangian L is quasi-regular if the matrix

(
∂2L

∂yū∂yv̄
− būv̄

)
has

an inverse in every point.
Notice that the definition of a generalized nonconservative Lagrangian system can

be extended by replacing, in the first relation (3.1),

būv̄(t, T, x
u, xū, yū)

dyv̄

dt
+Qū(t, T, x

u, xū, yū) by Qū(t, T, x
u, xū, yū, dyū

dt ) and then, the
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non-singularity of the matrix

(
∂2L

∂yū∂yv̄
− būv̄

)
be replaced by the non-singularity of

the matrix

(
∂2L

∂yū∂yv̄
− ∂Qū

∂yv̄

)
. But we do not need this general case in this paper,

since the case of nonlinear constraints for nonholonomic fit in the case we study here.
An analogous of Proposition 3.1 is the following result.

Proposition 3.1. If the Lagrangian L is quasi-regular, then the curves on M that
are solutions of a generalized nonconservative Lagrangian system (3.1) are exactly the
integral curves of an almost transverse semispray /y L (called the canonical semispray
of the generalized nonconservative Lagrangian system).

Theorem 2.2 extends in the following way, having a similar conclusion.

Theorem 3.2. Consider an allowed Lagrangian action that corresponds to a regular
Lagrangian L on NFR, let S be the canonical semi-spray of a generalized nonconser-
vative Lagrangian system (3.1) and, supplementary, let us suppose that there is an
f ∈ F(NFR) such that

(3.2)
df

dt
=
(
Qū + būv̄S

v̄
) (

ξū − τyū
)
− ∂L

∂xu
(ξu − τCu) .

Then the function h = τE(L)− dvL(ξ) + Λ + f is an S–invariant.

Similarly, Theorem 2.5 extends in the same way, as follows.

Theorem 3.3. Consider an allowed Lagrangian action that corresponds to a regular
Lagrangian L on NFR, let S be the canonical semi-spray of a generalized nonconser-
vative Lagrangian system (3.1). Then along its integral curves, we have:

(3.3)
d

dt
(τE(L)− dvL(ξ) + Λ) +

(
Qū + būv̄S

v̄
) (

ξū − τyū
)
− ∂L

∂xu
(ξu − τCu) = 0.

As an example, we consider the nonlinear Appell constraints as in [14, Example 5.2]
(see also, for example, [13]). The manifold is M = R3 and the foliation is the simple
foliation defined by the fibers of the canonical projection on the first two coordinates,
R3 → R2,

(
x1̄, x2̄, x1

)
→
(
x1̄, x2̄

)
. The nonlinear Appell constraint is given by the

formula

(3.4) C1 = α

√(
y1̄
)2

+
(
y2̄
)2
.

The Lagrangian is

(3.5) L =
β

2

((
y1̄
)2

+
(
y2̄
)2)

+
γ

2

(
y1
)2

+ δx1

and the induced Lagrangian has the form

Lc(x
1, x2, x3, x1̄, x2̄, y1̄, y2̄) =

α′

2

((
y1̄
)2

+
(
y2̄
)2)

+ δx1,

where α′ =
β + α2γ

2
.
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An infinitesimal symmetry is given by ξū = yū, ξ1 = 0, τ = τ0(= const.) and

Λ =
α′

2

((
y1̄
)2

+
(
y2̄
)2)

. We have Qū = ∂C1

∂yū
∂L
∂x1 = δαyū

√
∆

.

The equation (3.2) has the form

df

dt
= δC1,

thus we can take f = δx1 + c, where c is a real constant, since dx1

dt = C1. Thus
h = τ0(Λ− δx1)− 2Λ + Λ + δx1 + c = (1− τ0)(δx

1 − Λ) + c, or

(3.6) h = (1− τ0)(δx
1 − Λ) + c.

We obtain a non-trivial invariant for τ0 ̸= 1.
A classical example of time dependent nonlinear constraint is the Appell-Hammel

dynamic system in an elevator considered in [9], having the time dependent constraints

(3.7) α2

((
y1̄
)2

+
(
y2̄
)2)

−
(
y1 − v0(t)

)2
= 0.

It is easy to see that the above Appell example corresponds to the particular case
when v0(t) = 0.

We take C1
(
t, y1̄, y2̄

)
= v0(t) + α

√(
y1̄
)2

+
(
y2̄
)2

and the Lagrangian (3.5), as
in the case of a nonlinear Appell system, a particular case of this example, when
v0(t) = 0. The induced Lagrangian in this case is

Lc

(
x1, x1̄, x2̄, y1̄, y2̄

)
=

β + α2γ

2

((
y1̄
)2

+
(
y2̄
)2)

+ γv0
√(

y1̄
)2

+
(
y2̄
)2

+ δx1 +
1

2

(
v0
)2

,

and the pseudo-curvature is RV =
∂L

∂yu

[
CV ,

[
CV ,

∂

∂yū

]]u
= 0.

Let us denote ∆ =
(
y1̄
)2

+
(
y2̄
)2

and α′′ = β +α2γ, thus the induced Lagrangian
has the form

Lc =
α′′

2
∆ + γv0

√
∆+ δx1 +

1

2

(
v0
)2

.

An infinitesimal symmetry is given by ξū = τ0y
ū, ξ1 =

(
u− τ0

δ

)
v0v̇0, τ = τ0 =

const., u = const. and Λ = τ0

(
α′′∆

2
+ γv0

√
∆

)
+ u

(h0)
2

2 .

We have Qū =
∂C1

∂yū
∂Lc

∂x1
+

∂2Cu

∂t∂yū
∂L

∂yu
=

αδyū√
∆

, Sū =

(
aδ + γv̇0

)
yū

√
∆

,būv̄ =

∂L

∂y1
∂2C1

∂yū∂yv̄
, būv̄S

ū = 0, and the equation (3.2) has the form

df

dt
= −δ

((
u− τ0

δ

)
v0v̇0 − τ0C

1
)
+
(
τ20 − τ0

) (
γv̇0

√
∆+ v0v̇0

)
= v0v̇0

(
τ20 − δu

)
+ τ0δC

1
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=
d

dt

((
v0
)2

2

(
τ20 − δu

)
+ τ0δx

1

)
, thus we can take

f =

(
v0
)2

2

(
τ20 − δu

)
+ τ0δx

1 + c,

where c is a real constant. We have E (L) = yū
∂L

∂yū
− L = yū

(
α′′yū + γv0

yū√
∆

)
−

α′′∆

2
− γv0

√
∆− δx1 −

(
v0
)2

2
=

α′′∆

2
− δx1 −

(
v0
)2

2

Thus h =
α′′∆

2
−δx1−

(
v0
)2

2
−yū

(
α′′yū + γv0

yū√
∆

)
+
α′′∆

2
+γv0

√
∆+

(
v0
)2

2

(
τ20 − δu

)
+

τ0δx
1 + c =

(v0)
2

2

(
τ20 − 1− δu

)
+ (τ0 − 1) δx1 + c.

We consider now the case when v0 (t) = v00t+c0, where v
0
0 and c0 are real constants.

An infinitesimal symmetry is given by ξū = yū, ξ1 = γ
δ v

0
0

√
∆, τ = 0 and Λ =

α′′∆

2
+ γv0

√
∆, where ∆ =

(
y1̄
)2

+
(
y2̄
)2
. We have Qū =

αδyū√
∆

and the equation

(3.2) has the form

df

dt
= Qūξ

ū − ξu
∂Lc

∂xu
=

αδyū√
∆

yū − δ
γ

δ
v00
√
∆ =

(
αδ − γv00

)√
∆

=
αδ − γv00

α

(
v0 + α

√
∆
)
− (αδ − γ)

α

(
v00t+ c0

)
=

d

dt

(
αδ − γv00

α

(
x1 − v00

t2

2
− c0t

)
+ c

)
thus we can take f = δ′

(
x1 − v00

t2

2 − c0t
)
+ c1, where c is a real constant and δ′ =

δα− γv00
α

. Thus

h = −α′′
√
∆− γv0

√
∆+

α′′∆

2
+ γv0

√
∆+ δ′

(
x1 − v00

t2

2
− c0t

)
+ c1 = −α′′∆

2
+

δ′x1 − δ′
(
v00

t2

2
+ c0t

)
+ c1.

For v00 = c0 = 0, we obtain a non-trivial invariant, similar to the invariant (3.6) of
a nonlinear Appell system, obtained previously.
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