On the Riemann curvature on the product of two spheres

A. Sadighi, R.C. Khatamy, M. Toomanian

Abstract

Let S^{2} be a unit sphere in R^{3} and $S^{2} \times S^{2}$ be a product Manifold. We study the Riemann structure on the product manifold $S^{2} \times$ S^{2}, and give some result, on the sectional curvature on $S^{2} \times S^{2}$ and we are going to prove a famous problem in Riemannian manifold to prove the existence of Riemannian metric on $S^{2} \times S^{2}$ with positive sectional curvature.

M.S.C. 2010: 58B20, 53C60.

Key words: Riemannian manifold; Sectional curvature; Product Manifold $S^{2} \times S^{2}$.

1 Introduction

We recall some definitions and fundamental results in Riemannian manifolds.
Definition 1.1. A Riemannian metric on a smooth manifold M is a 2-tensor field $g \in \tau^{2}(M)$ that is symmetric (i.e., $g(X, Y)=g(Y, X)$) and positive definite (i.e. $g(X, X) 0$ if $X \neq 0)$. A Riemannian metric thus determines an inner product on each tangent space $T_{p} M$, which is typically written $<X, Y>:=g(X, Y)$ for all $X, Y \in T_{p} M$. A manifold together with a given Riemannian metric is called a Riemannian manifold. We often use the word metric to refer to a Riemannian metric when there is no chance of confusion. We denote a Riemannian manifold by (M, g).

Proposition 1.1. (An atlas for a product manifold). If $\left\{\left(U_{\alpha}, x_{\alpha}\right)\right\}$ and $\left\{\left(V_{\beta}, y_{\beta}\right)\right\}$ are C^{∞} atlases for the manifolds M and N of dimensions m and n, respectively, then the collection $\left\{\left(U_{\alpha} \times V_{\beta}, x_{\alpha} \times y_{\beta}\right)\right\}$ of charts is a C^{∞} atlas on $M \times N$. Therefore, $M \times N$ is a C^{∞} manifold of dimension mn.[13]

Definition 1.2. If $\left(M_{1}, g_{1}\right)$ and $\left(M_{2}, g_{2}\right)$ be arbitrary Riemannian manifolds, then we can define a natural Riemannian metric $g=g_{1} \oplus g_{2}$ called the product metric, defined by $g\left(X_{1}+X_{2}, Y_{1}+Y_{2}\right)=g_{1}\left(X_{1}, Y_{1}\right)+g_{2}\left(X_{2}, Y_{2}\right)$, where $X_{i}, Y_{i} \in T_{p_{i}} M_{i}$ under the natural identification $T_{\left(p_{1}, p_{2}\right)} M_{1} \times M_{2}=T_{p_{1}} M_{1} \oplus T_{p_{2}} M_{2}$. Local coordinates $\left(x^{1}, \ldots, x^{n}\right)$ for M_{1} and $\left(x^{n+1}, \ldots, x^{n+m}\right)$ for M_{2} gives the coordinates $\left(x^{1}, \ldots, x^{n+m}\right)$ for $M_{1} \times M_{2}$. In terms of these coordinates, the product metric has the local expression,

[^0]$g=\sum_{i, j=1}^{n+m} g_{i j} d x^{i} d x^{j}$, where $\left(g_{i j}\right)$ is the block diagonal matrix
\[

\left(g_{i j}\right)=\left($$
\begin{array}{cc}
\left(g_{1}\right)_{i j} & 0 \\
0 & \left(g_{2}\right)_{i j}
\end{array}
$$\right) .
\]

It is important in Riemannian manifold to study the relationship between curvature and metric structures. In this section we give a Riemannian metric on S^{2} and consider the curvature tensor on S^{2}; in particular we compute sectional curvature on S^{2}. So we review and discuss some important preliminaries.Let $M=S^{2}$, (unit sphere) we define a local coordinate (differentiable structure) with spherical coordinate on $M=S^{2}$.

Let $X_{i}: U_{i} \subseteq R^{2} \rightarrow S^{2}(i=1,2,3)$ be defined as follows:

$$
\begin{gathered}
X_{1}(\theta, \varphi)=(\sin (\theta) \cos (\varphi), \sin (\theta) \sin (\varphi), \cos (\theta)) \\
U_{1}=\left\{(\theta, \varphi) \in R^{2} \mid 0<\theta<\pi, 0<\varphi<2 \pi\right\} \\
X_{2}(\theta, \varphi)=(\sin (\theta) \cos (\varphi), \sin (\theta) \sin (\varphi), \cos (\theta)) \\
U_{2}=\left\{(\theta, \varphi) \in R^{2} \mid 0<\theta<\pi,-\pi<\varphi<\pi\right\} \\
X_{3}(\theta, \varphi)=(\cos (\theta), \sin (\theta) \cos (\varphi), \sin (\theta) \sin (\varphi)) \\
U_{3}=\left\{(\theta, \varphi) \in R^{2} \mid 0<\theta<\pi, \quad 0<\varphi<2 \pi\right\}
\end{gathered}
$$

Hence we have a differentiable structure on S^{2}. The relevant Riemannian metrics is $d s^{2}=d \theta^{2}+\sin ^{2}(\theta) d \varphi^{2}$.
Theorem 1.2. With the C^{∞} structure $\left\{\left(X_{i}, U_{i}\right)\right\}_{i=1}^{3}$ and Riemannian metric $d s^{2}=d \theta^{2}+\sin ^{2}(\theta) d \varphi^{2}$, on S^{2}, the sectional curvature of S^{2} is positive constant, $k(\sigma)=1$.
Proof. Let $\left\{X_{\theta}=\frac{\partial X}{\partial \theta}, X_{\varphi}=\frac{\partial X}{\partial \varphi}\right\}$ be a base of $T_{p} S^{2}$, the tangent space of S^{2} at $p \in S^{2}$. We have $g_{11}=g_{\theta \theta}=1, g_{12}=g_{\theta \varphi}=g_{\varphi \theta}=g_{21}=0$ and $g_{22}=g_{\varphi \varphi}=\sin ^{2}(\theta)$. We compute Christoffel symbols, Riemannian curvature and sectional curvature of S^{2}. We have:

$$
\left(g_{i j}\right)=\left(\begin{array}{cc}
1 & 0 \\
0 & \sin ^{2}(\theta)
\end{array}\right) \quad \text { and } \quad\left(g^{i j}\right)=\left(\begin{array}{cc}
1 & 0 \\
0 & \frac{1}{\sin ^{2}(\theta)}
\end{array}\right)
$$

Now from

$$
\gamma_{j k}^{i}:=\frac{1}{2} g^{i s}\left(\frac{\partial g_{k s}}{\partial x^{j}}-\frac{\partial g_{j k}}{\partial x^{s}}+\frac{\partial g_{s j}}{\partial x^{k}}\right)
$$

, we obtain the component of $\gamma_{j k}^{i}$ as follows: $\gamma_{22}^{1}=-\frac{1}{2} \sin (2 \theta), \gamma_{12}^{2}=\gamma_{21}^{2}=\cot (\theta)$ and other terms vanishes. By computing the component terms of the curvature R in (X, U) from the formula [14]:

$$
R_{i j k}^{s}=\frac{\partial \gamma_{i k}^{s}}{\partial x^{j}}-\frac{\partial \gamma_{i j}^{s}}{\partial x^{k}}+\sum_{l} \gamma_{i k}^{l} \gamma_{l j}^{s}-\sum_{l} \gamma_{i j}^{l} \gamma_{l k}^{s} \quad ; \quad 1 \leq i, j, k, s \leq 2
$$

we get $R_{221}^{1}=-\sin ^{2}(\theta), R_{212}^{1}=\sin ^{2}(\theta), R_{121}^{2}=1, R_{112}^{2}=-1$ and other terms, vanishes. Then we have [7],

$$
R_{i j k l}=\sum_{l} R_{i k s}^{l} g_{j l},
$$

where,

$$
R_{1212}=-\sin ^{2}(\theta), R_{1221}=\sin ^{2}(\theta), R_{2121}=-\sin ^{2}(\theta), R_{2112}=\sin ^{2}(\theta)
$$

and other terms vanishes. Now, we compute the sectional curvature $k(\sigma)$ of S^{2}. Let $\langle X, Y\rangle$ be the 2-dimensional subspace of $T_{p} S^{2}$ then

$$
k(\sigma)=\frac{g(R(X, Y) Y, X)}{g(X, X) g(Y, Y)-[g(X, Y)]^{2}}
$$

Suppose that $\chi=u^{i} \frac{\partial}{\partial X_{i}}, Y=v^{j} \frac{\partial}{\partial X_{j}}, g_{i j}=g\left(\frac{\partial}{\partial X_{i}}, \frac{\partial}{\partial X_{j}}\right)$ then we get

$$
\begin{gathered}
k(\sigma)=\frac{R_{i j k s} u^{i} u^{s} v^{j} v^{k}}{\left[u^{i} u^{j} g_{i j}\right]\left[v^{i} v^{j} g_{i j}\right]-\left[g_{i j} u^{i} v^{j}\right]^{2}} \\
=\frac{\left[u^{1} v^{2}-u^{2} v^{1}\right]^{2} \sin ^{2}(\theta)}{\left[\left(u^{1}\right)^{2}+\left(u^{2} \sin (\theta)\right)^{2}\right]\left[\left(v^{1}\right)^{2}+\left(v^{2} \sin (\theta)\right)^{2}\right]-\left[u^{1} v^{1}+u^{2} v^{2} \sin ^{2}(\theta)\right]^{2}} .
\end{gathered}
$$

Now we simplify the denominator as follows:

$$
\begin{gathered}
{\left[\left(u^{1}\right)^{2}+\left(u^{2} \sin (\theta)\right)^{2}\right]\left[\left(v^{1}\right)^{2}+\left(v^{2} \sin (\theta)\right)^{2}\right]-\left[u^{1} v^{1}+u^{2} v^{2} \sin ^{2}(\theta)\right]^{2}} \\
\qquad=\left(u^{1} v^{1}\right)^{2}+\left(u^{1} v^{2} \sin (\theta)\right)^{2}+\left(u^{2} v^{1} \sin (\theta)\right)^{2}+\left(u^{2} v^{2} \sin ^{2}(\theta)\right)^{2} \\
-\left[\left(u^{1} v^{1}\right)^{2}+2 u^{1} v^{1} u^{2} v^{2} \sin ^{2}(\theta)+\left(u^{2} v^{2} \sin ^{2}(\theta)\right)^{2}\right] \\
=\left(u^{1} v^{2}-u^{2} v^{1}\right)^{2} \sin ^{2}(\theta)
\end{gathered}
$$

Hence, $k(\sigma)=1$.

2 The sectional curvature on $S^{2} \times S^{2}$

Since $\left\{\left(X_{i}, U_{i}\right)\right\}_{i=1}^{3}$ is a differential structure on $S^{2},\left\{\left(X_{i} \times X_{j}, U_{i} \times U_{j}\right)\right\}_{i, j=1}^{3}$ is a differential structure on $S^{2} \times S^{2}$ [13].

Definition 2.1. Let $\left(M_{1}, g_{1}\right),\left(M_{2}, g_{2}\right)$ be arbitrary Riemannian manifolds and $M=$ $M_{1} \times M_{2}$. We define a natural Riemannian metric as a product metrics by direct sum of two metrics $g=g_{1} \oplus g_{2}$ as follows:
$g_{\left(p_{1}, p_{2}\right)}\left(X_{1}+X_{2}, Y_{1}+Y_{2}\right)=\left(g_{1}\right)_{p_{1}}\left(X_{1}, Y_{1}\right)+\left(g_{2}\right)_{p_{2}}\left(X_{2}, Y_{2}\right) \quad \forall X_{i}, Y_{i} \in T_{p_{i}} M_{i} ; i=1,2$. also we get the tangent space on $M=M_{1} \times M_{2}$ as a direct sum of $T_{p_{1}} M_{1}$, and $T_{p_{2}} M_{2}$. Let $T_{\left(p_{1}, p_{2}\right)} M=T_{p_{1}} M_{1} \oplus T_{p_{2}} M_{2}$. If $\left(x^{1}, \ldots, x^{n}\right),\left(x^{n+1}, \ldots, x^{n+m}\right)$ is the local coordinate on M_{1}, M_{2}, respectively. Then the standard local coordinate on
product manifold $M=M_{1} \times M_{2}$ can be show by $\left(x^{1}, \ldots, x^{n+m}\right)$. In this system of local coordinates, the product metric is defined by:

$$
g=\sum_{i, j=1}^{n+m} g_{i j} d x_{i} \otimes d x_{j}
$$

The matrix of components of the above product metric is given by:

$$
\left(g_{i j}\right)=\left(\begin{array}{cc}
\left(g_{1}\right)_{i j} & 0 \\
0 & \left(g_{1}\right)_{i j}
\end{array}\right) .
$$

Corollary 2.1. If $M_{1}=M_{2}=S^{2}$ and $g_{1}=g_{2}=d s^{2}=d \theta^{2}+\sin ^{2}(\theta) d \varphi^{2}$ then the product manifold $S^{2} \times S^{2}$ with the product metric $g=g_{1} \oplus g_{2}=d s^{2} \oplus d s^{2}$ is a Riemannian manifold [9].
Theorem 2.2. Product Riemannian manifold $\left(S^{2} \times S^{2}, g\right) ; g=g_{1} \oplus g_{2}=d s^{2} \oplus d s^{2}=$ $d \theta_{1}^{2}+\sin ^{2}\left(\theta_{1}\right) d \varphi_{1}^{2}+d \theta_{2}^{2}+\sin ^{2}\left(\theta_{2}\right) d \varphi_{2}^{2}$ has positive sectional curvature.

Proof. It is easy to show that the matrix of the product metric

$$
g=\sum_{i, j=1}^{n+m} g_{i j} d x^{i} \otimes d x^{j}
$$

is:

$$
\left(g_{i j}\right)=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & \sin ^{2}\left(\theta_{1}\right) & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & \sin ^{2}\left(\theta_{2}\right)
\end{array}\right]
$$

Obviously, $\operatorname{det}\left(g_{i j}\right)=\sin ^{2}\left(\theta_{1}\right) \sin ^{2}\left(\theta_{2}\right)$. Of course for any charts $\left\{\left(X_{i} \times X_{j}, U_{i} \times\right.\right.$ $\left.\left.U_{j}\right)\right\}_{i, j=1}^{3}$ on $S^{2} \times S^{2}$, we have: $\forall \theta ; \sin (\theta) \neq 0$, therefordet $\left(g_{i j}\right)>0$. It follows that $g_{i j}$ is inverseable. Hence $\left(g^{i j}\right)$ is equal to

$$
\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & \frac{1}{\sin ^{2}\left(\theta_{1}\right)} & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & \frac{1}{\sin ^{2}\left(\theta_{2}\right)}
\end{array}\right]
$$

we take $x^{1}=\theta_{1}, x^{2}=\varphi_{1}, x^{3}=\theta_{2}, x^{4}=\varphi_{2}$, we get the sectional curvature on $S^{2} \times S^{2}$ in 4 -steps.In the first step compute the Christoffel symbols $\gamma_{j k}^{i}$.

$$
\begin{gathered}
\gamma_{j k}^{i}=\frac{1}{2} g^{i s}\left(\frac{\partial g_{s j}}{\partial x^{k}}-\frac{\partial g_{j k}}{\partial x^{s}}+\frac{\partial g_{k s}}{\partial x^{j}}\right) \\
\gamma_{22}^{1}=-\frac{\sin \left(2 \theta_{1}\right)}{2} \\
\gamma_{12}^{2}=\gamma_{21}^{2}=\cot \left(\theta_{1}\right) \\
\gamma_{44}^{3}=-\frac{\sin \left(2 \theta_{2}\right)}{2} \\
\gamma_{34}^{4}=\gamma_{43}^{4}=\cot \left(\theta_{2}\right)
\end{gathered}
$$

and the other terms vanishes.
Second step : computing the components of the curvature R

$$
\begin{gathered}
R_{i j k}^{s}=\frac{\partial \gamma_{i k}^{s}}{\partial x^{j}}-\frac{\partial \gamma_{j k}^{s}}{\partial x^{i}}+\sum_{l} \gamma_{i k}^{l} \gamma_{l j}^{s}-\sum_{l} \gamma_{j k}^{l} \gamma_{i k}^{s} ; \quad 1 \leq i, j, k, s \leq 4 \\
R_{122}^{1}=-\sin ^{2}\left(\theta_{1}\right) \quad, \quad, \quad R_{212}^{1}=\sin ^{2}\left(\theta_{1}\right) \\
R_{121}^{2}=1 \\
R_{344}^{3}=-\sin ^{2}\left(\theta_{2}\right) \quad, \quad, \quad R_{211}^{2}=-1 \\
R_{343}^{4}=1 \quad, \quad R_{434}^{3}=\sin ^{2}\left(\theta_{2}\right) \\
\hline
\end{gathered}
$$

and the other terms vanishes.
Third step: computing

$$
R_{i j k l}=\sum_{s} R_{i j k}^{s} g_{l s}
$$

$$
\begin{array}{lll}
R_{1221}=-\sin ^{2}\left(\theta_{1}\right) \\
R_{1212}=\sin ^{2}\left(\theta_{1}\right) \\
R_{3443}=-\sin ^{2}\left(\theta_{2}\right) & , & R_{2121}=\sin ^{2}\left(\theta_{1}\right) \\
R_{3434}=\sin ^{2}\left(\theta_{2}\right) & , & R_{2112}=-\sin ^{2}\left(\theta_{1}\right) \\
R_{4343}=\sin ^{2}\left(\theta_{2}\right) \\
R_{4334}=-\sin ^{2}\left(\theta_{2}\right)
\end{array}
$$

and other terms vanishes.
Fourth step:Let
$u=u^{1} \oplus u^{2} \in T_{\left(p_{1}, p_{2}\right)\left(S^{2} \times S^{2}\right)=T_{\left(\left(\theta_{1}, \varphi_{1}\right),\left(\theta_{2}, \varphi_{2}\right)\right)}\left(S^{2} \times S^{2}\right), ~}$
$v=v^{1} \oplus v^{2} \in T_{\left(p_{1}, p_{2}\right)\left(S^{2} \times S^{2}\right)=T_{\left(\left(\theta_{1}, \varphi_{1}\right),\left(\theta_{2}, \varphi_{2}\right)\right)}\left(S^{2} \times S^{2}\right) .}$
Where $u^{1}=\left(u_{1}^{1}, u_{2}^{1}\right), u^{2}=\left(u_{1}^{2}, u_{2}^{2}\right), v^{1}=\left(v_{1}^{1}, v_{2}^{1}\right), v^{2}=\left(v_{1}^{2}, v_{2}^{2}\right)$ and $\sigma=<u, v>$ be the 2- dimensional subspace of $\left.T_{(} p_{1}, p_{2}\right)\left(S^{2} \times S^{2}\right)$ is generated by u, v. Then

$$
k(\sigma)=\frac{g(R(u, v) v, u)}{g(u, u) g(v, v)-[g(u, v)]^{2}}=\frac{v_{j}\left(u_{i} R_{i j k l} u_{l}\right) v_{k}}{g(u, u) g(v, v)-[g(u, v)]^{2}}
$$

where $u_{1}=u_{1}^{1}, u_{2}=u_{2}^{1}, u_{3}=u_{1}^{2}, u_{4}=u_{2}^{2}$ and $v_{1}=v_{1}^{1}, v_{2}=v_{2}^{1}, v_{3}=v_{1}^{2}, v_{4}=v_{2}^{2}$.
Let $u=u_{1}^{1} \frac{\partial}{\partial \theta_{1}}+u_{2}^{1} \frac{\partial}{\partial \varphi_{1}}+u_{1}^{2} \frac{\partial}{\partial \theta_{2}}+u_{2}^{2} \frac{\partial}{\partial \varphi_{2}}$ and $v=v_{1}^{1} \frac{\partial}{\partial \theta_{1}}+v_{2}^{1} \frac{\partial}{\partial \varphi_{1}}+v_{1}^{2} \frac{\partial}{\partial \theta_{2}}+v_{2}^{2} \frac{\partial}{\partial \varphi_{2}}$. then we have,

$$
\begin{gathered}
g(u, u)=g_{1}\left(u^{1}, u^{1}\right)+g_{2}\left(u^{2}, u^{2}\right)=\left[\left(u_{1}\right)^{2}+\left(u_{2} \sin \left(\theta_{1}\right)\right)^{2}\right]+\left[\left(u_{3}\right)^{2}+\left(u_{4} \sin \left(\theta_{2}\right)\right)^{2}\right] \\
g(v, v)=g_{1}\left(v^{1}, v^{1}\right)+g_{2}\left(v^{2}, v^{2}\right)=\left[\left(v_{1}\right)^{2}+\left(v_{2} \sin \left(\theta_{1}\right)\right)^{2}\right]+\left[\left(v_{3}\right)^{2}+\left(v_{4} \sin \left(\theta_{2}\right)\right)^{2}\right] \\
g(u, v)=g_{1}\left(u^{1}, v^{1}\right)+g_{2}\left(u^{2}, v^{2}\right)=\left[\left(u_{1} v_{1}\right)+u_{2} v_{2} \sin ^{2}\left(\theta_{1}\right)\right]+\left[\left(u_{3} v_{3}\right)+u_{4} v_{4} \sin ^{2}\left(\theta_{2}\right)\right]
\end{gathered}
$$

Then the denominator

$$
\begin{aligned}
B & =g(u, u) g(v, v)-[g(u, v)]^{2} \\
& =\left[\left(u_{1}^{2}+\left(u_{2} \sin \left(\theta_{1}\right)\right)^{2}\right)+\left(u_{3}^{2}+\left(u_{4} \sin \left(\theta_{2}\right)\right)^{2}\right)\right] \\
& \times\left[\left(v_{1}^{2}+\left(v_{2} \sin \left(\theta_{1}\right)\right)^{2}\right)+\left(v_{3}^{2}+\left(v_{4} \sin \left(\theta_{2}\right)\right)^{2}\right)\right] \\
& -\left[\left(u_{1} v_{1}+u_{2} v_{2} \sin ^{2}\left(\theta_{1}\right)\right)+\left(u_{3} v_{3}+u_{4} v_{4} \sin ^{2}\left(\theta_{2}\right)\right)\right]^{2} \\
& =\left(u_{1} v_{3}-u_{3} v_{1}\right)^{2}+\left(u_{1} v_{2}-u_{2} v_{1}\right)^{2} \sin ^{2}\left(\theta_{1}\right)+\left(u_{1} v_{4}-u_{4} v_{1}\right)^{2} \sin ^{2} \theta_{2} \\
& +\left(u_{2} v_{3}-u_{3} v_{2}\right)^{2} \sin ^{2}\left(\theta_{1}\right)+\left(u_{3} v_{4}-u_{4} v_{3}\right)^{2} \sin ^{2}\left(\theta_{2}\right) \\
& +\left(u_{2} v_{4}-u_{4} v_{2}\right)^{2} \sin ^{2}\left(\theta_{1}\right) \sin ^{2}\left(\theta_{2}\right)
\end{aligned}
$$

Obviously B is always positive. The numerator of the fraction is

$$
\begin{aligned}
A & =v_{j}\left(u_{i} R_{i j k l} u_{l}\right) v_{k} \\
& =R_{1221} u_{1} u_{1} v_{2} v_{2}+R_{2121} u_{2} u_{1} v_{1} v_{2}+R_{1212} u_{1} u_{2} v_{2} v_{1}+R_{2112} u_{2} u_{2} v_{1} v_{1} \\
& +R_{3443} u_{3} u_{3} v_{4} v_{4}+R_{4343} u_{4} u_{3} v_{3} v_{4}+R_{3434} u_{3} u_{4} v_{4} v_{3}+R_{4334} u_{4} u_{4} v_{3} v_{3} \\
& =\left[u_{1} u_{2} v_{2} v_{1}-u_{1} u_{1} v_{2} v_{2}-u_{2} u_{2} v_{1} v_{1}+u_{2} u_{1} v_{1} v_{2}\right] \sin ^{2}\left(\theta_{1}\right) \\
& +\left[u_{3} u_{4} v_{4} v_{3}-u_{3} u_{3} v_{4} v_{4}-u_{4} u_{4} v_{3} v_{3}+u_{4} u_{3} v_{3} v_{4}\right] \sin ^{2}\left(\theta_{2}\right) \\
& =\left[u_{1} v_{2}-u_{2} v_{1}\right]^{2} \sin ^{2}\left(\theta_{1}\right)+\left[u_{3} v_{4}-u_{4} v_{3}\right]^{2} \sin ^{2}\left(\theta_{2}\right) .
\end{aligned}
$$

Then $k(\sigma)=\frac{A}{B}>0$ and this complete the prof.

References

[1] A. Razavi, P. Habibi, On generalized symmetric Finsler spaces, Springer Geometry Dedicate, 149 (2010), 121-127.
[2] R. Chavosh Khatamy, D. Latifi, On symmetry preseving diffeomorphisms of generalized symmetric Finsler spaces, STM Journals 2015.
[3] R. Chavosh Khatamy, R. Esmaili, On the globally symmetric Finsler spaces, Mathematical Sciences, Springer-Verlag, 5, 3 (2011), 299-305.
[4] D. Bao, S. S. Chern. Z. Shen, An Introduction to Riemann-Finsler Geometry, Springer-Verlag, New York, 2000.
[5] Z. Shen and S. S. Chern, Riemann-Finsler Geometry, Singapore: Word Science, 2005.
[6] D. Bao, S. S. Chern, On a notable connection in Finsler Geometry, Houston Journal of Mathematics 19 (1993), 135-180.
[7] H. Zixin, S. Deng, On symmetric Finsler spaces, Israel Jurnal of Math. 162 (2007, 197-219.
[8] C. Robles, Z. Shen, D. Bao, Zermelo navigation on Riemannian manifolds, J. Diff. Geom. 66 (2004), 377-435.
[9] J.M. Lee. Riemannian geometry: an introduction to curvature", Springer-Verlag, New York 1997.
[10] R. Bryant, S.S. Chern, Z. Shen, D. Bao, A sampler of Riemann-Finsler Geometry, Mathematical Science Research Institue, 2004.
[11] M. Toomanian, R. Chavosh Khatamy, Existence of homogeneous vector on the space of the tangent bundle", Acta. Math Hungar. 116 (4) (2007) 285-294.
[12] D. Bao, C. Robles, Ricci and flag curvatures in Finsler Geometry", MSRI pulications 2004.
[13] W.T. Loring, An Introduction to Manifolds, Springer-Verlag, New York 2011.
[14] M. Do Carmo, Riemannian Geometry, Birkhauser, Boston, 1997.
Authors' addresses:
Akbar Sadighi
Department of Mathematics, Karaj Branch, Islamic Azad University, Karaj, Iran.
E-mail: a.sadighi@kiau.ac.ir
Reza Chavosh Khatamy
Department of Mathematics, Tabriz Branch, Islamic Azad University, Tabriz, Iran.
E-mail: r_chavosh@iaut.ac.ir

Megerdich Toomanian
Department of Mathematics, Karaj Branch, Islamic Azad University, Karaj, Iran.
E-mail: megerdich.toomanian@kiau.ac.ir

[^0]: $\overline{D_{\text {ifferential Geometry - Dynamical }} \text { Systems, Vol.21, 2019, pp. 160-166. }}$
 (c) Balkan Society of Geometers, Geometry Balkan Press 2019.

