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Abstract. Siklos spacetime represents exact gravitational waves propa-
gating on the anti-de-Sitter universe with negative cosmological constant
and it is conformally related to pp-wave spacetime. The object of this
paper is to investigate the curvature restricted geometric structures ad-
mitting by the Siklos spacetime and it is shown that such spacetime is
Ein(2), quasi-Einstein and its conformal 2-forms are recurrent. It is also
shown that this spacetime satisfies various pseudosymmetric type curva-
ture conditions such as pseudosymmetry, semisymmetry due to conformal
curvature tensor and Ricci generalized conformally pseudosymmetry. The
curvature properties of Siklos spacetime in vacuum has also been inves-
tigated. As special case, we have evaluated the curvature properties of
Kaigorodov spacetime and Defrise’s spacetime. Finally, we make compar-
ison between the curvature properties of Siklos spacetime and pp-wave
spacetime.
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1 Introduction

In 1985, Siklos [61] obtained a class of gravitational waves with a non-zero cosmo-
logical constant during the study of exact solutions of Einstein field equations and
named these waves as ‘Lobatchevski Plane Waves’. Physically these spacetimes repre-
sent exact gravitational waves propagating in the anti-de-Sitter universe with negative
cosmological constant [38] and are conformally related to pp-waves ([24], [63]). The
Weyl tensor of Siklos spacetime has Petrov type N and in vacuum the solutions belong
to a special class of non-twisting, non-expanding and shere free solutions of Kundt
type [24]. Moreover, it admits a non-covariantly constant null Killing vector field.

The Siklos metric and its properties have been studied by many authors to describe
its physical properties. Podolský [38] studied the geodesics for physical interpretation
and came out with an interesting result that the direction of propagation of wave sur-

faces rotates with an angular velocity ω =
√

−Λ
3 , where Λ is a negative cosmological
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constant. Blagojecvić and Cvetković [5] considered the extension of vacuum Siklos
waves in Poincaré guage theory. Baleanu [3] examined the existence of dual metrics
and non-generic supercharges admitted by Siklos metric. The Siklos metric in higher
dimension could be found in [61].

There are various forms of Siklos spacetime metric in different coordinate systems.
The Siklos metric with respect to Poincaré coordinates xµ = (u, v, x, y) is given by

ds2 =
l2

x2
(H(x, y, u)du2 + 2dudv + dx2 + dy2),(1.1)

where l =
√
−3/Λ and H = H(x, y, u) is any nowhere vanishing smooth function.

From (1.1) it is obvious that the Siklos metric is conformally related to pp-wave
metric with scaling factor l2/x2. The metric (1.1) reduces to anti-de-Sitter spacetime
for H = 0. It is easy to check that (1.1) satisfies vacuum Einstein field equations if
H obeys the equation

Hxx − 2

x
Hx + Hyy = 0.(1.2)

We call the metric (1.1) with the condition (1.2) as a vacuum Siklos metric. We see
that H = x3 is a simplest solution of the equation (1.2) and thus we have a vacuum
Siklos type metric as

ds2 =
l2

x2
(x3du2 + 2dudv + dx2 + dy2)(1.3)

which was first independently discovered by Kaigorodov [28] in 1963 in the form

ds2 = (dx4)2 + e2x
4/l[2dx1dx3 + (dx2)2] ± e−x4/l(dx3)2.(1.4)

The transformation between the Kaigorodov and the Siklos coordinates is given by

x1 = lv, x2 = ly, x3 = lu, x4 = −l ln |x| .(1.5)

It is noteworthy to mention that, in general, the Siklos spacetime is inhomogeneous
whereas the Kaigorodov spacetime is actually homogeneous. The metric (1.1) also
includes the Defrise’s spacetime [11] as its special case for H = x−2. It may be noted
that Defrise’s spacetime is non-vacuum solution.

In the literature of differential geometry there are various geometric structures
arose due to the generalization of locally symmetric manifolds ([6], [7]). Some of
the important geometric structures are semisymmetric manifolds by Szabó ([65], [66],
[67]), pseudosymmetric manifolds by Adamó and Deszcz [1], weakly symmetric mani-
folds by Tamássy and Binh [69], recurrent manifolds by Ruse ([40], [41], [42] and also
[71]), quasi generalized recurrent manifolds by Shaikh and Roy [57], weakly general-
ized recurrent manifolds by Shaikh and Roy ([43], [58]), hyper generalized recurrent
manifolds by Shaikh and Patra ([56], [60]), super generalized recurrent manifolds by
Shaikh et. al. [59] etc. We mention that by geometric structures we mean the cur-
vature restricted geometric structures obtained by imposing covariant derivatives of
first order or higher orders on several curvature tensors. It is noteworthy to mention
that among the above geometric structures the notion of pseudosymmetry is more
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significant due to its application in relativity and cosmology ([10], [21], [23] and also
references therein). Several spacetimes realize various pseudosymmetric type struc-
tures (see, [2], [21], [29], [44], [48], [54], [55]). Our objective in this paper is to
investigate such kind of geometric structures admitting by Siklos metric (1.1). It is
shown that this spacetime is pseudosymmetric and also satisfies the pseudosymmetric
type condition R.C = 1

3Q(S,C). Moreover it is quasi-Einstein and semisymmetric
due to conformal curvature tensor.

The paper is planned as follows. Section 2 deals with the preliminaries of various
curvature restricted geometric structures. Section 3 is concerned with the calculation
of components of different curvature tensors and investigation of curvature restricted
geometric structures admitting by Siklos spacetime. Finally, in Section 4 we make
the comparison between the curvature properties of Siklos spacetime and pp-wave
spacetime.

2 Preliminaries

In this section we will describe some useful notations and definitions of various cur-
vature restricted geometric structures which are essential tools to investigate the
geometric structures of the Siklos spacetime. For this we consider M as an n-
dimensional (n ≥ 3) connected semi-Riemannian smooth manifold equipped with
a semi-Riemannian metric g. Let ∇, R, S and κ be respectively the Levi-Civita
connection, the Reimann-Christoffel curvature tensor, the Ricci tensor and the scalar
curvature of M . Also let C∞(M), χ(M) and χ∗(M) be respectively the algebra of
all smooth functions, the Lie algebra of all smooth vector fields and the Lie algebra
of all smooth 1-forms on M . Now we define the endomorphisms X ∧A Y , R(X,Y ),
C(X,Y ), P(X,Y ), W(X,Y ) and K(X,Y ) over χ(M) on M as follows:

(X ∧A Y )Z = A(Y,Z)X −A(X,Z)Y,

R(X,Y )Z = ∇X∇Y Z −∇Y ∇XZ −∇[X,Y ]Z,

C(X,Y )Z = R(X,Y )Z − 1

(n− 2)
(X ∧g LY + LX ∧g Y − κ

n− 1
X ∧g Y )Z,

P(X,Y )Z = R(X,Y )Z − 1

(n− 1)
(X ∧S Y )Z,

W(X,Y )Z = R(X,Y )Z − κ

n(n− 1)
(X ∧g Y )Z,

K(X,Y )Z = R(X,Y )Z − 1

(n− 2)
(X ∧g LY + LX ∧g Y )Z

where A is a symmetric (0, 2)-tensor, L is the Ricci operator defined by g(X,LY ) =
S(X,Y ) and X, Y , Z ∈ χ(M). From the above endomorphisms we have the following
(0, 4)- curvature tensors namely Gaussian curvature tensor G, the Riemann-Christoffel
curvature tensor R, the Weyl conformal curvature tensor C, the projective curvature
tensor P , the concircular curvature tensor W and the conharmonic curvature tensor
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K as follows:

G(X1, X2, X3, X4) = g((X1 ∧g X2)X3, X4),

R(X1, X2, X3, X4) = g(R(X1, X2)X3, X4),

C(X1, X2, X3, X4) = g(C(X1, X2)X3, X4),

P (X1, X2, X3, X4) = g(P(X1, X2)X3, X4),

W (X1, X2, X3, X4) = g(W(X1, X2)X3, X4),

K(X1, X2, X3, X4) = g(K(X1, X2)X3, X4)

where X1, X2, X3, X4 ∈ χ(M). Again the Ricci tensor of level k is defined by
Sk(X,Y ) = S(X,Lk−1Y ).
We can easily operate the endomorphism B(X,Y ) on a (0, k)-tensor H, k ≥ 1, and
obtain the tensor B ·H given by

(B ·H)(X1, X2, · · · , Xk;X,Y ) = (B(X,Y ) ·H)(X1, X2, · · · , Xk)

= −H(B(X,Y )X1, X2, · · · , Xk) − · · · −H(X1, X2, · · · ,B(X,Y )Xk),

where B is the associated (0, 4)-tensor corresponding to the endomorphism B(X,Y ).
Again if A is a symmetric (0, 2) tensor then for B(X,Y ) = X ∧A Y we define a
(0, k + 2)-tensor Q(A,H), called Tachibana tensor [68], by

Q(A,H)(X1, X2, · · · , Xk;X,Y ) = ((X ∧A Y ).H)(X1, X2, · · · , Xk)

= −H((X ∧A Y )X1, X2, · · · , Xk) − · · · −H(X1, X2, · · · , (X ∧A Y )Xk)

= A(X,X1)H(Y,X2, · · · , Xk) + · · · + A(X,Xk)H(X1, X2, · · · , Y )

−A(Y,X1)H(X,X2, · · · , Xk) − · · · −A(Y,Xk)H(X1, X2, · · · , X).

Definition 2.1. ([7], [12], [16], [18], [48], [49], [50], [54], [55], [66]) A semi-Riemannian
manifold M is said to be H- semisymmetric due to B if B ·H = 0 and it is said to be
H-pseudosymmetric type due to B if B ·H = LHQ(g,H), where LH is some scalar
function on the set {x ∈ M : Q(g,H)x ̸= 0}.

In particular, a H-semisymmetric manifold due to B is said to be semisymmetric
(resp., Ricci, conformally, concircularly and conharmonically semisymmetric) if B =
R and H = R (resp., S, C, W and K). Again a H-pseudosymmetric manifold due to
B is said to be Dezcz pseudosymmetric (resp., Ricci, conformally, concircularly and
conharmonically pseudosymmetric) if B = R, H = R (resp., S, C, W and K).

Definition 2.2. A semi-Riemannian manifold is said to be a k-quasi-Einstein man-
ifold if rank (S − αg) = k, 0 ≤ k ≤ (n − 1), for a scalar α. The manifold is called
Einstein(resp., quasi-Einstein) if k = 0 (resp., k = 1). If α = 0, then a quasi-Einstein
manifold is called Ricci simple.

For two symmetric (0, 2) tensors E and A, we define their Kulkarni-Nomizu prod-
uct E ∧A by ([15], [25])

(E ∧A)(X1, X2, X3, X4) = E(X1, X4)A(X2, X3) + E(X2, X3)A(X1, X4)

− E(X1, X3)A(X2, X4) − E(X2, X4)A(X1, X3).
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Definition 2.3. A semi-Reimannian manifold is said to be a generalized Roter type
manifold ([17], [18], [20], [47], [48], [50], [51], [53]) if

R = a1g ∧ g + a2g ∧ S + a3S ∧ S + a4g ∧ S2 + a5S ∧ S2 + a6S
2 ∧ S2

holds for some ai ∈ C∞(M), 1 ≤ i ≤ 6. It reduces to Roter type manifold for
a4 = a5 = a6 = 0 ([13], [14], [15], [19] and [26]).

Definition 2.4. ([4], [48], [51]) A semi-Reimannian manifold M is said to be Ein(2),
Ein(3) and Ein(4) if

S2 + µ1S + µ2g = 0,

S3 + µ3S
2 + µ4S + µ5g = 0 and

S4 + µ6S
3 + µ7S

2 + µ8S + µ9g = 0

holds respectively for some µi ∈ C∞(M), 1 ≤ i ≤ 9.

Definition 2.5. ([22], [27]) A semi-Riemannian manifold M is said to be of Codazzi
type (resp., cyclic parallel) Ricci tensor if

∇X1S(X2, X3) = ∇X2S(X1, X3)

(resp.,∇X1S(X2, X3) + ∇X2S(X3, X1) + ∇X3S(X1, X2) = 0)

holds on M .

Definition 2.6. A semi-Riemannian manifold M is said to be weakly symmetric [69]
if

∇XR(X1, X2, X3, X4) = Π(X)R(X1, X2, X3, X4) + Φ(X1)R(X,X2, X3, X4)

+Φ(X2)R(X1, X,X3, X4) + Ψ(X3)R(X1, X2, X,X4) + Ψ(X4)R(X1, X2, X3, X)

holds ∀ X,Xi ∈ χ(M) (i = 1, 2, 3, 4) and some 1-forms Π,Φ,Φ,Ψ and Ψ on {x ∈ M :
Rx ̸= 0}. In particular, if 1

2Π = Φ = Φ = Ψ = Ψ (resp., Φ = Φ = Ψ = Ψ = 0), then
the manifold is called Chaki pseudosymmetric manifold [8] (resp., recurrent manifold
[40]).

It is also noted that the notion of Chaki pseudosymmetry is different from Deszcz
pseudosymmetry. For details about the weak symmetry and its interrelation with
Deszcz pseudosymmetry, we refer the reader to see [45] and also references therein.

Definition 2.7. ([32], [33]) A symmetric (0, 2) tensor A on a semi-Riemannian man-
ifold is said to be Riemann compatible if

R(AX1, X,X2, X3) + R(AX2, X,X3, X1) + R(AX3, X,X1, X2) = 0

holds, where A is the endomorphism corresponding to A defined as g(AX1, X2) =
A(X1, X2). Again an 1-form Φ is said to be Riemann compatible if Φ⊗Φ is Riemann
compatible.

In the similar manner, we can define conformal compatibility, concircular compat-
ibility and conharmonic compatibility.
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Definition 2.8. Let B be a (0, 4) tensor and A be a (0, 2) tensor on M . Then the
corresponding curvature 2-forms Ωm

(B)l ([4], [30]) are recurrent if ([34], [35], [36])

(∇X1B)(X2, X3, X4, X) + (∇X2B)(X3, X1, X4, X) + (∇X3B)(X1, X2, X4, X) =

Π(X1)B(X2, X3, X4, X) + Π(X2)B(X3, X1, X4, X) + Π(X3)B(X1, X2, X4, X)

and the 1-forms Λ(A)l ([64]) are recurrent if

(∇X1A)(X2, X) − (∇X2A)(X1, X) = Π(X1)A(X2, X) − Π(X2)A(X1, X)

for some 1-form Π.

Definition 2.9. ([39], [50], [54], [70]) Let L(M) be the vector space formed by all
1-forms θ on M satisfying

θ(X1)B(X2, X3, X4, X5) + θ(X2)B(X3, X1, X4, X5) + θ(X3)B(X1, X2, X4, X5) = 0

where B is a (0, 4) tensor. Then M is said to be a B-space by Venzi if dimL(M) ≥ 1.

3 Curvature restricted geometric structures

In terms of Poincaré coordinates (u, v, x, y) the non-zero components of the metric
tensor of the Siklos metric (1.1) are given by

(3.1) g11 =
l2

x2
H, g12 = g21 = g33 = g44 =

l2

x2
.

Then by a straightforward calculation we get the non-zero components (upto sym-
metry) of its Riemann curvature tensor R, Ricci tensor S and scalar curvature κ as
given by

(3.2)


−R1212 = R1323 = R1424 = R3434 = − l2

x2 ,

R1313 = − l2

2x4 (x2Hxx − xHx + 2H),

R1314 = − l2

2x2Hxy, R1414 = − l2

2x4 (x2Hyy − xHx + 2H);
S11 = 1

2x2 (x2(Hxx + Hyy) − 2xHx + 6H), S12 = S33 = S44 = 3
x2 ;

and κ = 12
l2 .

Again the non-zero components (upto symmetry) of ∇R and ∇S are given by

(3.3)



R1213,1 = l2(xHxx−Hx)
2x4 , R1214,1 = −R1334,1 =

l2Hxy

2x3 ,

R1313,1 = l2(Hxu−xHxxu)
2x3 , R1313,3 = l2(Hx−xHxx+xHxxx)

2x4 ,

R1313,4 = − l2(Hxy+xHxxy)
2x3 , R1314,1 = − l2Hxyu

2x2 ,

R1314,3 = − l2(2Hxy+xHxxy)
2x3 , R1414,1 =

l2(Hxu−xHyyu)
2x3 ,

R1314,4 = − l2(Hyy+xHxyy−Hxx)
2x3 , R1414,3 =

l2(Hx−x(2Hyy+xHxyy−Hxx))
2x4 ,

R1414,4 = − l2(xHyyy−3Hxy)
2x3 , R1434,1 =

l2(Hx−xHyy)
2x4 ;

(3.4)

 S11,1 = 1
2

(
Hxxu − 2

xHxu + Hyyu

)
,

S11,3 = 1
2

(
Hxyy + Hxxx + 2

xHyy − 2
x2Hx

)
,

S11,4 = 1
2

(
Hyyy − 2

xHxy + Hxxy

)
, S13,1 = 1

2x2 (Hxx + xHyy − 2Hx) .
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Now using (3.1) and (3.2) we can calculate the components of S2, g ∧ g, g ∧ S, S ∧
S, g ∧ S2, S ∧ S2 and S2 ∧ S2. From above we can state the following:

Proposition 3.1. The Siklos metric (1.1) is neither Einstein nor GRT4 but (i) quasi-
Einstein (Rank (S − 3

l2 g) = 1) and (ii) Ein(2) (S2 = 6
l2S).

Now using (3.2) we can calculate the components of R · R, Q(g,R) and Q(S,R)
and hence we can state the following:

Proposition 3.2. The Siklos metric (1.1) is neither weakly symmetric nor Ricci
generalized pseudosymmetric but a pseudosymmetric manifold of constant type (R ·
R = 1

l2Q(g,R)).

Since the Siklos metric is pseudosymmetric, we can state the following results:

Corollary 3.3. The Siklos metric (1.1) satisfies (i) R · S = 1
l2Q(g, S), (ii) R · C =

1
l2Q(g, C), (iii) R · P = 1

l2Q(g, P ), (iv) R ·W = 1
l2Q(g,W ), (v) R ·K = 1

l2Q(g,K),
(vi) W ·R = 0, (vii) W · S = 0, (viii) W ·C = 0, (ix) W ·W = 0 and (x) W ·K = 0.

Again since the Siklos metric is not Ricci generalized pseudosymmetric, then we
get the following:

Corollary 3.4. The Siklos metric (1.1) is neither (i) R-space by Venzi nor (ii) Kn(2).

Since the Siklos metric is not weakly symmetric, then we get the following:

Corollary 3.5. The Siklos metric (1.1) is neither (i) recurrent nor (ii) pseudosym-
metric in the sense of Chaki.

Again using components of R, S and κ we get the non-zero components (upto
symmetry) of conformal curvature tensor C as follows:

(3.5) C1313 = −C1414 = − l2

4x2
(Hxx −Hyy), C1314 = − l2

2x2
Hxy.

Then by a straightforward calculation using (3.3)-(3.5) we can find out the components
of ∇C, R · C, C ·R, Q(g, C) and Q(S,C), from which we get the following:

Proposition 3.6. The Siklos metric (1.1) is not conformally recurrent but it is (i) a
C-space by Venzi, (ii) CKn(2)-space with 1-fom of recurrency

Π =

{
1, 0,

1

x
− α4 − 2α2α3

4α2
1 + α2

2

,
α2α3 − 2α1α4

4α2
1 + α2

2

}
,

where α1 = Hxy, α2 = Hyy −Hxx, α3 = Hxxy + Hyyy, α4 = Hxxx + Hxyy,
(iii)Ricci generalized conformally pseudosymmetric, (iv) semisymmetric due to con-
formal curvature tensor and satisfies the pseudosymmetric type condition R · R −
Q(S,R) = − 2

l2Q(g, C).

Since the Siklos metric satisfies C · R = 0 and R · C = 1
3Q(S,C), we get the

following:



174 Absos Ali Shaikh, Lovejoy Das, Haradhan Kundu and Dhyanesh Chakraborty

Corollary 3.7. The Siklos metric (1.1) satisfies (i) C · S = 0, (ii) C · C = 0,
(iii) C · P = 0, (iv) C · W = 0, (v) C · K = 0, (vi) K · R = − 2

l2Q(g,R), (vii)
K ·S = − 2

l2Q(g, S), (viii) K ·C = − 2
l2Q(g, C), (ix) K ·P = − 2

l2Q(g, P ), (x) K ·W =
− 2

l2Q(g,W ), (xi) K ·K = − 2
l2Q(g,K) and (xii) P · C = 0.

Again since the Siklos metric is not conformally recurrent, we get the following:

Corollary 3.8. The Siklos metric (1.1) is not (i) projectively recurrent, (ii) concir-
cularly recurrent, (iii) conharmonically recurrent.

Now in view of (3.2), we can evaluate the non-zero components (upto symme-
try) of projective curvature tensor P , the concircular curvature tennsor W and the
conharmonic curvature tensor K of (1.1) as follows:

P1211 =
l2

6x4
(x(Hxx + Hyy) − 2Hx), P1313 = − l2

6x2
(x(2Hxx −Hyy) −Hx),

P1314 = P1413 = −P1341 = −P1431 = − l2

2x2
Hxy, P1331 =

l2

2x2
(xHxx −Hx),

P1414 =
l2

6x2
(x(Hxx − 2Hyy) + Hx), P1441 =

l2

2x3
(xHyy −Hx);

W1313 =
l2

2x3
(Hx − xHxx), W1314 =

l2

2x2
Hxy, W1414 =

l2

2x3
(Hx − xHyy);

−K1212 = K1323 = K1424 = K3434 =
2l2

x4
, K1313 =

l2

4x4
(8H − x2(Hxx −Hyy)),

K1314 =
l2

2x2
Hxy, K1414 =

l2

4x4
(8H + x2(Hxx −Hyy)).

Then we can easily calculate the components of ∇P , K · R, K · C, K · W , K · K,
Q(g,W ), Q(S,W ), Q(g,K) and Q(S,K), which yields the following:

Proposition 3.9. The Siklos metric (1.1) is (i) P -space by venzi as well as W -
space by Venzi with null 1-form {1, 0, 0, 0}, (ii) K · C = −2

3Q(S,C), (iii) K · W =
− 2

3Q(S,W ) and (iv) R ·W = 1
3Q(S,W ).

From the above propositions, we get the following theorem on curvature restricted
geometric structures admitted by the Siklos metric (1.1).

Theorem 3.10. The Siklos metric (1.1) possesses the following curvature restricted
geometric structures:
(i) R · R = 1

l2Q(g,R) and hence it is Ricci pseudosymmetric, conformally pseu-
dosymmetric, projectively pseudosymmetric, concircularly pseudosymmetric and con-
harmonically pseudosymmetric of constant type. Also it satisfies W ·R = 0 and hence
W · C = W · P = W · S = W ·W = W ·K = 0 (i.e., it satisfies semisymmetric type
conditions due to concircular curvature tensor),
(ii) C ·R = 0 and hence C · S = C · P = C ·C = C ·W = C ·K = 0 (i.e., it satisfies
semisymmetric type conditions due to Weyl conformal curvature tensor). Hence it
satisfies K · R = − 2

l2Q(g,R) and all conharmonically pseudosymmetric type condi-
tions of constant type,
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(iii) P · C = P ·W = 0 and hence R · C = 1
3Q(S,C) and K · C = −2

3Q(S,C),
(iv) C-space, P-space, W-space by Venzi for (1,0,0,0),
(v) If 4α2

1 + α2
2 ̸= 0, then the conformal 2-forms Ωm

(C)l are recurrent with 1-form of
recurrency

Π =

{
1, 0,

1

x
− α4 − 2α2α3

4α2
1 + α2

2

,
α2α3 − 2α1α4

4α2
1 + α2

2

}
where α1 = Hxy, α2 = Hyy −Hxx, α3 = Hxxy + Hyyy, α4 = Hxxx + Hxyy,
(vi) The concircular 2-forms Ωm

(W )l are recurrent with 1-form of recurrency {1, 0, 0, 0},
(vii) quasi-Einstein since Rank (S − αg) = 1, for

α =
3

l2
, β = 1, and η =

{√
x(Hxx + Hyy) − 2Hx

2x
, 0, 0, 0

}

with ∥η∥ = 0,
(viii) Ein(2) space such that S2 = 6

l2S.

Since the Defrise’s spacetime metric, vacuum Siklos spacetime metric and Kaig-
orodov spacetime metric are special cases of Siklos metric (1.1), hence we can state
the following:

Corollary 3.11. The Defrise’s spacetime metric i.e., the metric (1.1) with H = x−2

fulfills the following curvature restricted geometric structures:
(1) it satisfies all the curvature properties of Theorem (3.10) from (i) to (viii) with
different associated 1-forms,
(2) Ricci tensor is of cyclic parallel,
(3) Ricci tensor is Riemann compatible, Weyl compatible and projective compatible.

Corollary 3.12. The vacuum Siklos spacetime metric (i.e., the metric (1.1) with the
condition (1.2)) fulfills the following curvature restricted geometric structures:
(i) Einstein space, i.e., S = 3

l2 g and hence C=P=W,
(ii) R ·R = 1

l2Q(g,R) and hence it is conformally pseudosymmetric and conharmon-
ically pseudosymmetric,
(iii) C ·R = 0 and hence C ·C = C ·K = 0 (i.e., semisymmetric due to Weyl confor-
mal curvature tensor),
(iv) C-space by Venzi for (1,0,0,0),
(v) the conformal 2-forms Ωm

(C)l are recurrent with 1-form of recurrency {1, 0, 0, 0},
(vi) divR = 0, divC = 0 and divK = 0.

Corollary 3.13. The Kaigorodov spacetime metric (1.3) satisfies the following cur-
vature restricted geometric structures:
(1) the curvature properties of Corollary (3.12) from (i) to (vi),
(2) Ricci tensor is Riemann compatible and conformal compatible.

4 pp-wave metric and Siklos metric

A pp-wave metric is a Lorentzian manifold with a parallel light-like vector field and
satisfies a certain curvature condition. In terms of Brinkmann coordinates the metric
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of the pp-wave is given by

ds2 = H(u, x, y)du2 + 2dudv + dx2 + dy2(4.1)

where H = H(u, x, y) is any nowhere vanishing smooth function. For detailed study
about the pp-wave metric we lead the readers to see [24], [31], [37], [62] and the
references therein. Recently Shaikh et al. [52] studied the curvature properties of
the pp-wave metric and also studied the sufficient condition for which a generalized
pp-wave metric turns into pp-wave metric. We note that both the Siklos metric and
the pp-wave metric represent exact gravitational waves physically and are related to
each other conformally. So, in this section we are interested to draw a useful picture of
comparisons between these metrics with respect to their curvature restricted geometric
structures.

A. Similarities:
(i) both the metrics are quasi-Einstein,
(ii) both the metrics are semisymmetric due to conformal curvature tensor,
(iii) their conformal 2-forms are recurrent,
(iv) both the metrics are C−space by Venzi.

B. Dissimilarities:
(i) the Siklos metric is pseudosymmetric but the pp-wave metric is semisymmetric,
(ii) both the metrics are not roter type but the Siklos metric is Ein(2) whereas pp-
wave metric is Ein(3) with vanishing scalar curvature,
(iii) the Ricci tensor of the Siklos metric is neither Reimann compatible nor Weyl
compatible but for the pp-wave metric it is both Riemann compatible as well as Weyl
compatible,
(iv) Also the Ricci tensor of the pp-wave metric is of recurrent type whereas the Ricci
tensor of the Siklos metric does not possess such structure.
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[16] R. Deszcz, M. G logowska, M. Hotloś and Z. Sentürk, On certain quasi-Einstein
semi-symmetric hypersurfaces, Ann. Univ. Sci. Budapest Eötvös Sect. Math. 41
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Meth. Mod. Phys. 16 (2019), 1992002 (4 pages).

[23] R. Deszcz, L. Verstraelen and L. Vrancken, The symmetry of warped product
space-times, Gen. Rel. Grav. 23(6) (1991), 671-681.

[24] J. Ehlers and W. Kundt, Exact solutions of the gravitational field equations, In
”Gravitation: an introduction to current research” ed. L. Witten, John Wiley,
1962.

[25] M. G logowska, Semi-Riemannian manifolds whose Weyl tensor is a Kulkarni-
Nomizu square, Publ. Inst. Math. (Beograd) (N.S.) 72(86) (2002), 95-106.



178 Absos Ali Shaikh, Lovejoy Das, Haradhan Kundu and Dhyanesh Chakraborty

[26] M. G logowska, On Roter type manifolds, in: Pure and Applied Differential
Geometry- PADGE 2007, Shaker Verlag, Aachen, 2007, 114-122.

[27] A. Gray, Einstein-like manifolds which are not Einstein, Geom. Dedicta 7 (1978),
259-280.

[28] V.R. Kaigorodov, Einstein Spaces of Maximum Mobility, Soviet Phys. Doklady
7 (1963), 893-895.

[29] D. Kowalczyk, On the Reissner-Nordström-de Sitter type spacetimes, Tsukuba J.
Math. 30(2) (2006), 363-381.

[30] D. Lovelock and H. Rund, Tensors, differential forms and variational principles,
Courier Dover Publications, 1989.

[31] R. Maartens and S.D. Maharaj, Conformal symmetry of pp-waves, Class. Quan-
tum Grav. 8 (1991), 503-514.

[32] C.A. Mantica and L.G. Molinari, Extended Derdzinski-Shen theorem for curva-
ture tensors, Colloq. Math. 128 (2012), 1-6.

[33] C.A. Mantica and L.G. Molinari, Riemann compatible tensors, Colloq. Math. 128
(2012), 197-210.

[34] C.A. Mantica and Y.J. Suh, The closedness of some generalized curvature 2-forms
on a Riemannian manifold I, Publ. Math. Debrecen 81/3-4 (2012), 313-326.

[35] C.A. Mantica and Y.J. Suh, The closedness of some generalized curvature 2-forms
on a Riemannian manifold II, Publ. Math. Debrecen 82/1 (2013), 163-182.

[36] C.A. Mantica and Y.J. Suh, Recurrent conformal 2-forms on pseudo-Riemannian
manifolds, Int. J. Geom. Meth. Mod. Phy. 11(6) (2014), 1450056 (29 pages).

[37] C.A. Mantica and Y.J. Suh, Pseudo-Z symmetric spacetimes with divergence-free
Weyl tensor and pp-wave, Int. Geom. Meth. Mod. Phys. 13(02) (2016), 1650015
(34 pages).
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