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Th. Theofanidis

Abstract. The aim of the present paper is the classification of real hy-
persurfaces M , whose Jacobi structure operator commutes with the shape
operator, in a subspace of the tangent space TpM of M at a point p. This
class is large and difficult to classify, therefore a second condition is im-
posed: the Jacobi structure operator is generalized ξ−parallel in the same
subspace of the first condition. The notion of generalized ξ−parallel Ja-
cobi structure operator is introduced and studied for the first time and is
weaker than ξ− parallel Jacobi structure operator which has been studied
so far.
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1 Introduction.

An n - dimensional Kaehlerian manifold of constant holomorphic sectional curvature
c is called complex space form, which is denoted by Mn(c). A complete and simply
connected complex space form is a projective space CPn if c > 0, a hyperbolic space
CHn if c < 0, or a Euclidean space Cn if c = 0. The induced almost contact metric
structure of a real hypersurface M of Mn(c) will be denoted by (ϕ, ξ, η, g).

Real hypersurfaces in CPn which are homogeneous, were classified by R. Takagi
([13]). The same author classified real hypersurfaces in CPn, with constant prinicipal
curvatures in [14], but only when the number g of distinct principal curvatures satisfies
g = 3. M. Kimura showed in [8] that if a Hopf real hypersurface M in CPn has
constant principal curvatures, then the number of distinct principal curvatures of M
is 2, 3 or 5. J. Berndt gave the equivalent result for Hopf hypersurfaces in CHn

([1]) where he divided real hypersurfaces into four model spaces, named A0, A1, A2

and B. Analytic lists of constant principal curvatures can be found in the previously
mentioned references as well as in [9], [11]. Real hypersurfaces of type A1 and A2

in CPn and of type A0, A1 and A2 in CHn are said to be hypersurfaces of type A
for simplicity and appear quite often in classification theorems. Real hypersurfaces
of type A1 in CHn are divided into types A1,0 and A1,1 ([9]). For more information
and examples on real hypersurfaces, we refer to [11].
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A Jacobi field along geodesics of a given Riemannian manifold (M, g) plays an
important role in the study of differential geometry. It satisfies a well known differ-
ential equation which inspires Jacobi operators. For any vector field X, the Jacobi
operator is defined by RX : RX(Y ) = R(Y,X)X, where R denotes the curvature
tensor and Y is a vector field on M . RX is a self - adjoint endomorphism in the
tangent space of M , and is related to the Jacobi differential equation, which is given
by ∇γ́(∇γ́Y ) + R(Y, γ́)γ́ = 0 along a geodesic γ on M , where γ́ denotes the velocity
vector along γ on M .

In a real hypersurface M of a complex space form Mn(c), c ̸= 0, the Jacobi
operator on M with respect to the structure vector field ξ, is called the structure
Jacobi operator and is denoted by Rξ(X) = R(X, ξ, )ξ = lX. Conditions including
this operator, generate larger classes than the conditions including the Riemannian
tensor R(X,Y )Z. So operator l has been studied by quite a few authors and under
several conditions.

In 2007, Ki, Perez, Santos and Suh ([6]) classified real hypersurfaces in complex
space forms with ξ-parallel Ricci tensor and structure Jacobi operator. J. T. Cho and
U - H Ki in [3] classified the real hypersurfaces whose structure Jacobi operator is
symmetric along the Reeb flow ξ and commutes with the shape operator A.

In the present paper we classify real hypersurfaces M satisfying the condition

(1.1) lA = Al,

restricted in the subspace D = ker(η) of TpM for every point p ∈ M , where ker(η)
consists of all vectors fields orthogonal to the Reeb flow ξ. This class is quite large
and rather difficult to be classified, therefore a second condition had to be imposed:

(1.2) (∇ξl)X = ω(X)ξ,

where ω(X) is 1-form and X ∈ ker(η) = D. This condition is much weaker than
∇ξl = 0 that has been used so far ([3], [4], [5], [6]). Therefore a larger class is
produced.

Finally, we mention that hypersurfaces in M2(c) have not been studied as thor-
oughly as the ones in Mn(c), n ≥ 3.

The major and most difficult part, is to prove M is a Hopf hypersurface, that is ξ
is a principal vector field and the classification follows right after that. In particular,
the following theorem is proved:

Theorem 1.1. Let M be a real hypersurface of a complex plane M2(c), (c ̸= 0), sat-
isfying (1.1) and (1.2) for every vector field X ∈ D. Then M is a Hopf hypersurface
and satisfies ∇ξl = 0. Furthermore, M is pseudo-Einstein, that is, there exist con-
stants ρ and σ such that for any tangent vector X we have QX = ρX + σg(X, ξ)ξ,
where Q is the Ricci tensor. Conversely, every pseudo-Einstein hypersurface in M2(c)
satisfies (1.2) with ω = 0.

As shown in [7] the pseudo-Einstein hypersurfaces, are precisely those that are

• For M2(c) = CP 2: open subsets of geodesic spheres (type A1);

• For M2(c) = CH2: open subsets of
1. horospheres (type A0);
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2. geodesic spheres (type A1,0);
3. tubes around totally geodesic complex hyperbolic lines CH1 (type A1,1);

• Hopf hypersurfaces with η(Aξ) = 0.

An almost similar problem for n ≥ 3 has been solved in [15]. In addition, the form
ω has no restriction in its values, so it could vanish at some point. Therefore con-
dition (1.2) could be called generalized ξ−parallel Jacobi structure operator, since it
generalizes the notion of ξ−parallel Jacobi structure operator (∇ξl = 0).

2 Preliminaries

In this section, we explain explicitly the notions that were mentioned in section 0, as
well as the notions that will appear in the paper. We also give a series of equations
that will be our basic tools in our calculations and conclusions.

Let Mn be a Kaehlerian manifold of real dimension 2n, equipped with an almost
complex structure J and a Hermitian metric tensor G. Then for any vector fields X
and Y on Mn(c), the following relations hold: J2X = −X, G(JX, JY ) = G(X,Y ),

∇̃J = 0, where ∇̃ denotes the Riemannian connection of G of Mn.
Let M2n−1 be a real (2n − 1)-dimensional hypersurface of Mn(c), and denote by

N a unit normal vector field on a neighborhood of a point in M2n−1 (from now on
we shall write M instead of M2n−1). For any vector field X tangent to M we have
JX = ϕX+η(X)N , where ϕX is the tangent component of JX, η(X)N is the normal
component, and ξ = −JN , η(X) = g(X, ξ), g = G|M .

By properties of the almost complex structure J and the definitions of η and g,
the following relations hold ([2]):

(2.1) ϕ2 = −I + η ⊗ ξ, η ◦ ϕ = 0, ϕξ = 0, η(ξ) = 1

(2.2) g(ϕX, ϕY ) = g(X,Y )− η(X)η(Y ), g(X,ϕY ) = −g(ϕX, Y ).

The above relations define an almost contact metric structure on M which is denoted
by (ϕ, ξ, g, η). When an almost contact metric structure is defined on M , we can
define a local orthonormal basis {e1, e2, ...en−1, ϕe1, ϕe2, ...ϕen−1, ξ}, called a ϕ−basis.
Furthermore, let A be the shape operator in the direction of N , and denote by ∇ the
Riemannian connection of g on M . Then, A is symmetric and the following equations
are satisfied:

(2.3) ∇Xξ = ϕAX, (∇Xϕ)Y = η(Y )AX − g(AX,Y )ξ.

Since the ambient space Mn(c) is of constant holomorphic sectional curvature c,
the equations of Gauss and Codazzi are respectively given by:

(2.4) R(X,Y )Z =
c

4
[g(Y,Z)X − g(X,Z)Y + g(ϕY,Z)ϕX − g(ϕX,Z)ϕY

−2g(ϕX, Y )ϕZ] + g(AY,Z)AX − g(AX,Z)AY,

(2.5) (∇XA)Y − (∇Y A)X =
c

4
[η(X)ϕY − η(Y )ϕX − 2g(ϕX, Y )ξ].
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The tangent space TpM , at every point p ∈ M , is decomposed as following:

TpM = D⊥ ⊕ D,

where D = ker(η) = {X ∈ TpM : η(X) = 0}.
The subspace ker(η) is more usually referred as D and called holomorphic dis-

tribution of M at p. Based on the decomposition of TpM , by virtue of (2.3), we
decompose the vector field Aξ in the following way:

(2.6) Aξ = αξ + βU,

where β = |ϕ∇ξξ|, α is a smooth function on M and U = − 1
βϕ∇ξξ ∈ ker(η), provided

that β ̸= 0.
If the vector field Aξ is expressed as Aξ = αξ, then ξ is called principal vector

field.
Finally differentiation of vector field X along a function f will be denoted by

(Xf). All manifolds, vector fields, etc, of this paper are assumed to be connected and
of class C∞.

3 Auxiliary relations

We suppose there exists a point p ∈ M such that β ̸= 0 in a neighborhoodN around p.
We define the open subset N1 of N such that N1 = {q ∈ N : α ̸= 0 in a neighborhood
around q}.

Lemma 3.1. Let M be a real hypersurface of a complex plane M2(c) satisfying (1.1)
on D. Then the following relations hold on N1.

(3.1) AU =
(β2

α
− c

4α

)
U + βξ, AϕU = (

γ

α
− c

4α
)ϕU.

(3.2) ∇ξξ = βϕU, ∇Uξ =
(β2

α
− c

4α

)
ϕU, ∇ϕUξ = (

c

4α
− γ

α
)U.

(3.3) ∇ξU = κ1ϕU, ∇UU = κ2ϕU, ∇ϕUU = κ3ϕU + (
γ

α
− c

4α
)ξ.

(3.4) ∇ξϕU = −κ1U − βξ, ∇UϕU = −κ2U +
( c

4α
− β2

α

)
ξ,

∇ϕUϕU = −κ3U.

where κ1, κ2, κ3 are smooth functions on N1.

Proof.
In what follows we work on N1. By definition of the vector fields U , ϕU , ξ and due
to (2.1), the set {U, ϕU, ξ} is an orthonormal basis. From (2.4) we obtain

(3.5) lU =
c

4
U + αAU − βAξ, lϕU =

c

4
ϕU + αAϕU.
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The inner products of lU with U and ϕU respectively yield

(3.6) g(AU,U) =
ϵ

α
− c

4α
+

β2

α
, g(AU, ϕU) =

δ

α

where ϵ = g(lU, U) and δ = g(lU, ϕU).
So, (3.6) and g(AU, ξ) = g(Aξ,U) = β, yield

(3.7) AU =
( ϵ

α
− c

4α
+

β2

α

)
U +

δ

α
ϕU + βξ.

Since l is symmetric with respect to metric g, the scalar products of the second of
(3.5) with U and ϕU yield respectively

g(AϕU,U) =
δ

α
, g(AϕU, ϕU) =

γ

α
− c

4α
,

where γ = g(lϕU, ϕU). So, the above equations and g(AϕU, ξ) = g(Aξ, ϕU) = 0, yield

(3.8) AϕU = (
γ

α
− c

4α
)ϕU +

δ

α
U.

From (3.5), (3.7) and (3.8) we obtain lU = ϵU + δϕU and lϕU = δU + γϕU . We
make use of the last two equations, along with (1.6), (2.7), (2.8) and the symmetry
of l, to analyze g(lAU, ξ) = g(AlU, ξ) - which holds due to (1.1) - and obtain ϵ = 0.
Similarly, from the same equations, ϵ = 0 and g(lAϕU, ξ) = g(AlϕU, ξ) we take δ = 0.
Therefore, from δ = ϵ = 0 and (3.7), (3.8) we obtain (3.1). In addition we have shown

(3.9) lU = 0, lϕU = γϕU.

From equation (3.1) and relation (2.3) for X = ξ, X = U , X = ϕU , we obtain (3.2).
Next we remind of the rule

(3.10) Xg(Y, Z) = g(∇XY, Z) + g(Y,∇XZ).

By virtue of (3.10) for X = Z = ξ, Y = U and for X = ξ, Y = Z = U , it is shown
respectively ∇ξU⊥ξ and ∇ξU⊥U . So ∇ξU = κ1ϕU , where κ1 = g(∇ξU, ϕU). In a
similar way, (3.10) for X = Y = Z = U and X = Z = U , Y = ξ respectively yields
∇UU⊥U and ∇UU⊥ξ. This means that ∇UU = κ2ϕU , where κ2 = g(∇UU, ϕU).
Finally, (3.10) for X = ϕU , Y = Z = U and X = ϕU , Y = U , Z = ξ (with
the aid of (3.2)) yields respectively ∇ϕUU⊥U and g(∇ϕUU, ξ) =

γ
α − c

4α . Therefore
∇ϕUU = κ3ϕU + ( γα − c

4α )ξ where κ3 = g(∇ϕUU, ϕU) and (3.3) has been proved. In
order to prove (3.4) we use the second of (2.3) with the following combinations: i)
X = ξ, Y = U , ii) X = Y = U , iii) X = ϕU , Y = U , and make use of (2.6), (3.1),
(3.3). �

By putting X = U , Y = ξ in (2.5) we obtain ∇UAξ −A∇Uξ −∇ξAU +A∇ξU =
− c

4ϕU , which is expanded by Lemma 3.1, to give

[(Uα)− (ξβ)]ξ + [(Uβ)−
(
ξ(
β2

α
− c

4α
)
)
]U+

[κ2β − (
β2

α
− c

4α
)(
γ

α
− c

4α
) + (

γ

α
− β2

α
)κ1]ϕU.
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Since the vector fields U, ϕU and ξ are linearly independent, the above equations gives

(3.11) (Uα) = (ξβ),

(3.12) (Uβ) =
(
ξ(
β2

α
− c

4α
)
)
,

(3.13) κ2β − (
β2

α
− c

4α
)(
γ

α
− c

4α
) + (

γ

α
− β2

α
)κ1 = 0.

In a similar way, from (2.5) we get ∇ϕUAξ −A∇ϕUξ −∇ξAϕU +A∇ξϕU = c
4U ,

which is expanded by Lemma 3.1, to give

[(ϕUα) + 3β(
γ

α
− c

4α
)− κ1β − αβ]ξ+

[ϕUβ − γ + (
β2

α
− c

4α
)(
γ

α
− c

4α
) + κ1(

γ

α
− β2

α
)− β2]U+

[κ3β − ξ(
γ

α
− c

4α
)]ϕU = 0,

which leads to

(3.14) (ϕUα) + 3β(
γ

α
− c

4α
)− κ1β − αβ = 0,

(3.15) ϕUβ − γ + (
β2

α
− c

4α
)(
γ

α
− c

4α
) + κ1(

γ

α
− β2

α
)− β2 = 0,

(3.16) κ3β = ξ(
γ

α
− c

4α
).

Finally, (2.5) yields ∇UAϕU − A∇UϕU − ∇ϕUAU + A∇ϕUU = − c
2ξ, which is

expanded by Lemma 3.1, to give

[−ϕUβ + γ − 2(
β2

α
− c

4α
)(
γ

α
− c

4α
) + κ2β + β2]ξ+

[β(
β2

α
− c

4α
) + 2β(

γ

α
− c

4α
) + κ2(

β2

α
− γ

α
)− ϕU(

β2

α
− c

4α
)]U+

[U(
γ

α
− c

4α
) + κ3(

γ

α
− β2

α
)]ϕU = 0.

The above relation leads to

(3.17) ϕUβ − γ + 2(
β2

α
− c

4α
)(
γ

α
− c

4α
)− κ2β − β2 = 0,

(3.18) β(
β2

α
− c

4α
) + 2β(

γ

α
− c

4α
) + κ2(

β2

α
− γ

α
) = ϕU(

β2

α
− c

4α
),
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(3.19) U(
γ

α
− c

4α
) = −κ3(

γ

α
− β2

α
).

We combine (3.15) and (3.17), by removing the term ϕUβ − γ − β2, to obtain

(3.20) κ2β + κ1(
γ

α
− β2

α
) = (

β2

α
− c

4α
)(
γ

α
− c

4α
).

Furthermore, we modify equation (3.18) as following: we expand the term ϕU(β
2

α −
c
4α ) and then replace the terms (ϕUα), (ϕUβ) respectively from (3.14) and (3.15).
The final relation is

(3.21) κ2(β
2 − γ)− βc =

β

α2
(γ − c

4
)(β2 − c

4
) + κ1β(

β2

α
− 2

γ

α
+

c

4α
).

By virtue of (3.20), the term κ2 is replaced in (3.21), and after calculations we result
to

(3.22) κ1(
γ2

β
− βc

4
)− αβc− γ

β
(
γ

α
− c

4α
)(β2 − c

4
) = 0.

Lemma 3.2. Let M be a real hypersurface of a complex plane M2(c) satisfying (1.1)

and (1.2) on D. Then, equations γ = 0, κ1 = −4α and κ2 = −4β − c
4αβ (

β2

α − c
4α )

hold on N1.

Proof.
By making use of (1.2) for X = U and with the aid of Lemma 3.1 and (3.9), we take

(3.23) κ1γ = 0, (ξγ) = 0.

Let us assume there exists a point p1 ∈ N1 at which γ ̸= 0. Then, there exists a
neighborhood V1 of p1 such that γ ̸= 0 in V1. We are going to work in V1 throughout
the proof of this Lemma, in order to show V1 = f� . Since γ ̸= 0, (3.23) yields

(3.24) κ1 = (ξγ) = 0.

From (2.4), (3.23) and Lemma 3.1 we obtain R(U, ξ)U = 0. We also have R(U, ξ)U =
∇U∇ξU −∇ξ∇UU −∇[U,ξ]U which is analyzed with the aid of Lemma 3.1 and (3.23)

giving R(U, ξ)U = [−(ξκ2)− κ3(
β2

α − c
4α )]ϕU + [κ2β − (β

2

α − c
4α )(

γ
α − c

4α )]ξ. The two
expressions of R(U, ξ)U give

(3.25) (ξκ2) = −κ3(
β2

α
− c

4α
), κ2β = (

β2

α
− c

4α
)(
γ

α
− c

4α
).

We differentiate the second of (3.25) along ξ and then replace the term (ξκ2) from
the first of (3.25), resulting to

(3.26) κ2(ξβ) =
2β

α
(
γ

α
− c

4α
)(ξβ)− (

γ

α
− c

4α
)(
β2

α2
− c

4α2
)(ξα) + 2β(

β2

α
− c

4α
)κ3.

Next we differentiate (3.22) along ξ, combined with (3.24), in order to obtain

(3.27) αβc(ξα) + α2c(ξβ) + γ(γ − c

4
)(ξβ) = 0.
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By making use of (3.25) and (3.27),we replace the terms κ2 and (ξα) respectively, in
(3.26) and after calculations we obtain

(3.28) [
2β

α
(
γ

α
− c

4α
) +

γ

αβc
(
γ

α
− c

4α
)2(

β2

α
− c

4α
)](ξβ) = −2β(

β2

α
− c

4α
)κ3.

(3.22) is rewritten as γ
αβc (

γ
α − c

4α )(
β2

α − c
4α ) = −β

α which is used with (3.28) to obtain

(3.29) (
γ

α
− c

4α
)(ξβ) = −2(β2 − c

4
)κ3.

We notice that γ − c
4 ̸= 0, otherwise (3.22) would yield αβc = 0 which is a contradic-

tion. Therefore we combine (3.16), (3.24), (3.27) and (3.29), taking

[−α3β2c− 2α3(β2 − c

4
)− 2αγ(γ − c

4
)(β2 − c

4
)]κ3.

If we had κ3 ̸= 0 in a neighborhood of V1 then the above relation and (3.22) would
give β2 = c

2 ⇒ (ξβ) = 0 ⇒ β2 = c
4 (due to (3.29)) which is a contradiction. Therefore

κ3 = 0. Since κ3 = 0, (3.11), (3.12), (3.27) and (3.29) imply ([U, ξ]α) = ([U, ξ]β) = 0.
However, these Lie brackets are also estimated from Lemma 3.1, (3.14), (3.15), (3.24),
which means we have the following:

(3.30) (β2 − c

4
)
(
3(

γ

α
− c

4α
)− α

)
= 0,

(β2 − c

4
)
(β2

α
− c

4α
)(
γ

α
− c

4α
)− β2 − γ

)
= 0.

Due to (3.22) it must be β2 − c
4 ̸= 0 of V1. Then from (3.30) we acquire

(3.31)
γ

α
− c

4α
=

α

3
⇔ (ϕUα) = 0, β2 − c

4
= 3(β2 + γ) ⇔ (ϕUβ) = 0.

From (3.31) we modify (3.20):

(3.32) κ2 =
1

3β
(β2 − c

4
)

We make use of the last relation, (3.24), (3.31), κ3 = 0 and Lemma 3.1 to show

R(ϕU,U)U =
(
− κ2

2 − (β
2

α − c
4α )(

γ
α − c

4α )
)
ϕU . The same vector field is calculated

from (2.4), (3.31), (3.32) and Lemma 3.1 and then we equalize the two expressions of
R(ϕU,U)U , resulting to

(3.33) − 1

9β2
(β2 − c

4
)2 = c+

2

3
(β2 − c

4
)

In the same way, by calculating R(ϕU, ξ)U with the aid of Lemma 3.1, κ1 = κ3 = 0,
(3.16), (3.31) we obtain κ2 = 2β, which is combined with (3.32) giving

6β2 = β2 − c

4
⇔ β2 = − c

20
.

The above result and (3.33) lead to β2 = − c
8 , which is a contradiction in V1, meaning

V1 = f� . The rest of the proof follows from (3.21), (3.22), (3.23). �
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4 The set N1 is the empty set.

We start with the following result:

Lemma 4.1. Let M be a real hypersurface of a complex plane M2(c) satisfying (1.1)
and (1.2) on D. Then κ3 = 0 holds on N1.

Proof.
Lemma 3.2, (3.11), (3.12), (3.16) and (3.19) yield

(4.1) (Uα) = (ξβ) =
4αβ2

c
κ3, (ξα) =

4α2β

c
κ3, (Uβ) = β(

4β2

c
+ 1)κ3.

We use Lemmas 3.1, 3.2 and relations (3.14), (4.1) to calculate

[ϕU,U ]α = (∇ϕUU −∇UϕU)α = κ3(
βc

α
− 5αβ − 12αβ3

c
− β3

α
).

On the other hand, from Lemmas 3.1, 3.2 and equations (3.14), (4.1), we obtain

[ϕU,U ]α = ϕU(Uα)− U(ϕUα) = ϕU(Uα) + (3αβ +
24αβ3

c
− 3βc

4α
)κ3.

Equalizing the two expressions of [ϕU,U ]α we result to

(4.2) ϕU(Uα) = (
7βc

4α
− 36αβ3

c
− β3

α
− 8αβ)κ3.

By making use of Lemmas 3.1, 3.2 and relation (4.1), it is proved that

[ϕU, ξ]β = (∇ϕUξ −∇ξϕU)β = [
βc

4α
− 12αβ3

c
+

β3

α
− 4αβ]κ3.

However, the same differentiation is calculated with aid of Lemma 3.2 and equations
(3.15), (3.1):

[ϕU, ξ]β = ϕU(ξβ)− ξ(ϕUβ) = ϕU(ξβ) + [−βc

2α
+

24αβ3

c
]κ3.

Comparing the two expressions of [ϕU, ξ]β we are led to

(4.3) ϕU(ξβ) = [
β3

α
+

3βc

4α
− 36αβ3

c
− 4αβ]κ3.

From (3.11), (4.2) and (4.3) we acquire

(4.4) (2α2 + β2 − c

2
)κ3 = 0.

Let us assume there exists a point p2 ∈ N1 at which κ3 ̸= 0. Then, there exists a
neighborhood V2 of p2 such that κ3 ̸= 0 in V2. Therefore (3.4) yields α2 + β2 = c

2 ,
which is differentiated along ξ, with the aid of (4.1) and κ3 ̸= 0, giving 2α2 + β2 = 0
which is a contradiction. This means there are no points of N1 where κ3 ̸= 0 and so
κ3 = 0 holds on N1. �
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Now that κ3 = 0, from (4.1) we have [U, ξ]α = U(ξα) − ξ(Uα) = 0. Furthermore,

from Lemmas 3.1, 3.2 and (3.14) we have [U, ξ]α = (∇Uξ − ∇ξU)α = β(β
2

α − c
4α +

4α)( 3c
4α − 3α). So we conclude

(4.5) 3β(
β2

α
− c

4α
+ 4α)(

c

4α
− α) = 0.

Similarly, from (4.1) and Lemma 4.1 we have [U, ξ]β = 0, while from Lemmas 3.1, 3.2

and (3.15) we have [U, ξ]β = (∇Uξ −∇ξU)β = (β
2

α − c
4α + 4α)[( c

4α )(
β2

α − c
4α )− 3β2].

So we have shown

(4.6) (
β2

α
− c

4α
+ 4α)[(

c

4α
)(
β2

α
− c

4α
)− 3β2] = 0.

Let us assume there exists a point p3 ∈ N1 at which β2

α − c
4α + 4α ̸= 0. Then,

there exists a neighborhood V3 of p3 such that β2

α − c
4α + 4α ̸= 0 in V3. In this case

(4.5) and (4.6) yield respectively c
4 = α2 > 0 and c

4α (
β2

α − c
4α )−3β2 = 0. We combine

the last two relations by removing the term α2 and obtain c = −8β2 < 0 which is a

contradiction to c
4 = α2 > 0. So there exists no point of N1 where β2

α − c
4α + 4α ̸= 0,

hence it must be β2

α − c
4α + 4α = 0 ⇒

(4.7) β2 + 4α2 =
c

4
> 0.

Differentiating (4.7) along ϕU we acquire β(ϕUβ) + 4α(ϕUα) = 0 which is ex-
panded by (3.14), (3.15) and Lemma 3.2, giving

c

4α2
(β2 − c

4
)− 3β2 − 12α2 + 3c = 0.

Replacing the term β2− c
4 with −4α2 - due to (4.7) - we get β2+4α2 = 2c

3 < 0 which

is a contradiction to (4.7). So N1 = f� .

5 Proof of Theorem 0.1

Because of Section 4, and by definition of the sets N , N1 in the beginning of section
3, in the set N , equation (2.6) takes the form Aξ = βU . This means that the vector
fields AU and AϕU are decomposed with respect to the ϕ−basis {U, ϕU, ξ} as:

(5.1) AU = µ1U + µ2ϕU + βξ, AϕU = µ2U + µ3ϕU,

for some functions µ1, µ2, µ3. In addition, from (2.4) and Aξ = βU we obtain lU = c
4U

and lϕU = c
4ϕU . Combining the previous two equations with (5.1) and (1.1), we

analyze lAU = AlU to take β = 0 which is a contradiction in N . So N = f� and the
real hypersurface M consists of points where β = 0, i.e, M is a Hopf hypersurface.

Since M is Hopf, we have Aξ = αξ and α is constant ([11]). The inner product
of (∇ξl)X = ω(X)ξ with ξ (because of (2.3), (3.10) and Aξ = αξ) yields ω(X) = 0.
This means that ∇ξl = 0.



Real hypersurfaces of non-flat complex planes 191

It is easy to check that (∇ξl)ξ = 0 for any Hopf hypersurface. Now consider a
vector field X ∈ D. From the Gauss equation we have lX = (αA+ c

4 )X, so that

(∇ξl)X = ∇ξlX − l∇ξX

= ∇ξ(αA+
c

4
)X − (αA+

c

4
)∇ξX,

since ∇ξX is also in D. We can simplify this, using the Codazzi equation, to get

(∇ξl)X = α(∇ξA)X

= α((∇XA)ξ +
c

4
ϕX)

= α((α−A)ϕAX +
c

4
ϕX).

In particular, If X is chosen to be a principal vector field, such that AX = λ1X and
AϕX = λ2ϕX, then the condition ∇ξl = 0 implies that

α(λ1 − λ2) = 0

where we have used the well known relation for Hopf hypersurfaces

λ1λ2 =
λ1 + λ2

2
α+

c

4
.

If α ̸= 0 then λ1 = λ2 is locally constant since it satisfies λ2
1 = αλ1+

c
4 . Therefore,

M is an open subset of type A hypersurface, based on the theorems of Kimura and
Berndt and the lists of principal curvatures in [13] and [9]. In case α = 0, we have
λ1 ̸= λ2 or λ1 = λ2 with λ2

1 = c
4 and the classification follows from [7].

Conversely, letM be of type A1 in CP 2 or type A0, A1,0, A1,1 in CH2. TakeX ∈ D
a principal vector field with principal curvature λ, and α the principal curvature of
ξ. (2.4) yields lX = (αA+ c

4 )X, ∀X ∈ D. Furthermore, in a real hypersurface of the
previously mentioned types, we have λ2 = αλ + c

4 , thus from the last two equations
we have lX = λ2X, which is used to show (∇ξl)X = 0. The last equation and
(∇ξl)ξ = ∇ξlξ − l∇ξξ = 0 show that real hypersurfaces of type A satisfy (1.2) with
ω = 0.

If M is Hopf with α = 0 then (2.4) yields lX = c
4X for every X ∈ D. Therefore

(∇ξl)X = 0 holds. In addition we have (∇ξl)ξ = 0, thus (∇ξl)X = 0 holds for every
X, which means ω = 0. �
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