Real hypersurfaces of non-flat complex planes with generalized ξ-parallel Jacobi structure operator

Th. Theofanidis

Abstract

The aim of the present paper is the classification of real hypersurfaces M, whose Jacobi structure operator commutes with the shape operator, in a subspace of the tangent space $T_{p} M$ of M at a point p. This class is large and difficult to classify, therefore a second condition is imposed: the Jacobi structure operator is generalized ξ-parallel in the same subspace of the first condition. The notion of generalized ξ-parallel Jacobi structure operator is introduced and studied for the first time and is weaker than ξ - parallel Jacobi structure operator which has been studied so far.

M.S.C. 2010: 53B25, 53D15.

Key words: Almost contact manifold; Jacobi structure operator.

1 Introduction.

An n-dimensional Kaehlerian manifold of constant holomorphic sectional curvature c is called complex space form, which is denoted by $M_{n}(c)$. A complete and simply connected complex space form is a projective space $\mathbb{C} P^{n}$ if $c>0$, a hyperbolic space $\mathbb{C} H^{n}$ if $c<0$, or a Euclidean space \mathbb{C}^{n} if $c=0$. The induced almost contact metric structure of a real hypersurface M of $M_{n}(c)$ will be denoted by (ϕ, ξ, η, g).

Real hypersurfaces in $\mathbb{C} P^{n}$ which are homogeneous, were classified by R. Takagi ([13]). The same author classified real hypersurfaces in $\mathbb{C} P^{n}$, with constant prinicipal curvatures in [14], but only when the number g of distinct principal curvatures satisfies $g=3$. M. Kimura showed in [8] that if a Hopf real hypersurface M in $\mathbb{C} P^{n}$ has constant principal curvatures, then the number of distinct principal curvatures of M is 2,3 or 5 . J. Berndt gave the equivalent result for Hopf hypersurfaces in $\mathbb{C} H^{n}$ ([1]) where he divided real hypersurfaces into four model spaces, named A_{0}, A_{1}, A_{2} and B. Analytic lists of constant principal curvatures can be found in the previously mentioned references as well as in [9], [11]. Real hypersurfaces of type A_{1} and A_{2} in $\mathbb{C} P^{n}$ and of type A_{0}, A_{1} and A_{2} in $\mathbb{C} H^{n}$ are said to be hypersurfaces of type A for simplicity and appear quite often in classification theorems. Real hypersurfaces of type A_{1} in $\mathbb{C} H^{n}$ are divided into types $A_{1,0}$ and $A_{1,1}([9])$. For more information and examples on real hypersurfaces, we refer to [11].

[^0]A Jacobi field along geodesics of a given Riemannian manifold (M, g) plays an important role in the study of differential geometry. It satisfies a well known differential equation which inspires Jacobi operators. For any vector field X, the Jacobi operator is defined by $R_{X}: R_{X}(Y)=R(Y, X) X$, where R denotes the curvature tensor and Y is a vector field on $M . R_{X}$ is a self - adjoint endomorphism in the tangent space of M, and is related to the Jacobi differential equation, which is given by $\nabla_{\dot{\gamma}}\left(\nabla_{\dot{\gamma}} Y\right)+R(Y, \dot{\gamma}) \dot{\gamma}=0$ along a geodesic γ on M, where $\dot{\gamma}$ denotes the velocity vector along γ on M.

In a real hypersurface M of a complex space form $M_{n}(c), c \neq 0$, the Jacobi operator on M with respect to the structure vector field ξ, is called the structure Jacobi operator and is denoted by $R_{\xi}(X)=R(X, \xi,) \xi=l X$. Conditions including this operator, generate larger classes than the conditions including the Riemannian tensor $R(X, Y) Z$. So operator l has been studied by quite a few authors and under several conditions.

In 2007, Ki, Perez, Santos and Suh ([6]) classified real hypersurfaces in complex space forms with ξ-parallel Ricci tensor and structure Jacobi operator. J. T. Cho and $\mathrm{U}-\mathrm{H} \mathrm{Ki}$ in [3] classified the real hypersurfaces whose structure Jacobi operator is symmetric along the Reeb flow ξ and commutes with the shape operator A.

In the present paper we classify real hypersurfaces M satisfying the condition

$$
\begin{equation*}
l A=A l \tag{1.1}
\end{equation*}
$$

restricted in the subspace $\mathbb{D}=\operatorname{ker}(\eta)$ of $T_{p} M$ for every point $p \in M$, where $\operatorname{ker}(\eta)$ consists of all vectors fields orthogonal to the Reeb flow ξ. This class is quite large and rather difficult to be classified, therefore a second condition had to be imposed:

$$
\begin{equation*}
\left(\nabla_{\xi} l\right) X=\omega(X) \xi \tag{1.2}
\end{equation*}
$$

where $\omega(X)$ is 1 -form and $X \in \operatorname{ker}(\eta)=\mathbb{D}$. This condition is much weaker than $\nabla_{\xi} l=0$ that has been used so far ([3], [4], [5], [6]). Therefore a larger class is produced.

Finally, we mention that hypersurfaces in $M_{2}(c)$ have not been studied as thoroughly as the ones in $M_{n}(c), n \geq 3$.

The major and most difficult part, is to prove M is a Hopf hypersurface, that is ξ is a principal vector field and the classification follows right after that. In particular, the following theorem is proved:

Theorem 1.1. Let M be a real hypersurface of a complex plane $M_{2}(c),(c \neq 0)$, satisfying (1.1) and (1.2) for every vector field $X \in \mathbb{D}$. Then M is a Hopf hypersurface and satisfies $\nabla_{\xi} l=0$. Furthermore, M is pseudo-Einstein, that is, there exist constants ρ and σ such that for any tangent vector X we have $Q X=\rho X+\sigma g(X, \xi) \xi$, where Q is the Ricci tensor. Conversely, every pseudo-Einstein hypersurface in $M_{2}(c)$ satisfies (1.2) with $\omega=0$.

As shown in [7] the pseudo-Einstein hypersurfaces, are precisely those that are

- For $M_{2}(c)=\mathbb{C} P^{2}$: open subsets of geodesic spheres (type A_{1});
- For $M_{2}(c)=\mathbb{C} H^{2}$: open subsets of

1. horospheres (type A_{0});
2. geodesic spheres (type $A_{1,0}$);
3. tubes around totally geodesic complex hyperbolic lines $\mathbb{C} H^{1}$ (type $A_{1,1}$);

- Hopf hypersurfaces with $\eta(A \xi)=0$.

An almost similar problem for $n \geq 3$ has been solved in [15]. In addition, the form ω has no restriction in its values, so it could vanish at some point. Therefore condition (1.2) could be called generalized ξ-parallel Jacobi structure operator, since it generalizes the notion of ξ-parallel Jacobi structure operator $\left(\nabla_{\xi} l=0\right)$.

2 Preliminaries

In this section, we explain explicitly the notions that were mentioned in section 0 , as well as the notions that will appear in the paper. We also give a series of equations that will be our basic tools in our calculations and conclusions.

Let M_{n} be a Kaehlerian manifold of real dimension 2 n , equipped with an almost complex structure J and a Hermitian metric tensor G. Then for any vector fields X and Y on $M_{n}(c)$, the following relations hold: $J^{2} X=-X, \quad G(J X, J Y)=G(X, Y)$, $\widetilde{\nabla} J=0$, where $\widetilde{\nabla}$ denotes the Riemannian connection of G of M_{n}.

Let $M_{2 n-1}$ be a real ($2 n-1$)-dimensional hypersurface of $M_{n}(c)$, and denote by N a unit normal vector field on a neighborhood of a point in $M_{2 n-1}$ (from now on we shall write M instead of $M_{2 n-1}$). For any vector field X tangent to M we have $J X=\phi X+\eta(X) N$, where ϕX is the tangent component of $J X, \eta(X) N$ is the normal component, and $\xi=-J N, \quad \eta(X)=g(X, \xi), \quad g=\left.G\right|_{M}$.

By properties of the almost complex structure J and the definitions of η and g, the following relations hold ([2]):

$$
\begin{gather*}
\phi^{2}=-I+\eta \otimes \xi, \quad \eta \circ \phi=0, \quad \phi \xi=0, \quad \eta(\xi)=1 \tag{2.1}\\
g(\phi X, \phi Y)=g(X, Y)-\eta(X) \eta(Y), \quad g(X, \phi Y)=-g(\phi X, Y) . \tag{2.2}
\end{gather*}
$$

The above relations define an almost contact metric structure on M which is denoted by (ϕ, ξ, g, η). When an almost contact metric structure is defined on M, we can define a local orthonormal basis $\left\{e_{1}, e_{2}, \ldots e_{n-1}, \phi e_{1}, \phi e_{2}, \ldots \phi e_{n-1}, \xi\right\}$, called a $\phi-b a s i s$. Furthermore, let A be the shape operator in the direction of N, and denote by ∇ the Riemannian connection of g on M. Then, A is symmetric and the following equations are satisfied:

$$
\begin{equation*}
\nabla_{X} \xi=\phi A X, \quad\left(\nabla_{X} \phi\right) Y=\eta(Y) A X-g(A X, Y) \xi \tag{2.3}
\end{equation*}
$$

Since the ambient space $M_{n}(c)$ is of constant holomorphic sectional curvature c, the equations of Gauss and Codazzi are respectively given by:

$$
\begin{gather*}
R(X, Y) Z=\frac{c}{4}[g(Y, Z) X-g(X, Z) Y+g(\phi Y, Z) \phi X-g(\phi X, Z) \phi Y \tag{2.4}\\
-2 g(\phi X, Y) \phi Z]+g(A Y, Z) A X-g(A X, Z) A Y
\end{gather*}
$$

$$
\begin{equation*}
\left(\nabla_{X} A\right) Y-\left(\nabla_{Y} A\right) X=\frac{c}{4}[\eta(X) \phi Y-\eta(Y) \phi X-2 g(\phi X, Y) \xi] \tag{2.5}
\end{equation*}
$$

The tangent space $T_{p} M$, at every point $p \in M$, is decomposed as following:

$$
T_{p} M=\mathbb{D}^{\perp} \oplus \mathbb{D}
$$

where $\mathbb{D}=\operatorname{ker}(\eta)=\left\{X \in T_{p} M: \eta(X)=0\right\}$.
The subspace $\operatorname{ker}(\eta)$ is more usually referred as \mathbb{D} and called holomorphic distribution of M at p. Based on the decomposition of $T_{p} M$, by virtue of (2.3), we decompose the vector field $A \xi$ in the following way:

$$
\begin{equation*}
A \xi=\alpha \xi+\beta U \tag{2.6}
\end{equation*}
$$

where $\beta=\left|\phi \nabla_{\xi} \xi\right|, \alpha$ is a smooth function on M and $U=-\frac{1}{\beta} \phi \nabla_{\xi} \xi \in \operatorname{ker}(\eta)$, provided that $\beta \neq 0$.

If the vector field $A \xi$ is expressed as $A \xi=\alpha \xi$, then ξ is called principal vector field.

Finally differentiation of vector field X along a function f will be denoted by $(X f)$. All manifolds, vector fields, etc, of this paper are assumed to be connected and of class C^{∞}.

3 Auxiliary relations

We suppose there exists a point $p \in M$ such that $\beta \neq 0$ in a neighborhood \mathcal{N} around p. We define the open subset \mathcal{N}_{1} of \mathcal{N} such that $\mathcal{N}_{1}=\{q \in \mathcal{N}: \alpha \neq 0$ in a neighborhood around $q\}$.

Lemma 3.1. Let M be a real hypersurface of a complex plane $M_{2}(c)$ satisfying (1.1) on \mathbb{D}. Then the following relations hold on \mathcal{N}_{1}.

$$
\begin{gather*}
A U=\left(\frac{\beta^{2}}{\alpha}-\frac{c}{4 \alpha}\right) U+\beta \xi, \quad A \phi U=\left(\frac{\gamma}{\alpha}-\frac{c}{4 \alpha}\right) \phi U . \tag{3.1}\\
\nabla_{\xi} \xi=\beta \phi U, \nabla_{U} \xi=\left(\frac{\beta^{2}}{\alpha}-\frac{c}{4 \alpha}\right) \phi U, \nabla_{\phi U} \xi=\left(\frac{c}{4 \alpha}-\frac{\gamma}{\alpha}\right) U . \tag{3.2}\\
\nabla_{\xi} U=\kappa_{1} \phi U, \quad \nabla_{U} U=\kappa_{2} \phi U, \quad \nabla_{\phi U} U=\kappa_{3} \phi U+\left(\frac{\gamma}{\alpha}-\frac{c}{4 \alpha}\right) \xi . \tag{3.3}\\
\nabla_{\xi} \phi U=-\kappa_{1} U-\beta \xi, \quad \nabla_{U} \phi U=-\kappa_{2} U+\left(\frac{c}{4 \alpha}-\frac{\beta^{2}}{\alpha}\right) \xi \tag{3.4}\\
\nabla_{\phi U} \phi U=-\kappa_{3} U .
\end{gather*}
$$

where $\kappa_{1}, \kappa_{2}, \kappa_{3}$ are smooth functions on \mathcal{N}_{1}.
Proof.
In what follows we work on \mathcal{N}_{1}. By definition of the vector fields $U, \phi U, \xi$ and due to (2.1), the set $\{U, \phi U, \xi\}$ is an orthonormal basis. From (2.4) we obtain

$$
\begin{equation*}
l U=\frac{c}{4} U+\alpha A U-\beta A \xi, \quad l \phi U=\frac{c}{4} \phi U+\alpha A \phi U \tag{3.5}
\end{equation*}
$$

The inner products of $l U$ with U and ϕU respectively yield

$$
\begin{equation*}
g(A U, U)=\frac{\epsilon}{\alpha}-\frac{c}{4 \alpha}+\frac{\beta^{2}}{\alpha}, \quad g(A U, \phi U)=\frac{\delta}{\alpha} \tag{3.6}
\end{equation*}
$$

where $\epsilon=g(l U, U)$ and $\delta=g(l U, \phi U)$.
So, (3.6) and $g(A U, \xi)=g(A \xi, U)=\beta$, yield

$$
\begin{equation*}
A U=\left(\frac{\epsilon}{\alpha}-\frac{c}{4 \alpha}+\frac{\beta^{2}}{\alpha}\right) U+\frac{\delta}{\alpha} \phi U+\beta \xi \tag{3.7}
\end{equation*}
$$

Since l is symmetric with respect to metric g, the scalar products of the second of (3.5) with U and ϕU yield respectively

$$
g(A \phi U, U)=\frac{\delta}{\alpha}, \quad g(A \phi U, \phi U)=\frac{\gamma}{\alpha}-\frac{c}{4 \alpha}
$$

where $\gamma=g(l \phi U, \phi U)$. So, the above equations and $g(A \phi U, \xi)=g(A \xi, \phi U)=0$, yield

$$
\begin{equation*}
A \phi U=\left(\frac{\gamma}{\alpha}-\frac{c}{4 \alpha}\right) \phi U+\frac{\delta}{\alpha} U \tag{3.8}
\end{equation*}
$$

From (3.5), (3.7) and (3.8) we obtain $l U=\epsilon U+\delta \phi U$ and $l \phi U=\delta U+\gamma \phi U$. We make use of the last two equations, along with (1.6), (2.7), (2.8) and the symmetry of l, to analyze $g(l A U, \xi)=g(A l U, \xi)$ - which holds due to (1.1) - and obtain $\epsilon=0$. Similarly, from the same equations, $\epsilon=0$ and $g(l A \phi U, \xi)=g(A l \phi U, \xi)$ we take $\delta=0$. Therefore, from $\delta=\epsilon=0$ and (3.7), (3.8) we obtain (3.1). In addition we have shown

$$
\begin{equation*}
l U=0, \quad l \phi U=\gamma \phi U \tag{3.9}
\end{equation*}
$$

From equation (3.1) and relation (2.3) for $X=\xi, X=U, X=\phi U$, we obtain (3.2). Next we remind of the rule

$$
\begin{equation*}
X g(Y, Z)=g\left(\nabla_{X} Y, Z\right)+g\left(Y, \nabla_{X} Z\right) \tag{3.10}
\end{equation*}
$$

By virtue of (3.10) for $X=Z=\xi, Y=U$ and for $X=\xi, Y=Z=U$, it is shown respectively $\nabla_{\xi} U \perp \xi$ and $\nabla_{\xi} U \perp U$. So $\nabla_{\xi} U=\kappa_{1} \phi U$, where $\kappa_{1}=g\left(\nabla_{\xi} U, \phi U\right)$. In a similar way, (3.10) for $X=Y=Z=U$ and $X=Z=U, Y=\xi$ respectively yields $\nabla_{U} U \perp U$ and $\nabla_{U} U \perp \xi$. This means that $\nabla_{U} U=\kappa_{2} \phi U$, where $\kappa_{2}=g\left(\nabla_{U} U, \phi U\right)$. Finally, (3.10) for $X=\phi U, Y=Z=U$ and $X=\phi U, Y=U, Z=\xi$ (with the aid of (3.2)) yields respectively $\nabla_{\phi U} U \perp U$ and $g\left(\nabla_{\phi U} U, \xi\right)=\frac{\gamma}{\alpha}-\frac{c}{4 \alpha}$. Therefore $\nabla_{\phi U} U=\kappa_{3} \phi U+\left(\frac{\gamma}{\alpha}-\frac{c}{4 \alpha}\right) \xi$ where $\kappa_{3}=g\left(\nabla_{\phi U} U, \phi U\right)$ and (3.3) has been proved. In order to prove (3.4) we use the second of (2.3) with the following combinations: i) $X=\xi, Y=U, i i) X=Y=U$, iii) $X=\phi U, Y=U$, and make use of (2.6), (3.1), (3.3).

By putting $X=U, Y=\xi$ in (2.5) we obtain $\nabla_{U} A \xi-A \nabla_{U} \xi-\nabla_{\xi} A U+A \nabla_{\xi} U=$ $-\frac{c}{4} \phi U$, which is expanded by Lemma 3.1, to give

$$
\begin{gathered}
{[(U \alpha)-(\xi \beta)] \xi+\left[(U \beta)-\left(\xi\left(\frac{\beta^{2}}{\alpha}-\frac{c}{4 \alpha}\right)\right)\right] U+} \\
{\left[\kappa_{2} \beta-\left(\frac{\beta^{2}}{\alpha}-\frac{c}{4 \alpha}\right)\left(\frac{\gamma}{\alpha}-\frac{c}{4 \alpha}\right)+\left(\frac{\gamma}{\alpha}-\frac{\beta^{2}}{\alpha}\right) \kappa_{1}\right] \phi U}
\end{gathered}
$$

Since the vector fields $U, \phi U$ and ξ are linearly independent, the above equations gives

$$
\begin{gather*}
(U \alpha)=(\xi \beta) \tag{3.11}\\
(U \beta)=\left(\xi\left(\frac{\beta^{2}}{\alpha}-\frac{c}{4 \alpha}\right)\right) \tag{3.12}
\end{gather*}
$$

$$
\begin{gathered}
(U \beta)=\left(\xi\left(\frac{\beta^{2}}{\alpha}-\frac{c}{4 \alpha}\right)\right) \\
\kappa_{2} \beta-\left(\frac{\beta^{2}}{\alpha}-\frac{c}{4 \alpha}\right)\left(\frac{\gamma}{\alpha}-\frac{c}{4 \alpha}\right)+\left(\frac{\gamma}{\alpha}-\frac{\beta^{2}}{\alpha}\right) \kappa_{1}=0
\end{gathered}
$$

In a similar way, from (2.5) we get $\nabla_{\phi U} A \xi-A \nabla_{\phi U} \xi-\nabla_{\xi} A \phi U+A \nabla_{\xi} \phi U=\frac{c}{4} U$, which is expanded by Lemma 3.1, to give

$$
\begin{gathered}
{\left[(\phi U \alpha)+3 \beta\left(\frac{\gamma}{\alpha}-\frac{c}{4 \alpha}\right)-\kappa_{1} \beta-\alpha \beta\right] \xi+} \\
{\left[\phi U \beta-\gamma+\left(\frac{\beta^{2}}{\alpha}-\frac{c}{4 \alpha}\right)\left(\frac{\gamma}{\alpha}-\frac{c}{4 \alpha}\right)+\kappa_{1}\left(\frac{\gamma}{\alpha}-\frac{\beta^{2}}{\alpha}\right)-\beta^{2}\right] U+} \\
{\left[\kappa_{3} \beta-\xi\left(\frac{\gamma}{\alpha}-\frac{c}{4 \alpha}\right)\right] \phi U=0}
\end{gathered}
$$

which leads to

$$
\begin{gather*}
(\phi U \alpha)+3 \beta\left(\frac{\gamma}{\alpha}-\frac{c}{4 \alpha}\right)-\kappa_{1} \beta-\alpha \beta=0 \tag{3.14}\\
\phi U \beta-\gamma+\left(\frac{\beta^{2}}{\alpha}-\frac{c}{4 \alpha}\right)\left(\frac{\gamma}{\alpha}-\frac{c}{4 \alpha}\right)+\kappa_{1}\left(\frac{\gamma}{\alpha}-\frac{\beta^{2}}{\alpha}\right)-\beta^{2}=0 \\
\kappa_{3} \beta=\xi\left(\frac{\gamma}{\alpha}-\frac{c}{4 \alpha}\right)
\end{gather*}
$$

Finally, (2.5) yields $\nabla_{U} A \phi U-A \nabla_{U} \phi U-\nabla_{\phi U} A U+A \nabla_{\phi U} U=-\frac{c}{2} \xi$, which is expanded by Lemma 3.1, to give

$$
\begin{gathered}
{\left[-\phi U \beta+\gamma-2\left(\frac{\beta^{2}}{\alpha}-\frac{c}{4 \alpha}\right)\left(\frac{\gamma}{\alpha}-\frac{c}{4 \alpha}\right)+\kappa_{2} \beta+\beta^{2}\right] \xi+} \\
{\left[\beta\left(\frac{\beta^{2}}{\alpha}-\frac{c}{4 \alpha}\right)+2 \beta\left(\frac{\gamma}{\alpha}-\frac{c}{4 \alpha}\right)+\kappa_{2}\left(\frac{\beta^{2}}{\alpha}-\frac{\gamma}{\alpha}\right)-\phi U\left(\frac{\beta^{2}}{\alpha}-\frac{c}{4 \alpha}\right)\right] U+} \\
{\left[U\left(\frac{\gamma}{\alpha}-\frac{c}{4 \alpha}\right)+\kappa_{3}\left(\frac{\gamma}{\alpha}-\frac{\beta^{2}}{\alpha}\right)\right] \phi U=0}
\end{gathered}
$$

The above relation leads to

$$
\begin{gather*}
\phi U \beta-\gamma+2\left(\frac{\beta^{2}}{\alpha}-\frac{c}{4 \alpha}\right)\left(\frac{\gamma}{\alpha}-\frac{c}{4 \alpha}\right)-\kappa_{2} \beta-\beta^{2}=0 \tag{3.17}\\
\beta\left(\frac{\beta^{2}}{\alpha}-\frac{c}{4 \alpha}\right)+2 \beta\left(\frac{\gamma}{\alpha}-\frac{c}{4 \alpha}\right)+\kappa_{2}\left(\frac{\beta^{2}}{\alpha}-\frac{\gamma}{\alpha}\right)=\phi U\left(\frac{\beta^{2}}{\alpha}-\frac{c}{4 \alpha}\right)
\end{gather*}
$$

$$
\begin{equation*}
U\left(\frac{\gamma}{\alpha}-\frac{c}{4 \alpha}\right)=-\kappa_{3}\left(\frac{\gamma}{\alpha}-\frac{\beta^{2}}{\alpha}\right) \tag{3.19}
\end{equation*}
$$

We combine (3.15) and (3.17), by removing the term $\phi U \beta-\gamma-\beta^{2}$, to obtain

$$
\begin{equation*}
\kappa_{2} \beta+\kappa_{1}\left(\frac{\gamma}{\alpha}-\frac{\beta^{2}}{\alpha}\right)=\left(\frac{\beta^{2}}{\alpha}-\frac{c}{4 \alpha}\right)\left(\frac{\gamma}{\alpha}-\frac{c}{4 \alpha}\right) \tag{3.20}
\end{equation*}
$$

Furthermore, we modify equation (3.18) as following: we expand the term $\phi U\left(\frac{\beta^{2}}{\alpha}-\right.$ $\left.\frac{c}{4 \alpha}\right)$ and then replace the terms $(\phi U \alpha),(\phi U \beta)$ respectively from (3.14) and (3.15). The final relation is

$$
\begin{equation*}
\kappa_{2}\left(\beta^{2}-\gamma\right)-\beta c=\frac{\beta}{\alpha^{2}}\left(\gamma-\frac{c}{4}\right)\left(\beta^{2}-\frac{c}{4}\right)+\kappa_{1} \beta\left(\frac{\beta^{2}}{\alpha}-2 \frac{\gamma}{\alpha}+\frac{c}{4 \alpha}\right) \tag{3.21}
\end{equation*}
$$

By virtue of (3.20), the term κ_{2} is replaced in (3.21), and after calculations we result to

$$
\begin{equation*}
\kappa_{1}\left(\frac{\gamma^{2}}{\beta}-\frac{\beta c}{4}\right)-\alpha \beta c-\frac{\gamma}{\beta}\left(\frac{\gamma}{\alpha}-\frac{c}{4 \alpha}\right)\left(\beta^{2}-\frac{c}{4}\right)=0 \tag{3.22}
\end{equation*}
$$

Lemma 3.2. Let M be a real hypersurface of a complex plane $M_{2}(c)$ satisfying (1.1) and (1.2) on \mathbb{D}. Then, equations $\gamma=0, \kappa_{1}=-4 \alpha$ and $\kappa_{2}=-4 \beta-\frac{c}{4 \alpha \beta}\left(\frac{\beta^{2}}{\alpha}-\frac{c}{4 \alpha}\right)$ hold on \mathcal{N}_{1}.

Proof.
By making use of (1.2) for $X=U$ and with the aid of Lemma 3.1 and (3.9), we take

$$
\begin{equation*}
\kappa_{1} \gamma=0, \quad(\xi \gamma)=0 \tag{3.23}
\end{equation*}
$$

Let us assume there exists a point $p_{1} \in \mathcal{N}_{1}$ at which $\gamma \neq 0$. Then, there exists a neighborhood V_{1} of p_{1} such that $\gamma \neq 0$ in V_{1}. We are going to work in V_{1} throughout the proof of this Lemma, in order to show $V_{1}=\varnothing$. Since $\gamma \neq 0,(3.23)$ yields

$$
\begin{equation*}
\kappa_{1}=(\xi \gamma)=0 \tag{3.24}
\end{equation*}
$$

From (2.4), (3.23) and Lemma 3.1 we obtain $R(U, \xi) U=0$. We also have $R(U, \xi) U=$ $\nabla_{U} \nabla_{\xi} U-\nabla_{\xi} \nabla_{U} U-\nabla_{[U, \xi]} U$ which is analyzed with the aid of Lemma 3.1 and (3.23) giving $R(U, \xi) U=\left[-\left(\xi \kappa_{2}\right)-\kappa_{3}\left(\frac{\beta^{2}}{\alpha}-\frac{c}{4 \alpha}\right)\right] \phi U+\left[\kappa_{2} \beta-\left(\frac{\beta^{2}}{\alpha}-\frac{c}{4 \alpha}\right)\left(\frac{\gamma}{\alpha}-\frac{c}{4 \alpha}\right)\right] \xi$. The two expressions of $R(U, \xi) U$ give

$$
\begin{equation*}
\left(\xi \kappa_{2}\right)=-\kappa_{3}\left(\frac{\beta^{2}}{\alpha}-\frac{c}{4 \alpha}\right), \kappa_{2} \beta=\left(\frac{\beta^{2}}{\alpha}-\frac{c}{4 \alpha}\right)\left(\frac{\gamma}{\alpha}-\frac{c}{4 \alpha}\right) . \tag{3.25}
\end{equation*}
$$

We differentiate the second of (3.25) along ξ and then replace the term $\left(\xi \kappa_{2}\right)$ from the first of (3.25), resulting to

$$
\begin{equation*}
\kappa_{2}(\xi \beta)=\frac{2 \beta}{\alpha}\left(\frac{\gamma}{\alpha}-\frac{c}{4 \alpha}\right)(\xi \beta)-\left(\frac{\gamma}{\alpha}-\frac{c}{4 \alpha}\right)\left(\frac{\beta^{2}}{\alpha^{2}}-\frac{c}{4 \alpha^{2}}\right)(\xi \alpha)+2 \beta\left(\frac{\beta^{2}}{\alpha}-\frac{c}{4 \alpha}\right) \kappa_{3} \tag{3.26}
\end{equation*}
$$

Next we differentiate (3.22) along ξ, combined with (3.24), in order to obtain

$$
\begin{equation*}
\alpha \beta c(\xi \alpha)+\alpha^{2} c(\xi \beta)+\gamma\left(\gamma-\frac{c}{4}\right)(\xi \beta)=0 . \tag{3.27}
\end{equation*}
$$

By making use of (3.25) and (3.27), we replace the terms κ_{2} and $(\xi \alpha)$ respectively, in (3.26) and after calculations we obtain

$$
\begin{equation*}
\left[\frac{2 \beta}{\alpha}\left(\frac{\gamma}{\alpha}-\frac{c}{4 \alpha}\right)+\frac{\gamma}{\alpha \beta c}\left(\frac{\gamma}{\alpha}-\frac{c}{4 \alpha}\right)^{2}\left(\frac{\beta^{2}}{\alpha}-\frac{c}{4 \alpha}\right)\right](\xi \beta)=-2 \beta\left(\frac{\beta^{2}}{\alpha}-\frac{c}{4 \alpha}\right) \kappa_{3} . \tag{3.28}
\end{equation*}
$$

(3.22) is rewritten as $\frac{\gamma}{\alpha \beta c}\left(\frac{\gamma}{\alpha}-\frac{c}{4 \alpha}\right)\left(\frac{\beta^{2}}{\alpha}-\frac{c}{4 \alpha}\right)=-\frac{\beta}{\alpha}$ which is used with (3.28) to obtain

$$
\begin{equation*}
\left(\frac{\gamma}{\alpha}-\frac{c}{4 \alpha}\right)(\xi \beta)=-2\left(\beta^{2}-\frac{c}{4}\right) \kappa_{3} . \tag{3.29}
\end{equation*}
$$

We notice that $\gamma-\frac{c}{4} \neq 0$, otherwise (3.22) would yield $\alpha \beta c=0$ which is a contradiction. Therefore we combine (3.16), (3.24), (3.27) and (3.29), taking

$$
\left[-\alpha^{3} \beta^{2} c-2 \alpha^{3}\left(\beta^{2}-\frac{c}{4}\right)-2 \alpha \gamma\left(\gamma-\frac{c}{4}\right)\left(\beta^{2}-\frac{c}{4}\right)\right] \kappa_{3}
$$

If we had $\kappa_{3} \neq 0$ in a neighborhood of V_{1} then the above relation and (3.22) would give $\beta^{2}=\frac{c}{2} \Rightarrow(\xi \beta)=0 \Rightarrow \beta^{2}=\frac{c}{4}$ (due to (3.29)) which is a contradiction. Therefore $\kappa_{3}=0$. Since $\kappa_{3}=0,(3.11),(3.12),(3.27)$ and (3.29) imply $([U, \xi] \alpha)=([U, \xi] \beta)=0$. However, these Lie brackets are also estimated from Lemma 3.1, (3.14), (3.15), (3.24), which means we have the following:

$$
\begin{gather*}
\left(\beta^{2}-\frac{c}{4}\right)\left(3\left(\frac{\gamma}{\alpha}-\frac{c}{4 \alpha}\right)-\alpha\right)=0 \tag{3.30}\\
\left.\left(\beta^{2}-\frac{c}{4}\right)\left(\frac{\beta^{2}}{\alpha}-\frac{c}{4 \alpha}\right)\left(\frac{\gamma}{\alpha}-\frac{c}{4 \alpha}\right)-\beta^{2}-\gamma\right)=0
\end{gather*}
$$

Due to (3.22) it must be $\beta^{2}-\frac{c}{4} \neq 0$ of V_{1}. Then from (3.30) we acquire

$$
\begin{equation*}
\frac{\gamma}{\alpha}-\frac{c}{4 \alpha}=\frac{\alpha}{3} \Leftrightarrow(\phi U \alpha)=0, \quad \beta^{2}-\frac{c}{4}=3\left(\beta^{2}+\gamma\right) \Leftrightarrow(\phi U \beta)=0 \tag{3.31}
\end{equation*}
$$

From (3.31) we modify (3.20):

$$
\begin{equation*}
\kappa_{2}=\frac{1}{3 \beta}\left(\beta^{2}-\frac{c}{4}\right) \tag{3.32}
\end{equation*}
$$

We make use of the last relation, (3.24), (3.31), $\kappa_{3}=0$ and Lemma 3.1 to show $R(\phi U, U) U=\left(-\kappa_{2}^{2}-\left(\frac{\beta^{2}}{\alpha}-\frac{c}{4 \alpha}\right)\left(\frac{\gamma}{\alpha}-\frac{c}{4 \alpha}\right)\right) \phi U$. The same vector field is calculated from (2.4), (3.31), (3.32) and Lemma 3.1 and then we equalize the two expressions of $R(\phi U, U) U$, resulting to

$$
\begin{equation*}
-\frac{1}{9 \beta^{2}}\left(\beta^{2}-\frac{c}{4}\right)^{2}=c+\frac{2}{3}\left(\beta^{2}-\frac{c}{4}\right) \tag{3.33}
\end{equation*}
$$

In the same way, by calculating $R(\phi U, \xi) U$ with the aid of Lemma 3.1, $\kappa_{1}=\kappa_{3}=0$, (3.16), (3.31) we obtain $\kappa_{2}=2 \beta$, which is combined with (3.32) giving

$$
6 \beta^{2}=\beta^{2}-\frac{c}{4} \Leftrightarrow \beta^{2}=-\frac{c}{20}
$$

The above result and (3.33) lead to $\beta^{2}=-\frac{c}{8}$, which is a contradiction in V_{1}, meaning $V_{1}=\varnothing$. The rest of the proof follows from (3.21), (3.22), (3.23).

4 The set \mathcal{N}_{1} is the empty set.

We start with the following result:
Lemma 4.1. Let M be a real hypersurface of a complex plane $M_{2}(c)$ satisfying (1.1) and (1.2) on \mathbb{D}. Then $\kappa_{3}=0$ holds on \mathcal{N}_{1}.

Proof.
Lemma 3.2, (3.11), (3.12), (3.16) and (3.19) yield

$$
\begin{equation*}
(U \alpha)=(\xi \beta)=\frac{4 \alpha \beta^{2}}{c} \kappa_{3}, \quad(\xi \alpha)=\frac{4 \alpha^{2} \beta}{c} \kappa_{3}, \quad(U \beta)=\beta\left(\frac{4 \beta^{2}}{c}+1\right) \kappa_{3} . \tag{4.1}
\end{equation*}
$$

We use Lemmas 3.1, 3.2 and relations (3.14), (4.1) to calculate

$$
[\phi U, U] \alpha=\left(\nabla_{\phi U} U-\nabla_{U} \phi U\right) \alpha=\kappa_{3}\left(\frac{\beta c}{\alpha}-5 \alpha \beta-\frac{12 \alpha \beta^{3}}{c}-\frac{\beta^{3}}{\alpha}\right)
$$

On the other hand, from Lemmas 3.1, 3.2 and equations (3.14), (4.1), we obtain

$$
[\phi U, U] \alpha=\phi U(U \alpha)-U(\phi U \alpha)=\phi U(U \alpha)+\left(3 \alpha \beta+\frac{24 \alpha \beta^{3}}{c}-\frac{3 \beta c}{4 \alpha}\right) \kappa_{3}
$$

Equalizing the two expressions of $[\phi U, U] \alpha$ we result to

$$
\begin{equation*}
\phi U(U \alpha)=\left(\frac{7 \beta c}{4 \alpha}-\frac{36 \alpha \beta^{3}}{c}-\frac{\beta^{3}}{\alpha}-8 \alpha \beta\right) \kappa_{3} \tag{4.2}
\end{equation*}
$$

By making use of Lemmas 3.1, 3.2 and relation (4.1), it is proved that

$$
[\phi U, \xi] \beta=\left(\nabla_{\phi U} \xi-\nabla_{\xi} \phi U\right) \beta=\left[\frac{\beta c}{4 \alpha}-\frac{12 \alpha \beta^{3}}{c}+\frac{\beta^{3}}{\alpha}-4 \alpha \beta\right] \kappa_{3} .
$$

However, the same differentiation is calculated with aid of Lemma 3.2 and equations (3.15), (3.1):

$$
[\phi U, \xi] \beta=\phi U(\xi \beta)-\xi(\phi U \beta)=\phi U(\xi \beta)+\left[-\frac{\beta c}{2 \alpha}+\frac{24 \alpha \beta^{3}}{c}\right] \kappa_{3}
$$

Comparing the two expressions of $[\phi U, \xi] \beta$ we are led to

$$
\begin{equation*}
\phi U(\xi \beta)=\left[\frac{\beta^{3}}{\alpha}+\frac{3 \beta c}{4 \alpha}-\frac{36 \alpha \beta^{3}}{c}-4 \alpha \beta\right] \kappa_{3} . \tag{4.3}
\end{equation*}
$$

From (3.11), (4.2) and (4.3) we acquire

$$
\begin{equation*}
\left(2 \alpha^{2}+\beta^{2}-\frac{c}{2}\right) \kappa_{3}=0 \tag{4.4}
\end{equation*}
$$

Let us assume there exists a point $p_{2} \in \mathcal{N}_{1}$ at which $\kappa_{3} \neq 0$. Then, there exists a neighborhood V_{2} of p_{2} such that $\kappa_{3} \neq 0$ in V_{2}. Therefore (3.4) yields $\alpha^{2}+\beta^{2}=\frac{c}{2}$, which is differentiated along ξ, with the aid of (4.1) and $\kappa_{3} \neq 0$, giving $2 \alpha^{2}+\beta^{2}=0$ which is a contradiction. This means there are no points of \mathcal{N}_{1} where $\kappa_{3} \neq 0$ and so $\kappa_{3}=0$ holds on \mathcal{N}_{1}.

Now that $\kappa_{3}=0$, from (4.1) we have $[U, \xi] \alpha=U(\xi \alpha)-\xi(U \alpha)=0$. Furthermore, from Lemmas 3.1, 3.2 and (3.14) we have $[U, \xi] \alpha=\left(\nabla_{U} \xi-\nabla_{\xi} U\right) \alpha=\beta\left(\frac{\beta^{2}}{\alpha}-\frac{c}{4 \alpha}+\right.$ $4 \alpha)\left(\frac{3 c}{4 \alpha}-3 \alpha\right)$. So we conclude

$$
\begin{equation*}
3 \beta\left(\frac{\beta^{2}}{\alpha}-\frac{c}{4 \alpha}+4 \alpha\right)\left(\frac{c}{4 \alpha}-\alpha\right)=0 \tag{4.5}
\end{equation*}
$$

Similarly, from (4.1) and Lemma 4.1 we have $[U, \xi] \beta=0$, while from Lemmas 3.1, 3.2 and (3.15) we have $[U, \xi] \beta=\left(\nabla_{U} \xi-\nabla_{\xi} U\right) \beta=\left(\frac{\beta^{2}}{\alpha}-\frac{c}{4 \alpha}+4 \alpha\right)\left[\left(\frac{c}{4 \alpha}\right)\left(\frac{\beta^{2}}{\alpha}-\frac{c}{4 \alpha}\right)-3 \beta^{2}\right]$. So we have shown

$$
\begin{equation*}
\left(\frac{\beta^{2}}{\alpha}-\frac{c}{4 \alpha}+4 \alpha\right)\left[\left(\frac{c}{4 \alpha}\right)\left(\frac{\beta^{2}}{\alpha}-\frac{c}{4 \alpha}\right)-3 \beta^{2}\right]=0 \tag{4.6}
\end{equation*}
$$

Let us assume there exists a point $p_{3} \in \mathcal{N}_{1}$ at which $\frac{\beta^{2}}{\alpha}-\frac{c}{4 \alpha}+4 \alpha \neq 0$. Then, there exists a neighborhood V_{3} of p_{3} such that $\frac{\beta^{2}}{\alpha}-\frac{c}{4 \alpha}+4 \alpha \neq 0$ in V_{3}. In this case (4.5) and (4.6) yield respectively $\frac{c}{4}=\alpha^{2}>0$ and $\frac{c}{4 \alpha}\left(\frac{\beta^{2}}{\alpha}-\frac{c}{4 \alpha}\right)-3 \beta^{2}=0$. We combine the last two relations by removing the term α^{2} and obtain $c=-8 \beta^{2}<0$ which is a contradiction to $\frac{c}{4}=\alpha^{2}>0$. So there exists no point of \mathcal{N}_{1} where $\frac{\beta^{2}}{\alpha}-\frac{c}{4 \alpha}+4 \alpha \neq 0$, hence it must be $\frac{\beta^{2}}{\alpha}-\frac{c}{4 \alpha}+4 \alpha=0 \Rightarrow$

$$
\begin{equation*}
\beta^{2}+4 \alpha^{2}=\frac{c}{4}>0 \tag{4.7}
\end{equation*}
$$

Differentiating (4.7) along ϕU we acquire $\beta(\phi U \beta)+4 \alpha(\phi U \alpha)=0$ which is expanded by (3.14), (3.15) and Lemma 3.2, giving

$$
\frac{c}{4 \alpha^{2}}\left(\beta^{2}-\frac{c}{4}\right)-3 \beta^{2}-12 \alpha^{2}+3 c=0
$$

Replacing the term $\beta^{2}-\frac{c}{4}$ with $-4 \alpha^{2}$ - due to (4.7) - we get $\beta^{2}+4 \alpha^{2}=\frac{2 c}{3}<0$ which is a contradiction to (4.7). So $\mathcal{N}_{1}=\varnothing$.

5 Proof of Theorem 0.1

Because of Section 4, and by definition of the sets $\mathcal{N}, \mathcal{N}_{1}$ in the beginning of section 3 , in the set \mathcal{N}, equation (2.6) takes the form $A \xi=\beta U$. This means that the vector fields $A U$ and $A \phi U$ are decomposed with respect to the ϕ-basis $\{U, \phi U, \xi\}$ as:

$$
\begin{equation*}
A U=\mu_{1} U+\mu_{2} \phi U+\beta \xi, \quad A \phi U=\mu_{2} U+\mu_{3} \phi U \tag{5.1}
\end{equation*}
$$

for some functions $\mu_{1}, \mu_{2}, \mu_{3}$. In addition, from (2.4) and $A \xi=\beta U$ we obtain $l U=\frac{c}{4} U$ and $l \phi U=\frac{c}{4} \phi U$. Combining the previous two equations with (5.1) and (1.1), we analyze $l A U=A l U$ to take $\beta=0$ which is a contradiction in \mathcal{N}. So $\mathcal{N}=\varnothing$ and the real hypersurface M consists of points where $\beta=0$, i.e, M is a Hopf hypersurface.

Since M is Hopf, we have $A \xi=\alpha \xi$ and α is constant ([11]). The inner product of $\left(\nabla_{\xi} l\right) X=\omega(X) \xi$ with ξ (because of (2.3), (3.10) and $A \xi=\alpha \xi$) yields $\omega(X)=0$. This means that $\nabla_{\xi} l=0$.

It is easy to check that $\left(\nabla_{\xi} l\right) \xi=0$ for any Hopf hypersurface. Now consider a vector field $X \in \mathbb{D}$. From the Gauss equation we have $l X=\left(\alpha A+\frac{c}{4}\right) X$, so that

$$
\begin{gathered}
\left(\nabla_{\xi} l\right) X=\nabla_{\xi} l X-l \nabla_{\xi} X \\
=\nabla_{\xi}\left(\alpha A+\frac{c}{4}\right) X-\left(\alpha A+\frac{c}{4}\right) \nabla_{\xi} X,
\end{gathered}
$$

since $\nabla_{\xi} X$ is also in \mathbb{D}. We can simplify this, using the Codazzi equation, to get

$$
\begin{aligned}
\left(\nabla_{\xi} l\right) X= & \alpha\left(\nabla_{\xi} A\right) X \\
& =\alpha\left(\left(\nabla_{X} A\right) \xi+\frac{c}{4} \phi X\right) \\
& =\alpha\left((\alpha-A) \phi A X+\frac{c}{4} \phi X\right)
\end{aligned}
$$

In particular, If X is chosen to be a principal vector field, such that $A X=\lambda_{1} X$ and $A \phi X=\lambda_{2} \phi X$, then the condition $\nabla_{\xi} l=0$ implies that

$$
\alpha\left(\lambda_{1}-\lambda_{2}\right)=0
$$

where we have used the well known relation for Hopf hypersurfaces

$$
\lambda_{1} \lambda_{2}=\frac{\lambda_{1}+\lambda_{2}}{2} \alpha+\frac{c}{4} .
$$

If $\alpha \neq 0$ then $\lambda_{1}=\lambda_{2}$ is locally constant since it satisfies $\lambda_{1}^{2}=\alpha \lambda_{1}+\frac{c}{4}$. Therefore, M is an open subset of type A hypersurface, based on the theorems of Kimura and Berndt and the lists of principal curvatures in [13] and [9]. In case $\alpha=0$, we have $\lambda_{1} \neq \lambda_{2}$ or $\lambda_{1}=\lambda_{2}$ with $\lambda_{1}^{2}=\frac{c}{4}$ and the classification follows from [7].

Conversely, let M be of type A_{1} in $\mathbb{C} P^{2}$ or type $A_{0}, A_{1,0}, A_{1,1}$ in $\mathbb{C} H^{2}$. Take $X \in \mathbb{D}$ a principal vector field with principal curvature λ, and α the principal curvature of ξ. (2.4) yields $l X=\left(\alpha A+\frac{c}{4}\right) X, \forall X \in \mathbb{D}$. Furthermore, in a real hypersurface of the previously mentioned types, we have $\lambda^{2}=\alpha \lambda+\frac{c}{4}$, thus from the last two equations we have $l X=\lambda^{2} X$, which is used to show $\left(\nabla_{\xi} l\right) X=0$. The last equation and $\left(\nabla_{\xi} l\right) \xi=\nabla_{\xi} l \xi-l \nabla_{\xi} \xi=0$ show that real hypersurfaces of type A satisfy (1.2) with $\omega=0$.

If M is Hopf with $\alpha=0$ then (2.4) yields $l X=\frac{c}{4} X$ for every $X \in D$. Therefore $\left(\nabla_{\xi} l\right) X=0$ holds. In addition we have $\left(\nabla_{\xi} l\right) \xi=0$, thus $\left(\nabla_{\xi} l\right) X=0$ holds for every X, which means $\omega=0$.

References

[1] J. Berndt, Real hypersurfaces with constant principal curvatures in complex hyperbolic space, J. Reine Angew. Math. 395 (1989), 132 -141.
[2] D. E. Blair, Riemannian Geometry of Contact and Symplectic Manifolds, Progress in Mathematics, Birkhauser, 2002.
[3] J. T. Cho , U.-H. Ki, Real hypersurfaces in complex space forms with Reeb flow symmetric structure Jacobi operator, Canad. Math. Bull. 51, 3 (2008), 359-371.
[4] U.-H. Ki, H. Kurihara, Jacobi operators along the structure flow on real hypersurfaces in non flat complex space form II, Bull. Korean Math. Soc. 48, 6 (2011), 1315-1327.
[5] U-H. Ki, S. Nagai, The Ricci tensor and structure Jacobi operator of real hypersurfaces in a complex projective space, J. Geom. 94 (2009), 123-142.
[6] U-H. Ki, J. De Dios Perez, F. G Santos, Y. J. Suh, Real hypersurfaces in complex space forms with ξ-parallel Ricci tensor and structure Jacobi operator, J. Korean Math. Soc. 44, 2 (2007), 307-326.
[7] H. S. Kim, P. J. Ryan, A classification of pseudo-Einstein hypersurfaces in $\mathbb{C} P^{2}$, Differ. Geom. Appl. 26 (2008), 106-112.
[8] M. Kimura, Real hypersurfaces and complex submanifolds in complex projective space, Trans. Amer. Math. Soc. 296 (1986), 137-149.
[9] S. Maeda, Geometry of the horosphere in a complex hyperbolic space, Differ. Geom. Appl. 29, 1 (2011), 246-250.
[10] S. Montiel and A. Romero, On some real hypersurfaces of a complex hyperbolic space, Geom. Dedicata 20, 2 (1986), 245-261.
[11] R. Niebergall, P. J. Ryan, Real hypersurfaces in complex space forms, Math. Sci. Res. Inst. Publ., 32, Cambridge Univ. Press, Cambridge, 1997, 233-305.
[12] M. Okumura, On some real hypersurfaces of a complex projective space, Trans. Amer. Math. Soc. 212 (1975), 355-364.
[13] R. Takagi, On homogeneous real hypersurfaces in a complex projective space, Osaka J. Math. 10 (1973), 495-506.
[14] R. Takagi, On real hypersurfaces in a complex projective space with constant principal curvatures, J. Math. Soc. Japan 27 (1975), 43-53.
[15] Th. Theofanidis, Real hypersurfaces of non - flat complex space forms with generalized $\xi-$ parallel Jacobi Structure Operator, to appear in Glasg. Math. J.

Theoharis Theofanidis,
Aristotle University of Thessaloniki,
Department of Mathematics, Thessaloniki, Greece.
E-mail onslaught5000@hotmail.com , theoftheo@math.auth.gr

[^0]: Differential Geometry - Dynamical Systems, Vol.21, 2019, pp. 181-192.
 (c) Balkan Society of Geometers, Geometry Balkan Press 2019.

