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Abstract. This paper is to study (ε)-almost paracontact metric manifolds
bearing conformal η-Ricci solitons with the characteristic vector field ξ.
Moreover, we consider these manifolds whose the potential vector field is
torse-forming and deduced some results related to the parallelity on (ε)-
para Sasakian manifolds. Finally, the existence of expanding and shrinking
conformal η-Ricci solitons in such manifolds are ensured by an illustrative
example.
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1 Introduction

The notion of Ricci soliton which is a natural generalization of an Einstein metric
(the Ricci tensor S is a constant multiple of g) was introduced by Hamiltom [15] in
1982. A pseudo Riemannian manifold (M, g) is called a Ricci soliton if it admits a
smooth vector field V (potential vector field) on (M, g) such that

(1.1)
1

2
(ℓV g) + S(X,Y ) + λ g(X,Y ) = 0,

where ℓV denotes the Lie-derivative in the direction V. λ is a constant and X,Y
are arbitrary vector fields on M. A Ricci soliton is said to be shrinking, steady or
expanding according to λ being negative ,zero or positive respectively. It is obvious
that a trivial Ricci soliton is an Einstein manifold with V zero or Killing vector
field. Since Ricci solitons are the fixed points of the Ricci flow, they are important
in understanding Hamilton’s Ricci flow [14]. When V is the gradient of a potential
function φ ∈ C∞(M), the soliton (g, V, λ) is called a gradient Ricci soliton [21] and
the equation (1) takes the form

(1.2) ∇∇φ = S + λg,

where ∇ represents the Levi-Civita connection of the metric g on M. Both equations
(1.1) and (1.2) can be considered as perturbations of the Einstein equation S = λg
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and reduce to this latter in case V or ∇φ are Killing vector fields. When V = 0 or φ
is constant we call the underlying Einstein manifold a trivial Ricci soliton. It is well
known that, if the potential vector filed φ is zero or Killing then the Ricci soliton is
an Einstein real hypersurfaces on non fat complex-space-forms.

In 2009, J. T. Cho and M. Kimura [10] introduced the notion of η-Ricci soliton and
gave a classification of real hypersurfaces in non at complex-space-forms admitting
η-Ricci soliton ∂

∂tgij = −2Sij , viewed as a dynamical system, on the space of Rie-
mannian metrics modulo diffeomorphisms and scaling. In differential geometry, the
Ricci flow is an intrinsic geometric flow. It can be viewed as a process that deforms
the metric of a Riemannian manifold in a way formally analogous to the diffusion of
heat, smoothing out the irregularities in the metric. Geometric flows, especially Ricci
flows, have become important tools in theoretical physics. Ricci soliton is known as
quasi Einstein metric in physics literature [13] and the solutions of the Einstein field
equations correspond to Ricci soliton [1]. Relation with the string theory and the fact
that (1.1) is a particular case of Einstein field equation makes the equation of Ricci
soliton interesting in theoretical physics. In spite of introducing and studying firstly
in Riemannian geometry, the Ricci soliton equation has recently been investigated in
pseudo-Riemannian context, especially in Lorentzian case ([3], [7], [9], [18]).

The concept of η-Ricci soliton was initiated by Cho and Kimura [10]. For a given
1-form η, an η-Ricci soliton is a data (g, V, λ, µ) on a pseudo-Riemannian manifold
(M, g) satisfying

(1.3)
1

2
(ℓV g) + S(X,Y ) + λ g(X,Y ) + µη ⊗ η(X,Y ) = 0,

where V is a vector field, ℓV denotes the Lie-derivative in the direction V , S stands for
the Ricci tensor field, λ and µ are constants and X,Y are arbitrary vector fields on
M. In [8] the authors studied η−Ricci soliton on Hopf hypersurfaces in complex space
forms. In the context of paracontact geometry η−Ricci soliton were investigated in
([3], [4], [5]).

In [12], A. E. Fischer introduced a new concept called conformal Ricci flow, which is a
variation of the classical Ricci flow equation that modifies the unit volume constraint
of that equation to a scalar curvature constraint. Since the conformal geometry plays
an important role to constrain the scalar curvature and the equations is the vector field
sum of a conformal flow equation and a Ricci flow equation, the resulting equations
are named as the conformal Ricci flow equations. These new equations are given by

(1.4)
∂g

∂t
= −2S −

(
p+

2

n

)
g,

where R(g) = −1 and p is a non-dynamical scalar field (time dependent scalar
field), R(g) is the scalar curvature of the manifold and n is the dimension of the
manifold M. The conformal Ricci flow equations are analogous to the Navier-Stokes
equations of fluid mechanics and because of this analogy the time dependent scalar
field p is called a conformal pressure and, as for the real physical pressure in fluid
mechanics that serves to maintain the incompressibility of the fluid, the conformal
pressure serves as a Lagrange multiplier to conformally deform the metric flow so as
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to maintain the scalar curvature constraint. The equilibrium points of the confor-
mal Ricci flow equations are Einstein metrics with Einstein constant −1

n . Thus the
conformal pressure p is zero at an equilibrium point otherwise it will be positive.

In 2015, N. Basu and A. Bhattacharyya [2] introduced the notion of conformal Ricci
soliton and the equation is follows as

(1.5) ℓV g + 2S +

[
2λ−

(
p+

2

n

)]
g = 0.

It is an interesting and natural to see the condition in case of conformal η-Ricci soliton.
Dutta et al. [11] also studied the properties of conformal Ricci soliton in Lorentzian
α-Sasakian manifolds. From equations (1.3) and (1.5) we are introducing the notion
of conformal η-Ricci soliton by the following equation

(1.6) ℓV g + 2S +

[
2λ−

(
p+

2

n

)]
g + 2µη ⊗ η = 0.

In particular, if µ = 0 then the data (g, V, λ) is a conformal Ricci soliton [2]. Thus
we can say that the conformal η-Ricci soliton is a generalization of conformal Ricci
soliton.

The concept of almost Ricci soliton was first introduced by S. Pigola, M. Rigoli, M.
Rimoldi, A. G. Setti in 2010 [25]. R. Sharma has also done excellent work in almost
Ricci soliton [24]. A Riemannian manifold (M, g) is an almost Ricci soliton [24] if
there exists a complete vector field X and a smooth soliton function λ such that
λ :M → ℜ satisfying

(1.7) Rij =
1

2
(Xij +Xji) = λgij ,

where Rij and Xij + Xji stands for the Ricci tensor and the Lie derivative ℓXg in
local coordinates respectively. It will called shrinking, steady or expanding according
as λ < 0; λ = 0 or λ > 0, respectively. The notion of η-Ricci soliton has been studied
by A. M. Blaga ([3], [4]) and many others.

Therefore, motivated by these studies in the present paper we are going to study the
notion of conformal η-Ricci soliton on (ε)-almost paracontact metric manifold and
deduced some its geometrical results.

A data (g, V, λ, µ)on (M, g) is said to be almost conformal η-Ricci soliton if it satisfies
equation (1.6), where λ :M → ℜ is a smooth function.

In 1976, Sato [20] introduced the almost paracontact structure as a triple (ϕ, ξ, η) of
a (1, 1)-tensor field ϕ, a vector field ξ and a 1-form η satisfying ϕ2 = I − η ⊗ ξ and
η(ξ) = 1. The structure is an analogue of the almost contact structure [19] and is
closely related to almost product structure (in contrast to almost contact structure,
which is related to almost complex structure). An almost contact manifold is always
odd-dimensional but an almost paracontact manifold could be even-dimensional as
well.

In 1989, Matsumoto [18] replaced the structure vector field ξ by −ξ in an almost
paracontact manifold and associated a Lorentzian metric with the resulting structure
and called it a Lorentzian almost paracontact manifold.
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An (ε)-Sasakian manifold is always odd-dimensional. On the other hand, in a Lorentzian
almost paracontact manifold given by Matsumoto, the pseudo-Riemannian metric has
only index 1 and the structure vector field ξ is always timelike. These circumstances
motivated the authors of [26] to associate a pseudo-Riemannian metric, not neces-
sarily Lorentzian, with an almost para-contact structure, and this indefinite almost
paracontact ε = 1 metric structure was called an (ε)-almost paracontact structure,
where the structure vector field ξ is spacelike or timelike according as ε = 1 or ε = −1
[27].

2 Preliminaries

Let M be an n-dimensional manifold equipped with an almost paracontact structure
(ϕ, ξ, η) [20] consisting of a tensor field ϕ of type (1, 1), a vector field ξ and a 1-form
η satisfying

(2.1) ϕ2 = I − η ⊗ ξ,

(2.2) η(ξ) = 1,

(2.3) ϕξ = 0,

(2.4) η ◦ ϕ = 0.

It is easy to verify that (2.1) and one of (2.2), (2.3) and (2.4) imply the other two
equations. If g is a pseudo-Riemannian metric such that

(2.5) g(ϕX, ϕY ) = g(X,Y )− εη(X)η(Y ), X, Y ∈ (ΓM).

where ε = ±1, then M is called (ε)-almost paracontact metric manifold equipped
with an (ε)-almost paracontact metric structure (ϕ, ξ, η, g, ε) [26]. In particular, if
index(g) = 1, that is when g is a Lorentzian metric, then the (ε)-almost paracontact
metric manifold is called Lorentzian almost paracontact manifold. From (2.5) we have

(2.6) g(X, ξ) = ε η(X),

(2.7) g(X,ϕY ) = g(ϕX, Y ),

for all X,Y ∈ (ΓM).From (2.6) it follows that

(2.8) g(ξ, ξ) = ε ,

that is, the structure vector field ξ is never lightlike.
Let (ϕ, ξ, η, g, ε) be an (ε)-almost paracontact metric manifold (resp.a Lorentzian
almost paracontact manifold). If ε = 1, then M is said to be a spacelike (ε)-
almost paracontact metric manifold (resp. a spacelike Lorentzian almost paracontact
manifold). Similarly, if ε = −1, then M is said to be a timelike (ε)-almost paracontact
metric manifold (resp. a timelike Lorentzian almost paracontact manifold) [26].
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An (ε)-almost paracontact metric structure (ϕ, ξ, η, g, ε) is called (ε)-para Sasakian
structure if

(2.9) (∇Xϕ) = −g(ϕX, ϕY )ξ − ε η(Y )ϕ2X,

where ∇ is the Levi-Civita connection with respect to g. A manifold endowed with
an (ε)-para Sasakian structure is called (ε)-para Sasakian manifold [26].
In an (ε)-para Sasakian manifold, we have

(2.10) ∇ξ = ε ϕ,

and the Riemann curvature tensor R and the Ricci tensor S satisfy the following
equations [26]:

(2.11) R(X,Y )ξ = η(X)Y − η(Y )X,

(2.12) R(ξ,X)Y = −ε g(X,Y )ξ − η(Y )X,

(2.13) η(R(X,Y )Z) = −εη(X)g(Y,Z) + εη(Y )g(X,Z),

(2.14) S(X, ξ) = −(n− 1)η(X),

for all X,Y, Z ∈ (ΓM).

3 Conformal η-Ricci solitons on Einstein-like (ε)-
almost paracontact metric manifolds

Analogous to Einstein-like para Sasakian manifolds [21], we introduce the following
definition.
Definition 3.1 An (ε)-almost paracontact metric manifold (ϕ, ξ, η, g, ε) is said to
be Einstein-like if its Ricci tensor S satisfies

(3.1) S(X,Y ) = αg(X,Y ) + βg(ϕX, Y ) + γη(X)η(Y ), X, Y ∈ (ΓM).

for some real constants α, β and γ.

Proposition 3.1 An (ε)-para Sasakian manifold (M,ϕ, ξ, η, g, ε) bearing conformal
η- Ricci soliton (g, ξ, λ, µ) is an Einstein-like manifold.
Proof. From the definition of Lie derivative and using (2.6), (2.8) and (2.10), we
have

(ℓξg) = {g(∇Xξ) + g(∇Y ξ,X)}

(3.2) = 2εg(ϕX, Y ), ∀X,Y ∈ (ΓM).

Putting the above value in (1.6) we get

(3.3) S(X,Y ) = αg(X,Y ) + βg(ϕX, Y ) + γη(X)η(Y ),
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where α = −1
2

[
2λ−

(
p+ 2

n

)]
, β = −2ε, γ = −2µ.

Thus this completes the proof.
Proposition 3.2 In an Einstein-like (ε)-para Sasakian manifold (M,ϕ, ξ, η, g, ε, α, β, λ)
the following relations are held
(i) S(ϕX, Y ) ̸= S(X,ϕY ),
(ii) S(ϕX, ϕY ) = S(X, Y )− (αε+ γ)η(X)η(Y ),
(iii) S(X, ξ) = (αε+ γ)η(X),
(iv) S(ξ, ξ) = (αε+ γ),
(v) (∇XS)(Y, Z) = βg((∇Xϕ)Y,Z) + γε{η(Z)g(∇Xξ, Y ) + η(Y )g(∇Xξ, Z)},
(vi) (∇XQ)Y = β(∇Xϕ)Y + γε{η(Y )∇Xξ + ε g(∇Xξ, Y )ξ},
(vii) αε+ γ = 1− n,
(viii) r = αn+ β trace (ϕ) + ε γ,
where r is the scalar curvature and S is the Ricci operator defined by g(QX,Y ) =
S(X,Y ),X, Y ∈ (ΓM).

We suppose that (M,ϕ, ξ, η, g, ε, α, β, λ) be an Einstein-like (ε)-para contact metric
manifold bearing conformal η- Ricci soliton(g, ξ, λ, µ). Then from (1.6), we have

(3.4) (ℓV g) + 2S +

{
2λ−

(
p+

2

n

)}
g + 2µη ⊗ η = 0,

with λ and µ real constant. In view of (3.1) and (3.4), we get

(3.5)
g(∇Xξ, Y ) + g(∇Y ξ,X) + 2βg(ϕX, Y )

+(2γ + 2µ)η(X)η(Y ) +
{
2λ+ 2α−

(
p+ 2

n

)}
g(X,Y ) = 0,

for all X,Y ∈ (ΓM). If we replace X = Y = ξ in (3.5), we obtain

(3.6) (γ + µ) + ε

{
(λ+ α)− 1

2

(
p+

2

n

)}
= 0.

Again restricting Y = ξ in (3.5) and using (3.6), we get ∇ξξ = 0. Thus we easily
prove that

g(∇ξϕ)ξ = 0 and ∇ξη = 0.

The above relations take into account with the case (v) and (vi) in Proposition3.2,
we get the desired result.

(∇ξS)(Y, Z) = βg((∇ξϕ)Y, Z) and ∇ξQ = β(∇ξϕ).

So we give the following result.

Proposition 3.3 Let (M,ϕ, ξ, η, g, ε, α, β, λ) be an Einstein-like (ε)-almost paracon-
tact metric manifold admitting conformal η-Ricci soliton (g, ξ, λ, µ) then
(i) (γ + µ) + ε

{
(λ+ α)− 1

2

(
p+ 2

n

)}
= 0,

(ii) ξ is a geodesic vector field,
(iii) g(∇ξϕ)ξ = 0 and ∇ξη = 0,
(iv) (∇ξS)(Y, Z) = βg((∇ξϕ)Y, Z) and ∇ξQ = β(∇ξϕ),
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(v) ∇ξS = 0, and ∇ξQ = 0, if the manifold is (ε)-para Sasakian.

In particular, if a vector field ξ is called torse-forming if

(3.7) ∇Xξ = ψX +ϖ (X)ξ,

is satisfied for some smooth function ψ and a 1-form ϖ. Taking inner product with
ξ, we get

0 = g(∇Xξ, ξ) = ε{ψη(X) +ϖ(X)},

for all X,Y ∈ (ΓM).
This implies

(3.8) ϖ = −ψη,

From (3.6) and (3.8) it follows that

(3.9) ∇Xξ = ψϕ2X,

Let (M,ϕ, ξ, η, g, ε, α, β, λ) be an Einstein-like (ε)-paracontact metric manifold bear-
ing conformal η-Ricci soliton (g, ξ, λ, µ) with the potential vector field ξ is torse-
forming. Then substituting (3.9) in (3.5), it yields.

(3.10)
ψ{g(ϕ2X,Y ) + g(ϕ2Y,X)}+ 2βg(ϕX, Y )

+(2γ + 2µ)η(X)η(Y ) +
{
2λ+ 2α−

(
p+ 2

n

)}
g(X,Y ) = 0,

which implies

(3.11) βϕX = −
{
ψ + λ+ α− 1

2

(
p+

2

n

)}
X − (γ + µ− εψ)η(X)ξ.

Thus we state the following result.

Theorem 3.1 Let (M,ϕ, ξ, η, g, ε, α, β, λ) be an Einstein-like (ε)-paracontact metric
manifold bearing conformal η-Ricci soliton (g, ξ, λ, µ) with potential vector field ξ is
torse vector field then M is an η-Einstein manifold.

Besides, let M be an η-Einstein manifold (that is an Einstein-like (ε)-paracontact
metric manifold with β = 0) bearing conformal η-Ricci soliton (g, ξ, λ, µ) with torse-
forming potential vector field ξ. Then from (3.11) we get

ψ =
1

2

(
p+

2

n

)
− (λ+ α).

From (3.9), we can write

(3.12) ∇Xξ =

{
1

2

(
p+

2

n

)
− (λ+ α)

}
ϕ2X,

Therefore, we have

(3.13) R(X,Y )ξ =

{
1

2

(
p+

2

n

)
− (λ+ α)

}2

{η(X)Y − η(Y )X},
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and

(3.14) S(X, ξ) =

{
1

2

(
p+

2

n

)
− (λ+ α)

}2

(n− 1)η(X),

In view of the case (iii) in Proposition 3.2 and (3.14), it yields

(3.15) γ =

{
1

2

(
p+

2

n

)
− (λ+ α)

}2

(n− 1)− αε,

Also from (3.5) and (3.15), we find

(3.16) µ =

{
1

2

(
p+

2

n

)
− (λ+ α)

}[
ε−

{
1

2

(
p+

2

n

)
− (λ+ α)

}
(n− 1)

]
+ αε.

Thus we have the following result.

Theorem 3.2 Let (M,ϕ, ξ, η, g, ε, α, 0, γ) be an η-Einstein-like (ε)-paracontact metric
manifold with conformal η- Ricci soliton (g, ξ, λ, µ) bearing torse-formaing potential
vector field. Then ψ is constant function and

(i) γ =
{

1
2

(
p+ 2

n

)
− (λ+ α)

}2
(n− 1)− αε,

(ii) µ =
{

1
2

(
p+ 2

n

)
− (λ+ α)

} [
ε−

{
1
2

(
p+ 2

n

)
− (λ+ α)

}
(n− 1)

]
+ αε.

In particular if α = 0. Then we have the following result.

Theorem 3.3 If (M,ϕ, ξ, η, g, ε, 0, 0, γ) be an n-dimensional (n > 1) non-Ricci flat
η-Einstein (ε)-almost paracontact metric manifold bearing torse-formaing conformal
Ricci soliton (g, ξ, λ) then the following relations hold

(i) λ = ε
n−1 − 1

n (ii) γ =
[
2(n−1)−nε

n(n−1)

]2
(n− 1).

Furthermore, the soliton is expanding (resp.shrinking) if the manifold is spacelike
(resp. timelike).

Proposition 3.4 In an η-Einstein-like (ε)-almost paracontact manifold admitting
conformal η-Ricci soliton (g, ξ, λ, µ) with torse-formaning potential vector field, we
have
(i) (∇XS)(Y, Z) = γε

{
1
2

(
p+ 2

n

)
− (λ+ α)

}
{g(X,Y )η(Z) + g(X,Z)η(Y )− 2εη(X)η(Y )η(Z)} ,
(ii) (∇XQ)Y = γ

{
1
2

(
p+ 2

n

)
− (λ+ α)

}
{ ε g(X,Y )ξ + η(Y )X − 2η(X)η(Y )ξ} .

If the Ricci operator Q is Codazzi, then

(∇XQ)Y = (∇YQ)X, for all X,Y ∈ (ΓM).

In view of Proposition 3.4 and from above equation, we have

γ
{

1
2

(
p+ 2

n

)
− (λ+ α)

}
{ η(Y )X − η(X)Y } = 0, for all X,Y ∈ (ΓM).

It is clear that ψ = 1
2

(
p+ 2

n

)
− (λ+ α) ̸= 0, then γ = 0. Therefore M is an Einstein

manifold. Thus from the above consequence we state the result as follows.

Theorem 3.4 Let (M,ϕ, ξ, η, g, ε, α, 0, γ) be an η-Einstein (ε)-almost paracontact
metric manifold admitting conformal η- Ricci soliton (g, ξ, λ, µ) with torse-formaing
potential vector field. If ψ ̸= 0 and the Ricci operator Q is Codazzi, then M is an
Einstein manifold.
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4 Conformal η-Ricci soliton on (ε)-para Sasakian
manifolds

Let (M,ϕ, ξ, η, g, ε) be an (ε)-para Sasakian manifold with conformal η- Ricci soliton
(g, V, λ, µ) assuming that the potential vector field V is pointwise collinear with the
structure field ξ, that is, V = κξ, for κ a smooth function on M .Therefore from (3.4),
we get

(ℓκξg) + 2S +

{
2λ−

(
p+

2

n

)}
g + 2µη ⊗ η = 0.

Applying the property of Lie derivative and Levi-Civita connection, we have

(4.1)
2κg(ϕX, Y ) + ε(Xκ)η(Y ) + ε(Y κ)η(X)

+2S(X,Y ) +
{
2λ−

(
p+ 2

n

)}
g(X,Y ) + 2µη(X)η(Y ) = 0,

for all X,Y ∈ (ΓM).
Substituting Y = ξ, in (4.1), using (2.14), we get

(4.2)
ε(Xκ) + ε(ξκ)η(X)

−2(n− 1)η(X) + ε
{
2λ−

(
p+ 2

n

)}
η(X) + 2µη(X) = 0,

Again we replace X = ξ, in (4.2), we have

(4.3) (ξκ) = ε(n− 1)−
{
λ− 1

2

(
p+

2

n

)}
− εµ,

Taking into account of (4.2) and (4.3), we obtain

(4.4) (Xκ) =

[
ε(n− 1)−

{
λ− 1

2

(
p+

2

n

)}
− εµ

]
η(X),

It is clear that κ is constant if ε(n− 1) =
{
λ− 1

2

(
p+ 2

n

)}
+ εµ. So from (4.1) we get

S(X,Y ) = −
{
λ− 1

2

(
p+

2

n

)}
g(X,Y )− κg(ϕX, Y )− µη(X)η(Y ).

So we give the following result.

Theorem 4.1 Let (M,ϕ, ξ, η, g, ε) be an (ε)-para Sasakian manifold with confor-
mal η-Ricci soliton (g, V, λ, µ) and the potential vector field V is pointwise collinear
with the structure field ξ, then V is constant multiple of ξ provided ε(n − 1) ={
λ− 1

2

(
p+ 2

n

)}
+ εµ and M is an Einstein-like manifold.

According to the hypothesis of Theorem 4.1, if R(ξ, ·) · S = 0, then V is constant
multiple of ξ. Then we have

S(R(ξ,X), Z) + S(Y,R(ξ,X)Z = 0, for allX,Y, Z ∈ (ΓM).

In view of (2.10) and (2.12), the above equation reduces to

(4.5)
−εg(X,Y ){αεη(Z) + γη(Z)}+ η(Y ){αg(X,Z)

+β(g(ϕX,Z) + γη(X)η(Z)} − εg(X,Z){αεη(Y ) + γη(Y )}
+η(Z){αg(X,Y ) + β(g(ϕX, Y ) + γη(X)η(Y )} = 0,
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Taking X = Y = Z = ξ, in (4.5), for V = ξ, we get{
2λ−

(
p+

2

n

)}
ε = 4µ.

Thus we have the following result.

Theorem 4.2 If (M,ϕ, ξ, η, g, ε) is an n-dimensional (ε)- para Sasakian manifold
admitting conformal Ricci soliton (g, ξ, λ) then we have

λ =
ε

2

(
p+

2

n

)
.

Also, the soliton is expanding (resp.shrinking) if the manifold is spacelike (resp.
timelike).

Remark 4.1 If M is an Einstein-like (ε)-para Sasakian manifold and V = ξ, then
the structure

(
g, ξ, 12

(
p+ 2

n

)
− α,−γ

)
is the conformal η-Ricci soliton on M.

Finally, we assume that Ω be a (0, 2)-tensor field is to be parallel with respect to
Levi-Civita connection ∇, it means ∇Ω = 0, using the Ricci identity

∇2Ω(X,Y ;Z,W )−∇2Ω(X,Y ;W,Z) = 0,

In [23], we have

(4.6) Ω(R(X,Y )Z,W ) + Ω(R(X,Y )W,Z) = 0,

Using the symmetric property of Ω and taking X = Y = Z = ξ in (4.6), we get

(4.7) Ω(R(X,Y )ξ, ξ) = 0.

With this reference we suppose that (M,ϕ, ξ, η, g, ε) Einstein-like (ε)-paracontact met-
ric manifold with β = 0) bearing conformal η-Ricci soliton (g, ξ, λ, µ) with torse-
forming potential vector field ξ. Then from (3.13) and (4.7), we have

(4.8)

{
1

2

(
p+

2

n

)
− (λ+ α)

}2

{η(X)Ω(Y, ξ)− η(Y )Ω(ξ,X)} = 0.

Taking X = ξ in (4.8), we yield{
1

2

(
p+

2

n

)
− (λ+ α)

}2

{Ω(Y, ξ)− η(Y )Ω(ξ, ξ)} = 0.

From the above equation it is clear that if 1
2

(
p+ 2

n

)
̸= (λ+ α) then we have

(4.9) Ω(Y, ξ) = η(Y )Ω(ξ, ξ)

So we can give the following result.
Theorem 4.3 An Einstein-like (ε)-paracontact metric manifold (M,ϕ, ξ, η, g, ε) bear-
ing conformal η-Ricci soliton (g, ξ, λ, µ) with torse-forming characteristic vector field
is regular if 1

2

(
p+ 2

n

)
̸= (λ+ α).
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Corollary 4.3 A symmetric parallel second order covariant tensor in a regular
Einstein-like (ε)-paracontact metric manifold (M,ϕ, ξ, η, g, ε) with torse-forming char-
acteristic vector field is a constant multiple of the metric tensor.

Let (M,ϕ, ξ, η, g, ε) be a regular Einstein-like (ε)-paracontact metric manifold with
torse-forming characteristic vector field. Since 2λ−

(
p+ 2

n

)
is constant in conformal

η-Ricci soliton (g, ξ, λ, µ). So ∇
(
2λ−

(
p+ 2

n

))
= 0, it means ℓξg + 2S is parallel.

Thus from the Corollary 4.3, we give the result related to the Ricci soliton.

Theorem 4.4 Let (M,ϕ, ξ, η, g, ε) be a regular Einstein-like (ε)-paracontact metric
manifold with torse-forming characteristic vector field. Then Ω = 1

2 (ℓξ) + S + µη ⊗ η
is parallel if and only if

(
g, ξ, λ = −εΩ(ξ, ξ) + 1

2

(
p+ 2

3

)
, µ

)
is a conformal η- Ricci

soliton on M.

In [6], the authors prove that on a (ε)-para Sasakian manifold any parallel symmetric
(0, 2)-tensor field is a constant multiple of the metric. Ensuring these results we can
give the following results in the consequence of conformal η-Ricci soliton.

Theorem 4.5 Let (M,ϕ, ξ, η, g, ε) be an (ε)-para Sasakian manifold. Then Ω =
1
2 (ℓξ) + S + µη ⊗ η is parallel if and only if

(
g, ξ, λ = −εΩ (ξ, ξ) + 1

2

(
p+ 2

3

)
, µ

)
is a

conformal η-Ricci soliton on M.

Let (M,ϕ, ξ, η, g, ε, α, β, γ) is an Einstein -like (ε)-para Sasakian manifold. Then we
have

(4.10)
1
2 (ℓκξg)(X,Y ) + S(X,Y ) + µη(X)η(Y )

= αg(X,Y ) + (ε+ β)g(ϕX, Y ) + (γ + µ)η(X)η(Y ).

Thus we give the following results.

Corollary 4.5 If (M,ϕ, ξ, η, g, ε, α, β, γ) is an Einstein-like (ε)-para Sasakian man-
ifold, then Ω = 1

2 (ℓξ) + S + µη ⊗ η is parallel if and only if(
g, ξ, λ =

1

2

(
p+

2

n

)
− ε (ε(α+ εγ) + µ)µ

)
is conformal η-Ricci soliton on M.

5 An example

Example 5.1 Let us consider a 4-dimensional manifold M = {(x, y, z, u) ∈ ℜ4 :
(x, y, z, u) ̸= 0}, where (x, y, z, u) being standard coordinate in ℜ4. Let (e1, e3, e3, e4)
be the orthogonal system of vector fields at each point of M, defined as

e1 =

(
x
∂

∂x
+ y

∂

∂y
+ z

∂

∂z

)
, e2 =

∂

∂y
, e3 =

(
∂

∂y
+

∂

∂z

)
, e4 =

∂

∂ u
.

and

[e1, e2] = −e2, [e1, e4] = −e1, [e2, e4] = −e2, [e3, e4] = −e3, [e1, e3] = −e3.
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Let g be a pseudo-Riemannian metric defined as follows

gij =

 0, i ̸= j = 1, 2, 3, 4
1, i = j
ε, i = j = 4


and given by

g =
1

x2
[
(1− y2)dx⊗ dx+ x2dy ⊗ dy + ε x2du⊗ du

]
.

Let be η the 1-form have the significance

η(X) = g(X, e4)

for any X ∈ Γ(TM). Let ϕ be the (1, 1)-tensor field defined by

ϕ e1 = e1, ϕ e2 = e2, ϕ e3 = e3, ϕ e4 = 0.

Making use of the linearity of ϕ and g we have

η(e4) = 1,

ϕ2(X) = X + η(X)e4,

g(ϕX, ϕY ) = g(X,Y )− ε η(X)η(Y ),

for any X,Y ∈ Γ(TM).Thus for e4 = ξ the structure (ϕ, η, ξ, g) leads to timelike
Lorentzian almost paraconatct structure in ℜ4.
The Riemannian connection ∇ of metric tensor g is given by the beauty of Koszul’s
formula

2g(∇UV,W ) = U(g(V,W )) + V (g(W,X))−W (g(U, V ))
−g(U, [V,W ])− g(V, [U,W ]) + g(W, [U, V ]).

Making use Koszul’s formula we follows:
∇e1e4 = −e1, ∇e2e4 = −e2, ∇e3e4 = −e3, ∇e4e4 = 0,
∇e3e1 = 1

εe4, ∇e2e1 = e2, ∇e3e3 = −e1 + 1
εe4, ∇e2e2 = −e1 + 1

εe4,
∇e4e1 = 0, ∇e3e2 = 0, ∇e1e3 = 0, ∇e1e2 = 0,
∇e3e1 = 0, ∇e4e2 = 0, ∇e4e3 = 0.

Consequently, (ϕ, η, ξ, g) timelike (ε)-almost paracontact metric manifold that satisfy,

(∇Xϕ)Y = −(g(ϕX, ϕY )ξ − εη(Y )ϕ2X, ∇Xξ = αϕX.

where α = −1. Hence the structure (ϕ, η, ξ, g) endowed with an (ε)-para Sasakian
structure .
Using the above relations, we can easily calculate the non-vanishing component of
curvature tensor as follows:

R(e2, e3)e2 = 1
εe3, R(e2, e3)e3 = − 1

εe2, R(e1, e4)e1 = e2,
R(e1, e3)e1 = 1

εe3, R(e1, e4)e4 = −e1, R(e2, e4)e2 = 1
εe4 − e1,

R(e1, e3)e3 = −
(
e1 +

1
εe2

)
, R(e3, e4)e4 = −e3, R(e3, e4)e3 = 1

εe3,
R(e1, e2)e2 = −

(
1
εe1 +

1
εe4

)
, R(e2, e4)e4 = −e2, R(e1, e2)e1 = 1

εe2 + e2,
R(e2, e1)e1 = −1

εe3 − e2, R(e3, e1)e1 = −1
εe2 − e3, R(e4, e3)e3 = 1

εe4 − e1.
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From the above expressions of the curvature tensor, we evaluate the value of the Ricci
tensor as follows:

S(e1, e1) = −
(
1

ε
+ 2

)
, S(e2, e2) = −

(
1

ε
+ 2

)
,

S(e3, e3) = −
(
1

ε
+ 2

)
, S(e4, e4) = −2.

Also from (3.1), we get

S(e1, e1) = S(e2, e2) = S(e3, e3) = α+ β, S (e4, e4) = ε α+ γ.

In this case, for α = −1
ε ,β = −2 and γ = −1, the data (g, ξ, λ, µ) is a conformal

η-Ricci soliton on (ε)-para Sasakian manifold. So Proposition 3.1 holds.
From this consequence, we can easily write

λ =
1

2ε

[
2 + ε

(
p+

2

n

)]
, µ =

1

2
.

Thus it follows that the soliton is expanding (resp.shrinking) if the manifold is space-
like (resp.timelike). Thus Theorem 4.2 holds.
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