
Pointwise semi-slant submersion

Sezin Aykurt Sepet and Hülya Gün Bozok

Abstract. We introduce pointwise semi-slant submersions from almost
Hermitian manifolds onto Riemannian manifolds. The geometry of folia-
tion and the integrability of distributions are researched.
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1 Introduction

Riemannian submersions represent an important field of study in geometry and math-
ematical physics [11, 14]. Riemannian submersions between Riemannian manifolds
were defined by O’Neill[15] and Gray [8]. Such submersions are considered between
manifolds with differentiable structure were intensively studied (e.g., see [7]). The
generalization of such mappings for the case of Hermitian manifolds was studied by
Watson [22]. If F is a C∞ submersion between Riemannian manifolds, there are some
variations according to the conditions on F ; for instance Riemannian submersions
[8, 15], slant submersions [17], anti-invariant Riemannian submersions [18], semi-slant
submersions [16, 2], semi-invariant submersions [19], hemi-slant submersions [21, 3],
conformal submersions [1], Lagrangian submersion [20], pointwise semi-slant submer-
sions [13], etc.

Şahin [17] studied slant submersions from almost Hermitian manifolds to Rieman-
nian manifolds. If F is a Riemannian submersion from an almost Hermitian manifold
to a Riemannian manifolds, then it is called a slant submersion if the angle θ(X) be-
tween JX and the space kerF∗ is constant for any nonzero vector X ∈ Γ (kerF∗). The
angle θ is called the slant angle of the slant submersion. Further, Park and Prasad
defined semi-slant submersions [16]. After that, a lot of studies on these submersions
were developed [9, 10, 12].

On the other hand, as a generalization of slant submanifolds, Etayo [6] defined
pointwise slant submanifolds. Later, Lee and Şahin [13] introduced pointwise slant
submersions. Aykurt Sepet and Ergüt [4] studied pointwise slant submersions from
cosymplectic manifolds.

In this paper we introduced pointwise semi-slant submersions from almost Hermi-
tian manifolds to Riemannian manifolds. In this respect, we study the geometry of
foliations and the integrability of distributions.
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2 Preliminaries

In this section we recall basic facts on almost Hermitian manifolds and Riemannian
submersions.

An almost complex manifold is a manifold M with an almost complex structure,
given by a tensor field J of type (1, 1) such that J2 = −I. An almost Hermitian man-
ifold (M,J, g) is an almost complex manifold (M, g) with a J-invariant Riemannian
metric g. The J-invariance of g means that

(2.1) g(X,Y ) = g(JX, JY )

for any X,Y ∈ (TM). An almost Hermitian manifold is called Kählerian manifold if

(∇XJ)Y = 0

for X,Y ∈ Γ (TM), where ∇ is the operator of Levi-Civita covariant differentiation.
Let (M, g) and (N, g′) be Riemannian manifolds, with dim(M) = m and dim(N) =

n and m > n. A Riemannian submersion F : M −→ N is a map from M onto N
satisfying the following two axioms

• F has maximal rank

• The differential F∗ preserves the lengths of the horizontal vectors.

For each q ∈ N , F−1(q) is an m − n dimensional submanifold of M , so-called
fiber. If a vector field on M is always tangent (or orthogonal) to fibers then it is
called vertical (or horizontal)[15]. A vector field X on M is said to be basic if it is
horizontal and F -related to a vector field X∗ on N , i.e., F∗Xp = X∗F (p), for all p ∈M .

We denote the projection morphisms on the distributions (kerF∗) and (kerF∗)
⊥ by

V and H, respectively.

A Riemannian submersion F :M −→ N determines two (1, 2) tensor fields T and A
on M . These tensor fields are called the fundamental tensor fields or the invariants
of F . For arbitrary vector fields E and F on M , these tensor fields can be given by
the formulas

T (E,F ) = TEF = H∇VEVF + V∇VEHF(2.2)

A(E,F ) = AEF = V∇HEHF +H∇HEVF(2.3)

where ∇ is the Levi-Civita connection of (M, g). On the other hand for X,Y ∈
Γ
(
(kerF∗)

⊥
)
and U,W ∈ Γ (kerF∗), these tensor fields satisfy the following equations

TUW = TWU(2.4)

AXY = −AYX =
1

2
V[X,Y ].(2.5)

It is easy to see that for any E ∈ Γ (TM), T is vertical, TE = TVE and A is horizontal,
AE = AHE .

Note that a Riemannian submersion F : M −→ N has totally geodesic fibers if
and only if T identically vanishes.

We recall the following Lemma from O’Neill [15], which is used throughout this
paper.
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Lemma 2.1. Let F : M −→ N be a Riemannian submersion between Riemannian
manifolds. If X and Y are basic vector fields of M , then

1. g(X,Y ) = g′(X∗, Y∗) ◦ F ,

2. the horizontal part [X,Y ]H of [X,Y ] is a basic vector field and corresponds to
[X∗, Y∗] i.e. F∗

(
[X,Y ]H

)
= [X∗, Y∗],

3. [V,X] is vertical for any vector field V of (kerF∗),

4.
(
∇M
X Y

)H
is the basic vector field corresponding to ∇N

X∗
Y∗,

where ∇M and ∇N are the Levi-Civita connection on M and N , respectively.

On the other hand, from (2.2) and (2.3) we have

∇VW = TVW + ∇̄VW(2.6)

∇VX = H∇VX + TVX(2.7)

∇XV = AXV + V∇XV(2.8)

∇XY = H∇XY +AXY(2.9)

for X,Y ∈ Γ
(
(kerF∗)

⊥
)
and V,W ∈ Γ (kerF∗), where ∇̄VW = V∇VW . Moreover,

if X is basic then H∇VX = AXV .
Let (M, g) and (N, g′) be Riemannian manifolds and let ψ :M −→ N be a smooth

mapping between them. The second fundamental form of ψ is given by

(2.10) ∇ψ∗(X,Y ) = ∇ψ
Xψ∗(Y )− ψ∗

(
∇M
X Y

)
for X,Y ∈ Γ (TM), where ∇ψ is the pullback connection. Recall that ψ is said to be
harmonic if ∇ψ∗ = 0 and ψ is called a totally geodesic map if (∇ψ∗) (X,Y ) = 0 [5].

Finally, we provide the definition of semi-slant submersions.

Definition 2.1. A Riemannian submersion F : M −→ N is called a semi-slant
submersion if there is a distribution D1 ⊂ kerF∗ such that

(2.11) kerF∗ = D1 ⊕D2, J (D1) = D1

and the angle θ = θ(X) between JX and the space (D2)p is constant for nonzero
X ∈ (D2)p and p ∈M , where D2 is the orthogonal complement of D1 in kerF∗. The
angle θ is called semi-slant angle.

3 Pointwise semi-slant submersions

Definition 3.1. A Riemannian submersion F :M −→ N is called a pointwise semi-
slant submersion if there is a distribution D1 ⊂ kerF∗ such that

(3.1) kerF∗ = D1 ⊕D2, J (D1) = D1

and for p ∈M and X ∈ (D2)p, the angle θ = θ(X) between JX and the space (D2)p
is independent of the choice of the nonzero vector X, where D2 is the orthogonal
complement of D1 in kerF∗. The angle θ is called pointwise semi-slant function of
the slant submersion.
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Let F be a pointwise semi-slant submersion from an almost Hermitian manifold
(M, g, J) onto a Riemannian manifold (N, g′). Then for U ∈ Γ (kerF∗), we get

(3.2) U = PU +QU

where PU ∈ Γ (D2) and QU ∈ Γ (D1).
For U ∈ Γ (kerF∗), we obtain

(3.3) JU = ϕU + ωU

where ϕU ∈ Γ (kerF∗) and ωU ∈ Γ
(
(kerF∗)

⊥
)
.

For X ∈ Γ
(
(kerF∗)

⊥
)
, we have

(3.4) JX = BX + CX

where BX ∈ Γ (kerF∗) and CX ∈ Γ
(
(kerF∗)

⊥
)
.

Example 3.2. Let J be a complex structure on R8 as follows

J (x1, x2, x3, x4, x5, x6, x7, x8) = (x2,−x1, x4,−x3, x6,−x5, x8,−x7) .

Define a map F : R8 → R4 by

F (x1, ..., x8) =

(
x1 + x3√

2
, sinαx6 + cosαx7,

x2 + x4√
2

, x8

)
where α : R8 → R is any real valued function. Then

kerπ∗ = span

{
V1 =

1√
2

(
∂

∂x1
+

∂

∂x3

)
, V2 = cosα

∂

∂x6
− sinα

∂

∂x7
,

V3 =
1√
2

(
∂

∂x2
− ∂

∂x4

)
, V4 =

∂

∂x5

}
.

Thus the map F is a pointwise semi-slant submersion such that

D1 = {V1, V3} and D2 = {V2, V4}

with the slant function θ = α.

Proposition 3.1. Let (M, g, J) be an almost Hermitian manifold and (N, g′) a Rie-
mannian manifold. F : (M, g, J) → (N, g′) is a pointwise semi-slant submersion if
and only if

ϕ2W = −
(
cos2 θ

)
W

for W ∈ Γ (D2), where θ is the slant function.

Proof. The proof of this theorem is similar to Proposition 2.9 in [16] �
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Theorem 3.2. Let F be a pointwise semi-slant submersion from a Kählerian manifold
(M, g, J) onto a Riemannian manifold (N, g′). Then the distribution D1 is integrable
if and only if

B (TUJV − TV JU) = ϕ
(
∇̂V JU − ∇̂UJV

)
for U, V ∈ Γ (D1).

Proof. For U, V ∈ Γ (D1) and W ∈ Γ (D2), since [U, V ] ∈ Γ (kerF∗), by using the
equation (2.1) we get

g ([U, V ] ,W ) = g (J [U, V ] , JW ) = g (∇UJV −∇V JU, JW ) .

From (2.6) we have

g ([U, V ] ,W ) = g
(
TUJV + ∇̂UJV JW

)
− g

(
TV JU + ∇̂V JU JW

)
By using the equations (3.3) and (3.4), we infer

g ([U, V ] ,W ) = g (B (TUJV − TV JU) ,W ) + g
(
ϕ
(
∇̂UJV − ∇̂V JU

)
,W

)
Then, we obtain the following result: �

Theorem 3.3. Let F be a pointwise semi-slant submersion from a Kählerian manifold
(M, g, J) onto a Riemannian manifold (N, g′). Then the distribution D2 is integrable
if and only if

TZωϕW − TWωϕZ = ϕ (TWωZ − TZωW )

for W,Z ∈ Γ (D2) and U ∈ Γ (D1).

Proof. For W,Z ∈ Γ (D2) and for U ∈ Γ (D1), we have

g ([W,Z] , U) =g (∇WJZ −∇ZJW, JU)

=− g (J∇WϕZ,U) + g (∇WωZ, JU) + g (J∇ZϕW,U)

− g (∇ZωW, JU)

Using Theorem 3.1, we get

g ([W,Z] , U) = cos2 θg ([W,Z] , U)− g (∇WωϕZ,U) + g (∇WωZ, JU)

+ g (∇ZωϕW,U)− g (∇ZωW, JU)

Then we arrive at

sin2 θg ([W,Z] , U) = g (TZωϕW − TWωϕZ,U) + g (TWωZ − TZωW, JU)

Thus, the claim is proved. �
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Theorem 3.4. Let F be a pointwise semi-slant submersion from a Kählerian manifold
(M, g, J) onto a Riemannian manifold (N, g′). Then the distribution (kerF∗) defines
a totally geodesic foliation if and only if

sin2 θg ([U,X] , V ) = cos2 θg (V∇XQU, V ) + 2 cos θ sin θX(θ)g (PU,PV )

+ g (AXωϕPU, V )− g (AXωPU, ϕV )− g (AXJQU,ωV )

− g (H∇XωPU, ωV )− g (V∇XJQU, ϕV )

for U, V ∈ Γ (kerF∗) and X ∈ Γ
(
(kerF∗)

⊥
)
.

Proof. For U, V ∈ Γ (kerF∗) and X ∈ Γ
(
(kerF∗)

⊥
)
by using the equations (2.6) and

(3.2) we have

g (TUV,X) = −g ([U,X] , V )− g (∇XJPU, JV )− g (∇XJQU, JV )

From (3.3) we obtain

g (TUV,X) =− g ([U,X] , V ) + g
(
∇Xϕ

2PU, V
)
+ g (∇XωϕPU, V )

− g (∇XωPU, JV )− g (∇XJQU, JV )

Using Theorem 3.1 we infer

g (TUV,X) =− g ([U,X] , V )− cos2 θg (∇XPU, V ) + 2 cos θ sin θX(θ)g (PU, V )

+ g (∇XωϕPU, V )− g (∇XωPU, JV )− g (∇XJQU, JV )

Then we arrive at

g (TUV,X) =− sin2 θg ([U,X] , V )− cos2 θg (∇UX,V ) + cos2 θg (∇XQU, V )

+ 2 cos θ sin θX(θ)g (PU, V ) + g (∇XωϕPU, V )

− g (∇XJQU, JV )− g (∇XωPU, JV )

From (2.8) and (2.9) and since T is skew-symmetric, we get

sin2 θg (TUV,X) =− sin2 θg ([U,X] , V ) + cos2 θg (V∇XQU, V )

+ 2 cos θ sin θX(θ)g (PU, V ) + g (AXωϕPU, V )

− g (AXωPU, JV )− g (H∇XωPU, JV )− g (AXJQU, JV )

− g (V∇XJQU, JV )

Considering (kerF∗) as being totally geodesic, we obtain the formula given in the
theorem. �

Theorem 3.5. Let F be a pointwise semi-slant submersion from a Kählerian manifold
(M, g, J) onto a Riemannian manifold (N, g′). Then the distribution D1 defines a
totally geodesic foliation if and only if

g (TUJV,CX) = −g
(
∇̂UJV,BX

)
and

g (TUV, ωϕW ) = cos2 θg
(
∇̂UV,W

)
+ g (TUJV, ωW )

for U, V ∈ Γ (D1), W ∈ Γ (D2) and X ∈ Γ
(
(kerF∗)

⊥
)
.



Pointwise semi-slant submersion 7

Proof. For U, V ∈ Γ (D1) and X ∈ Γ
(
(kerF∗)

⊥
)
, we obtain

g (∇UV,X) =g (∇UJV, JX)

=g (TUJV,CX) + g
(
∇̂UJV,BX

)
Then we have

g (TUJV,CX) = −g
(
∇̂UJV,BX

)
.

On the other hand, for U, V ∈ Γ (D1) and W ∈ Γ (D2), we get

g (∇UV,W ) =g (∇UJV, JW )

= cos2 θg
(
∇̂UV,W

)
− g (TUV, ωϕW ) + g (TUJV, ωW )

Thus we arrive at

g (TUV, ωϕW ) = cos2 θg
(
∇̂UV,W

)
+ g (TUJV, ωW ) .

�

Theorem 3.6. Let F be a pointwise semi-slant submersion from a Kählerian manifold
(M, g, J) onto a Riemannian manifold (N, g′). Then the distribution D2 defines a
totally geodesic foliation if and only if

g (AXωϕW,Z) = sin2 θg ([W,X] , Z)− 2 cos θ sin θX (θ) g (W,Z)

+ g (AXωW,ϕZ) + g (H∇XωW,ωZ)

and

g (TWωϕZ,U) = g (TWωZ, JU)

for W,Z ∈ Γ (D2), U ∈ Γ (D1) and X ∈ Γ
(
(kerπ∗)

⊥
)
.

Proof. For W,Z ∈ Γ (D2) and X ∈ Γ
(
(kerπ∗)

⊥
)
, we have

g (TWZ,X) =− g ([W,X] , Z)− g (∇XW,Z)

=− g ([W,X] , Z)− g (∇XϕW, JZ)− g (∇XωW, JZ) .

By using Theorem 3.1, we obtain

sin2 θg (TWZ,X) =− sin2 θg ([W,X] , Z) + 2 cos θ sin θX (θ) g (W,Z)

+ g (AXωϕW,Z)− g (AXωW,ϕZ)− g (H∇XωW,ωZ)

Then we infer

g (AXωϕW,Z) = sin2 θg ([W,X] , Z)− 2 cos θ sin θX (θ) g (W,Z)

+ g (AXωW,ϕZ) + g (H∇XωW,ωZ) .
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Also, for W,Z ∈ Γ (D2) and U ∈ Γ (D1), we have

g (∇WZ,U) = g (∇WJZ, JU)

= −g
(
∇Wϕ

2Z,U
)
− g (∇WωϕZ,U) + g (∇WωZ, JU)

Considering Theorem 3.1 and the equation (2.7), we arrive at

sin2 θg (∇WZ,U) = −g (TWωϕZ,U) + g (TWωZ, JU) .

This completes the proof of the theorem. �

Theorem 3.7. Let F be a pointwise semi-slant submersion from a Kählerian manifold
(M, g, J) onto a Riemannian manifold (N, g). If the tensor w is parallel, then we have

TϕWϕW = − cos2 θTWW

where W ∈ Γ (D2).

Proof. For W,Z ∈ Γ (D2), we get

TWϕZ = CTWZ

Similarly, by interchanging the roles of W and Z, we infer

TZϕW = CTZW

Then, we can write
TWϕZ = TZϕW

By substituting Z by ϕW , we obtain the result. �

Theorem 3.8. Let F be a pointwise semi-slant submersion from a Kählerian manifold
(M, g, J) onto a Riemannian manifold (N, g′). Then F is a totally geodesic map if
and only if

− cos2 θTUPV +H∇UωϕPV+CH∇UωPV + ωTUωPV
+ CTUJQV + ω∇̂UJQV = 0,

for U, V ∈ Γ (kerF∗) and X ∈ Γ
(
kerF⊥

∗
)
.

Proof. For X1, X2 ∈ Γ
(
kerF⊥

∗
)
, because of F is a Riemannian submersion and using

the equation (2.10), we get
(∇F∗) (X1, X2) = 0.

For U, V ∈ Γ (kerF∗), by considering the (2.10) and (3.3), we have

(∇F∗) (U, V ) =F∗ (J∇UJV )

=F∗ (J∇UJ (PV +QV ))

=F∗
(
− cos2 θ∇UPV + 2 cos θ sin θU [θ]PV

+ ∇UωϕPV + J∇UωPV + J∇UJQV )
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Using (2.6) and (2.7), we obtain the following equation

(∇F∗) (U, V ) =F∗

(
− cos2 θ

(
TUPV + ∇̂UPV

)
+ 2 cos θ sin θU [θ]PV

+ TUωϕPV +H∇UωϕPV + ϕTUωPV + ωTUωPV

+ BH∇UωPV + CH∇UωPV + JTUJQV + J∇̂UJQV
)
.

Thus the proof of theorem is completed. �

4 Conclusions

In the present paper we study pointwise semi-slant submersions from almost Hermi-
tian manifolds. Characterizations for such submersions are obtained.
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E-mail: sezinaykurt@hotmail.com
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