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1 Introduction

The concept of G-structure provides a unified framework for a lot of interesting ge-
ometric structures. This notion is defined in finite dimension as a reduction of the
frame bundle. Different results are obtained in the finite case in [Kob] and in [Mol]
(G-structures equivalent to a model, characteristic class of a G-structure, intrinsic
geometry of G-structures, etc).

In order to extend this notion to the Banach framework, following Bourbaki
([Bou]), the frame bundle ℓ (TM) is defined as an open submanifold of the linear
map bundle L (M ×M, TM) where the manifold M is modelled on the Banach space
M. In [Klo], Klotz shows that the automorphism group of some Banach manifolds
can be turned into a Banach-Lie group acting smoothly on M .

The notion of tensor structure which corresponds to an intersection ofG-structures,
where the different G are isotropy groups for tensors, is relevant in a lot of domains in
Differential Geometry: Krein metric (cf. [Bog]), almost tangent and almost cotangent
structures (cf. [ClGo]), symplectic structures (cf. [Vai], [Wei]), complex structures
(cf. [Die]), inner products and decomposable complex structures (cf.[ChMa]).

In this paper, we are interested in the study of projective (resp. direct) lim-
its of Banach frame bundles sequences (ℓ (En))n∈N, associated tensor structures and
adapted connections to G-structures.

The main problem to endow the projective (resp. direct) limit M = lim←−Mn (resp.

M = lim−→Mn) of Banach manifolds Mn modelled on the Banach spaces Mn with a
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structure of Fréchet (resp. convenient) manifold is to find under which conditions we
can build a chart around any point of M .

It is worth noting that the convenient setting considered by Frölicher, Kriegl and
Michor in [FrKr] and [KrMi] is particularly adapted to the framework of direct limit of
Banach manifolds because the direct limit topology τDL is c∞-complete (cf. [CaPe1]).
It appears as a generalisation of calculus à la Leslie on Banach spaces used in the
projective limit framework.

Since the general linear group GL (M) does not admit a reasonable structure in
both cases, it has to be replaced by the following groups:

– The Fréchet topological group H0 (M) (cf. [DGV]), recalled in § 5.1, in the case
of projective sequences;

– The Fréchet topological group G(E) as introduced in [CaPe1], recalled in § 6.1,
in the case of ascending sequences.

So it is possible to endow the projective (resp. direct) limit of a sequence of
generalized linear frame bundles (ℓ (En))n∈N, as defined in [DGV], (resp. linear frame
bundles (ℓ (En))n∈N) with a structure of Fréchet (resp. convenient) principal bundle.

We then obtain similar results for some projective (resp. direct) limits of sequences
of Banach G-structures and tensor structures.

This paper is organized as follows.
In section 2, we recall or introduce some Banach structures. In section 3 (resp.

4), a lot of examples of tensor structures on a Banach vector bundle (resp. Banach
manifold) is given. Section 5 is devoted to the study of projective limits ofG-structures
and tensor structures; we also give an application to sets of smooth maps. In section
6, direct limits of such structures are studied and an application to Sobolev loop
spaces is given.

2 Banach structures

We give a brief account of different Banach structures which will be used in this paper.
The main references for this section are [Bou], [DGV], [Lan], [Pay] and [Pel1].

2.1 Submanifolds

Among the different notions of submanifolds, in this paper, we are interested in the
weak submanifolds as used in [Pel1] in the framework of integrability of distributions.

Definition 2.1. Let M be a Banach manifold modelled on the Banach space M.
A weak submanifold of M is a pair (S, φ) where S is a connected Banach manifold
modelled on a Banach space S and φ : S −→M is a smooth map such that:

(WSM 1) There exists a continuous injective linear map i : S −→M;

(WSM 2) φ is an injective smooth map and the tangent map Txφ : TxN −→ Tφ(x)M
is an injective continuous linear map with closed range for all x ∈ N .
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Note that for a weak submanifold φ : S −→M , on the subset φ(S) of M , we have
two topologies:

— The induced topology from M ;
— The topology for which φ is a homeomorphism from S to φ(S).

With this last topology, via φ, we get a Banach manifold structure on φ(S) mod-
elled on S. Moreover, the inclusion from φ(S) into M is continuous as a map from
the manifold φ(S) to M . In particular, if U is an open set of M , then φ(S)∩U is an
open set for the topology of the manifold on φ(S).

2.2 G-structures and tensor structures on a Banach space

According to [Bel2], Corollary 3.7, we have the following result.

Theorem 2.1. Let H be a Banach-Lie group and h be its Lie algebra h. Consider a
closed subgroup G of H and set

g = {X ∈ h | ∀t ∈ R, expH(tX) ∈ G}.

Then g is a closed subalgebra of h and there exist on G a uniquely determined topology
τ and a manifold structure making G into a Banach-Lie group such that g is the Lie
algebra of G, the inclusion of G into H is smooth and the following diagram:

g −→ h

expG ↓ ↓ expH
G −→ H

is commutative, where the horizontal arrows stand for inclusion maps.

Definition 2.2. A closed topological subgroup G of H which satisfies the assumption
of Theorem 2.1 is called a weak Lie subgroup of H.

We fix a Banach space E0. For any Banach space E, the Banach space of linear
bounded maps from E0 to E is denoted by L(E0,E) and, if it is non empty, the open
subset of L(E0,E) of linear isomorphisms from E0 onto E will denoted by Lis(E0,E).
We always assume that Lis(E0,E) 6= f� .
We then have a natural right transitive action of GL(E0) on Lis(E0,E) given by
(ϕ, g) 7→ ϕ ◦ g.
According to [PiTa], we define the notion of G-structure on the Banach space E.

Definition 2.3. Let G be a weak Banach Lie subgroup of GL(E0).
A G-structure on E is a subset S of Lis(E0,E) such that:

(GStrB 1) ∀ (ϕ, ψ) ∈ S2, ϕ ◦ ψ−1 ∈ G;

(GStrB 2) ∀ (ϕ, g) ∈ S ×G, ϕ ◦ g ∈ S.

The set Ls
r(E0) of tensors of type (r, s) on E0 is the Banach space of (r + s)-

multilinear maps from (E0)
r × (E∗

0)
s into R.
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Each g ∈ GL(E0) induces an automorphism gsr of Ls
r(E0) which gives rise to a right

action of GL(E0) on L
s
r(E0) which is (T, g) 7→ gsr(T) where, for any (u1, . . . , ur, α1, . . . , αs) ∈

(E0)
r × (E∗

0)
s,

gsr(T) (u1, . . . , ur, α1, . . . , αs) = T
(
g−1.u1, . . . , g

−1.ur, α1 ◦ g, . . . , αs ◦ g
)
.

Definition 2.4. The isotropy group of a tensor T0 ∈ Ls
r(E0) is the set

G(T0) = {g ∈ GL(E0) : gsr(T0) = T0}.

Definition 2.5. Let T be a k-uple (T1, . . . ,Tk) of tensors on E0.

A tensor structure on E0 of type T or a T-structure on E0 is a G =
k⋂

i=1

G(Ti)-structure

on E0.

It is clear that such a group G =
k⋂

i=1

G(Ti) is a closed topological subgroup of

the Banach Lie subgroup of GL(E0). Therefore, from Theorem 2.1, it is a weak Lie
subgroup of GL(E0).

2.3 The frame bundle of a Banach vector bundle

Let (E, πE ,M) be a vector bundle of typical fibre the Banach space E, with total
space E, projection πE and base M (modelled on the Banach space M). Because E
has not necessarily a Schauder basis, it is not possible to define the frame bundle of
this vector bundle as it is done in finite dimension.

An extension of the notion of frame bundle in finite dimension to the Banach
framework can be found in [Bou], § 7.10.1 and in [DGV], § 1.6.5.

The set of linear bicontinuous isomorphisms from E to Ex (where Ex is the fibre
over x ∈M) is denoted by Lis (E, Ex).

The set
P (E) = {(x, f) : x ∈M, f ∈ Lis (E, Ex)}

is an open submanifold of the linear map bundle L (M × E, E) =
⋃

x∈M

L (E, Ex). The

Lie group GL (E) of the continuous linear automorphisms of E acts on the right of
P (E) as follows:

R̂ : P (E)×GL (E) −→ P (E)
((x, f) , g) 7−→ (x, f) .g = (x, f ◦ g) .

Definition 2.6. The quadruple ℓ (E) = (P (E) , π,M,GL (E)), where

π : P (E) −→ M
(x, f) 7→ x

is the projection on the base, is a principal bundle, called the frame bundle of E.

We can write
P (E) =

⋃
x∈M

Lis (E, Ex) .



46 Patrick Cabau and Fernand Pelletier

Let us describe the local structure of P (E).
Let {(Uα, τα)}α∈A be a local trivialization of E with τα : π−1

E (Uα) −→ Uα × E. This
trivialization gives rise to a local section sα : Uα −→ P (E) of P (E) as follows:

∀x ∈ Uα, sα (x) =
(
x, (τα,x)

−1
)

where τα,x ∈ Lis (Ex,E) is defined by τα,x = pr2 ◦τα|Ex .
We then get a local trivialization of P (E):

Ψα : π−1 (Uα) −→ Uα ×GL (E)
(x, f) 7→ (x, τα,x ◦ f)

.

In particular, we have

Ψα (sα (x)) =
(
x, τα,x ◦ (τα,x)−1

)
= (x, IdE) .

Ψα gives rise to Ψα,x defined by

Ψα,x (x, f) = τα,x ◦ f.

Moreover, for g ∈ GL (E) , we have

R̂g (sα (x)) =
(
x, (τα,x)

−1 ◦ g
)
.

Because the local structure of P (E) is derived from the local structure of the
vector bundle E, we get

Ψα,x ◦
(
Ψβ,x

)−1
(τβ,x ◦ f) = Ψα,x (x, f) = τα,x ◦ f.

We then have the following result.

Proposition 2.2. The transition functions

Tαβ : Uα ∩ Uβ −→ GL (E)
x 7−→ τα,x ◦ (τβ,x)−1

of E coincide with the transition functions of P (E).

The transition functions form a cocycle, that is

∀x ∈ Uα ∩ Uβ ∩ Uγ , Tαγ (x) = Tαβ (x) ◦ Tβγ (x)

Definition 2.7. The tangent frame bundle ℓ (TM) of a Banach manifold M is the
frame bundle of TM .

Proposition 2.3. Let πE1 : E1 −→ M and πE2 : E2 −→ M be two Banach vector
bundles with the same fibre type E and let Φ : E1 −→ E2 be a bundle morphism above
IdM . Then Φ induces a unique bundle morphism ℓ (Φ) : ℓ (E1) −→ ℓ (E2) that is
injective (resp. surjective) if and only if Φ is injective (resp. surjective).
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2.4 G-structures and tensor structures on a Banach vector
bundle

A reduction of the frame bundle ℓ (E) of a Banach fibre bundle πE : E −→M of fibre
type E corresponds to the data of a weak Banach Lie subgroup G of GL (E) and a
topological principal subbundle

(
F, π|F ,M,G

)
of ℓ (E) such that

(
F, π|F ,M,G

)
has

its own smooth principal structure, and the inclusion is smooth. In fact, such a
reduction can be obtained in the following way.

Assume that there exists a bundle atlas {(Uα, τa)}α∈A whose transition functions

Tαβ : x 7−→ τα,x ◦ (τβ,x)−1

belong to a weak Banach-Lie subgroup G of GL (E).
To any local trivialization τα of E, is associated the following map:

ϕα : Uα ×G −→ P (E)
(x, g) 7→ sα (x) .g

where
sα (x) .g =

(
x, (τα,x)

−1
)
.g =

(
x, (τα,x)

−1 ◦ g
)
.

If Uα ∩ Uβ 6= ϕ, we have

∀x ∈ Uα ∩ Uβ , sβ (x) = sα (x) .Tαβ (x) .

Let F =
⋃

α∈A

Vα be the subset of P (E) where Vα = ϕα (Uα ×G). Because a principal

bundle is determined by its cocycles (cf., for example, [DGV], § 1.6.3), the quadruple(
F, π|F ,M,G

)
can be endowed with a structure of Banach principal bundle and is a

topological principal subbundle of ℓ (E). Moreover, we have the following lemma.

Lemma 2.4. F is closed in ℓ (E) and F is a weak submanifold of ℓ (E).

Proof. Consider a sequence (xn, gn) ∈ F which converges to some (x, g) ∈ ℓ (E).
Let ϕα : Uα × GL(E) −→ P (E) be the mapping associated to a local trivialization
of P (E) where (x, g) ∈ P (E). Now, for n large enough, ϕ−1

α (xn, gn) belongs to
Uα ×G ⊂ Uα ×GL(E). But Uα ×G is closed in Uα ×GL(E); This implies that (x, g)
belongs to F . Since the inclusion of G into GL(E) is smooth, this implies that the
inclusion of F into ℓ (E) is also smooth. �

Definition 2.8. The weak subbundle
(
F, π|F ,M,G

)
of the frame bundle ℓ (E) =

(P (E) , π,M,GL (E)) is called a G-structure on E.
When E = TM , a G-stucture on TM is called a G-structure on M .

Intuitively, a G-structure F on a Banach bundle πE : E −→M may be considered
as a family {Fx}x∈M which varies smoothly with x inM , in the sense that F =

⋃
x∈M

Fx

has a principal bundle structure over M with structural group G.

Definition 2.9. Let πE1
: E1 −→ M and πE2

: E2 −→ M be two Banach vector

bundles with the same fibre E provided with the G-structures
(
F1, πE1

|F1
,M,G

)
and(

F2, πE2
|F2
,M,G

)
respectively. A morphism Φ : E1 −→ E2 is said to be G-structure

preserving if for any x ∈M , Φ ((F1)x) = (F2)x.
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Definition 2.10. Let T be a k-uple (T1, . . . ,Tk) of tensors on the fibre type E of
a Banach vector bundle πE : E −→ M . A tensor structure on E of type T is a

G (T) =
k⋂

i=1

G (Ti) structure on E where G (Ti) is the isotropy group of Ti in GL (E).

Definition 2.11. The Banach fibre bundle π
L̂s

r
: L̂s

r (E) −→ M whose typical fibre

is Ls
r (E) is the tensor Banach bundle of type (r, s).

Definition 2.12. Let π
L̂s

r
: L̂s

r (E) −→M be the tensor Banach bundle of type (r, s).

1. A smooth section T of this bundle defined on an open set U ⊂ M is called a
local tensor of type (r,s) on E. When U =M we simply say that T is a tensor
of type (r,s) on E.

2. Let Φ : E −→ E′ be an isomorphism from a Banach vector bundle πE : E −→M
to another Banach vector bundle πE′ : E′ −→ M ′ over a map ϕ : M −→ M ′.
Given a tensor T of type (r,s) on E′, defined on an open set U ′ of M ′, the
pullback of T is the tensor Φ∗T of the same type defined (on ϕ−1 (U ′)) by

(Φ∗T )ϕ−1(x′)

(
Φ−1 (u′1) , . . . ,Φ

−1 (u′r) ,Φ
∗ (α′

1) , . . . ,Φ
∗ (α′

s)
)

= Tx′ (u′1, . . . , u
′
r, α

′
1, . . . , α

′
s)

3. A tensor T is called locally modelled on T ∈ Ls
r (E) if, for any x0 ∈ M , there

exists around x0, a trivialization τ : E|U −→ U × E such that

T|U (x) = τ∗x (T)

for any x ∈ U .

Proposition 2.5. A tensor T of type (r, s) on a Banach bundle πE : E −→ M ,
where M is a connected manifold, defines a tensor structure on E if and only if there
exists a tensor T ∈ Ls

r (E) and a bundle atlas {(Uα, τa)}α∈A such that Tα = T|Ua
is

localy modelled on T and the transition functions Tαβ (x) belong to the isotropy group

G (T) for all x ∈ Uα ∩ Uβ (where Uα ∩ Uβ 6= f� ) and all (α, β) ∈ A2.

Proof. Fix some tensor T on E and denote the isotropy group of T by G. Assume that
we have a G-structure on E and let {(Uα, τα)}α∈A be a bundle atlas such that each
transition function Tαβ : Uα∩Uβ → GL(E) takes values in G. Fix some point x0 ∈M
and denote an open set of the previous atlas which contains x0 by Uα. Since we have
a trivialization τα : EUα

→ Uα × E, we consider on Uα the section of L̂s
r(E) defined

by T (x) = τ̄∗α,xT. If there exists Uβ that contains x0, then, on Uα∩Uβ , the transition
function Tαβ takes values in G; it follows that the restriction of T on Uα ∩Uβ is well
defined. Therefore, there exists an open set U in M on which is defined a smooth
section T of L̂s

r(E) such that T|Uα∩U = τ̄∗α,xT , for all α such that Uα ∩ U 6= f� .
If x belongs to the closure of U , let Uβ be an open set of the previous atlas which
contains x. Then using the previous argument, we can extend T to U ∪Uβ . Since M
is connected, we can defined such a tensor T on M .
Conversely, if T is a tensor such that there exists a bundle atlas {(Uα, τα)}α∈A such
that T|Uα

is locally modeled on T; this clearly implies that each transition function
Tαβ must take values in G. �
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2.5 Integrable tensor structures on a Banach manifold

Definition 2.13. A tensor T on a Banach manifold M modelled on the Banach
space M is called an integrable tensor structure if there exists a tensor T ∈ Ls

r (M)
and a bundle atlas {(Uα, τa)}α∈A such that Tα = T|Ua

is locally modelled on T and
the transition functions Tαβ (x) belong to the isotropy group G (T) for all x ∈ Uα∩Uβ

(where Uα ∩ Uβ 6= f� ) and all (α, β) ∈ A2.

3 Examples of tensor structures on a Banach
bundle

Let (E, πE ,M) be a vector bundle whose fibre is the Banach space E and whose base
is modelled on the Banach space M.

3.1 Krein metrics

Definition 3.1. A pseudo-Riemannian metric on (E, πE ,M) is a smooth field of
weak non degenerate symmetric forms g on E. Moreover g is called

– a weak Riemannian metric if each gx is a pre-Hilbert inner product on the fibre
Ex

– a Krein metric if there exists a decomposition E = E+ ⊕ E− in a Whitney
sum of Banach bundles such that for each fibre Ex, gx is a Krein inner product
associated to the decomposition Ex = E+

x ⊕ E−
x

– a neutral metric if it is a Krein metric such that there exists a decomposition
E = E+ ⊕ E− where E+ and E− are isomorphic sub-bundles of E

– a Krein indefinite metric if there exists a decomposition E = E1 ⊕ E2 in a
Whitney sum of Banach bundles such that for each fibre Ex, gx is a Krein
indefinite inner product associated to the decomposition Ex = (E1)x ⊕ (E2)x.

Given a Krein metric g on E, according to [CaPe2], Proposition B.8, we get the
following result.

Theorem 3.1.

1. Let g be a Krein metric on a Banach bundle (E, πE ,M). Consider a decompo-
sition E = E+⊕E− in a Whitney sum such that the restriction g+ (resp. −g−)
of g (resp. −g) to E+ (resp. E−) is a (weak) Riemannian metric. Let Êx be the
Hilbert space which is the completion of the pre-Hilbert space (Ex, gx). Assume

that Ê =
⋃

x∈M

Êx is a Banach bundle over M such that the inclusion of E into

Ê is a bundle morphism. Then g can be extended to a strong Krein metric ĝ
on Ê and we have a decomposition Ê = Ê+ ⊕ Ê− such that the restriction ĝ+

(resp. ĝ−) of ĝ (resp. −ĝ) to Ê+ (resp. Ê−) is a strong Riemannian metric.

In fact Ê+ (resp. Ê−) is the closure of E+ (resp. E−) in Ê.

Given any point x0 in M , we identify the typical fibre of Ê (resp. E) with Êx0
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(resp. Ex0). Then γ̂ = ĝ+ − ĝ− defines a γ̂x0-structure and a ĝx0-structure on

Ê. Moreover, g defines a gx0
-structure on E.

2. Let (Ê, πÊ ,M) be a Banach bundle whose typical fibre is reflexive and let ĝ be

a strong Krein metric on Ê. If ĝx0
is the Krein inner product on Êx0

, then ĝ

is a ĝx0-structure on Ê.
Let (E, πE ,M) be any Banach bundle such that we have an injective morphism

of Banach bundles ι : E −→ Ê. Then the restriction g = ι∗ĝ of ĝ is a Krein
metric on E and g induces a gx0-structure on E.

Proof. 1. Consider a decomposition E = E+ ⊕ E− in a Whitney sum such that the
restriction g+ (resp. −g−) of g (resp. −g) to E+ (resp. E−) is a (weak) Riemannian
metric.

Assume that Ê =
⋃

x∈M

Êx is a Banach bundle over M , such that the inclusion ι of

E in Ê is a bundle morphism.

This implies that we have a bundle atlas {(Uα, τα)}α∈A (resp. {(Uα, σα)}α∈A) for

E (resp. for Ê) such that, for each α ∈ A, we have σα ◦ ι = τα, and, on Uα ∩ Uβ , the
transition function Tαβ is the restriction to E of the transition function Sαβ associ-
ated {(Uα, τα)}α∈A to E.

Assume that g is a weak Riemannian metric. Then ĝ is a strong Riemannian
metric on Ê.

Now given any x ∈M , each fibre Êx can be provided with the Hilbert inner prod-
uct ĝx. Therefore from [Lan], Theorem 3.1, there exists a bundle atlas {(U ′

α, σ
′
α)}α∈A

such that the transition functions S′
αβ take values in the group of isometries of the

typical fibre. Now, since ι is a bundle morphism, {(U ′
α, τ

′
α = σ′

α ◦ ι)}α∈A is a bundle
atlas for E and the transition function T ′

αβ for this atlas is nothing but the restriction
to E of S′

αβ and so is an isometry of E provided with the pre-Hilbert inner product

induced on E from Ê. Now, for a given x0 ∈M , the typical fibre of Ê and E can be
identified with Êx0

and Ex0
respectively, which ends the proof when E− is reduced

to {0}.
Now, we can apply the previous result to E+ and E− and for the weak Riemannian
metric g+ and −g− respectively. The result is then a consequence of [CaPe2], Propo-
sition 151.

2. According to the assumption of Point 2, let E and Ê be the typical fibres of E
and Ê, respectively. Since ι : E −→ Ê is a bundle morphism, as for the proof of Point
1, we have a bundle atlas {(Uα, τα)}α∈A for E and {(Uα, σα)}α∈A for Ê such that,
for all α ∈ A, we have σα ◦ ι = τα and, on Uα ∩ Uβ the transition functions Tαβ are
the restrictions to E of the transition functions Sαβ associated to {(Uα, τα)}α∈A. Let

Ē be the closure of E in Ê. For each α ∈ A we set ĒUα
=

⋃
x∈Uα

Ēx where Ēx is the

closure of Ex in Êx. Since σα◦ι(x, u) = τα(x, u), then we can extend the trivialization
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τα : EUα −→ Uα × E to a trivialization τ̄α : ĒUα −→ Uα × Ē and if ῑ : ĒUα −→ ÊUα

is the canonical extension of ι : EUα
−→ ÊUα

then we also have σα ◦ ῑ = τ̄α. In the
same way, the transition function T̄α,β associated to the bundle atlas {(Uα, τ̄α)}α∈A

is the restriction of Sαβ to Ē which is a Hilbert space. The result is a consequence of
Point 1. �

3.2 Almost tangent, decomposable complex and para-complex
structures

Let (E, πE ,M) be a Banach bundle such thatM is connected. As in finite dimension,
we introduce the notions of almost tangent and almost complex structures.

Definition 3.2. An endomorphism J of E is called an almost tangent structure on
E if imJ = kerJ and kerJ is a supplemented sub-bundle of E.

Definition 3.3. An endomorphism I (resp. J ) is called an almost complex (resp.
paracompact) structure on E if I2 = − IdE (resp. J 2 = IdE).

According to [CaPe2], § B.5 and § B.6, if J is an almost tangent structure, there
exists a decomposition E = kerJ⊕K in a Whitney sum, the restriction JK of J to K
is a bundle isomorphism from K to ker J . Moreover, we can associate to J an almost
complex structure I (resp. J ) on E given by I(u) = −JKu (resp. J (u) = JKu) for
u ∈ K and I(u) = J−1

K (u) (resp. I(u) = J−1
K (u)) for u ∈ kerJ .

Definition 3.4. An almost complex structure is called decomposable if there exists
a decomposition in a Whitney sum E = E1 ⊕ E2 and an isomorphism I : E2 −→ E1

such that I can be written (
0 −I
I−1 0

)
.

Given a Withney decomposition E = E1⊕E2 associated to a decomposable almost
complex structure I, let S be a the isomorphism of E defined by the matrix(

− IdE1 0
0 IdE2

)
.

According to [CaPe2], § B.6.2, J = SI is an almost para-complex structure. Con-
versely, if J is an almost para-complex structure there exists a decomposition in a
Whitney sum E = E1 ⊕ E2 and an isomorphism I : E2 −→ E1 such that I can be
written (

0 −I
I−1 0

)
and in this way, I = SJ is decomposable almost complex structure.

From [CaPe2], Propositions B.23 and B.29, we obtain the following result.

Theorem 3.2. Let (E, πE ,M) be a Banach vector bundle.

1. Let J be an almost tangent structure on (E, πE ,M).
For a fixed x0 in M , we identify the fibre Ex0

with the typical fibre of E. If Jx0

is the induced tangent structure on Ex0
, then J defines a Jx0

-structure on E.
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2. Let I be an almost decomposable complex structure on (E, πE ,M).
For a fixed x0 in M , we identify the fibre Ex0 with the typical fibre of E. If Ix0

is the induced complex structure on Ex0
, then I defines a Ix0

-structure on E.

3. Let J be an almost para-complex structure on (E, πE ,M).
For a fixed x0 in M , we identify the fibre Ex0 with the typical fibre of E. If Jx0

is the induced para-complex structure on Ex0 , then J defines a Jx0-structure
on E.

Proof. Consider a decomposition E = ker J ⊕K in Whitney sum. Let {(Uα, τα)}α∈A

be a bundle atlas of E which induces an atlas on each sub-bundle ker J and K. For
any x ∈ Uα, τα(x) : Ex −→ Ex0 is a an isomorphism and so τα(x)

∗Jx0 is a tangent
structure on Ex. Moreover, if τ1α and τ2α are the restrictions of τα to kerJ|Uα

and K|Uα

respectively, then τ1α(x) and τ2α(x) are isomorphisms of kerJx and Kx onto kerJx0

and Kx0
respectively. Therefore (τα(x)

−1)∗(Jx) is a (linear) tangent structure on
Ex0

whose kernel is also kerJx0
with Kx0

= (τ2α(x))
−1(Kx) and (τα(x)

−1)∗J|Kx
is an

isomorphism from Kx0
to ker Jx0

. From [CaPe2], Proposition B.23, Tx : Ex0
−→ Ex0

defined by Tx(u, v) = (u, (τα(x)
−1)∗J|Kx

◦ J−1
x0

is an automorphism of Ex0
such that

T ∗
x (Jx0) = (τα(x)

−1)Jx and so (Tx ◦ τα(x))∗(Jx0) = Jx. Since τα is smooth on U , this
implies that τ ′α(x) = Tx ◦ τα(x) defines a trivialization τ ′α : EUα −→ Uα×Ex0 , so J|Uα

is locally modelled on Jx0
. Now it is clear that each transition map Tαβ belongs to

the isotropy group of Jx0
.

The proofs of Point 2 and Point 3 use, step by step, the same type of arguments as
in the previous one and is left to the reader. �

3.3 Compatible almost tangent and almost cotangent
structures

Let (E, πE ,M) be a Banach bundle such that M is connected.

Definition 3.5. A weak non degenerated 2-form Ω on E is called an almost cotangent
structure on E if there exists a decomposition of E in a Whitney sum L⊕K of Banach
sub-bundles of E such that each fibre Lx is a weak Lagrangian subspace of Ωx in Ex

for all x ∈M . In this case, L is called a weak Lagrangian bundle.

Definition 3.6. An almost tangent structure J on E is compatible with an almost
cotangent structure Ω if Ωx is compatible with Jx

1 for all x ∈M .

Assume that E is a Whitney sum E1 ⊕ E2 of two sub-bundles of E and there
exists a bundle isomorphism J : E2 −→ E1, then as we have already seen, we can
associate to J an almost complex structure I on E. On the other hand, if g is a
pseudo-Riemannian metric on E1, we can extend g to a canonical pseudo-Riemannian
metric ḡ on E such that E1 and E2 are ḡ orthogonal and the restriction of ḡ on E2 is
ḡ(u, v) = g(Ju, Jv). Now, according to [CaPe2], § B.7.1, by application of Proposition
B.31 on each fibre, we get the following result.

Proposition 3.3.

1i.e. ker Jx is Lagrangian and we have Ωx(Jx , ) + Ωx( , Jx ) = 0
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1. Assume that there exists an almost tangent structure J on E and let E =
kerJ ⊕K be an associated decomposition in a Whitney sum. If there exists a
pseudo-Riemannian metric g on kerJ , then there exists a cotangent structure Ω
on E compatible with J such that kerJ is a weak Lagrangian bundle of E where

∀(u, v) ∈ E2,Ω(u, v) = ḡ(Iu, v)− ḡ(u, Iv)

if ḡ is the canonical extension of g and I is the almost complex structure on E
defined by J .

2. Assume that there exists an almost cotangent structure Ω on E and let E =
L ⊕ K be an associated Whitney decomposition. Then there exists a tangent
structure J on E such that kerJ = L.

3. Assume that there exists a tangent structure J on E which is compatible with
a cotangent structure Ω. Then there exists a decomposition E = ker J ⊕ K
where kerJ is a weak Lagrangian bundle. Moreover g(u, v) = Ω(Ju, v) is a
pseudo-Riemannian metric on kerJ and Ω satisfies the relation (3.3).

In the context of the previous Proposition, if g is a weak Riemannian metric, so
is its extension ḡ. In this case, as we have already seen in § 3.1, each fibre Ex can
be continuously and densely embedded in a Hilbert space which will be denoted Êx.
According to Theorem 3.1, with these notations, we get the following theorem.

Theorem 3.4.

1. Consider a tangent structure J on E, a weak Riemannian metric g on kerJ
and Ω the cotangent structure compatible with J as defined in (3.3). Assume

that Ê =
⋃

x∈M

Êx is a Banach bundle over M such that the inclusion of E

in Ê is a bundle morphism. For any x0 in M , the triple (J, g,Ω) defines a
(Jx0

, ḡx0
,Ωx0

)-structure on E where ḡ is the natural extension of g to E.

2. Let (Ê, πÊ ,M) be a Hilbert bundle over a connected Banach manifold M . Con-

sider an almost tangent structure Ĵ on Ê, a Riemannian metric ĝ on ker Ĵ
and an almost cotangent structure Ω̂ compatible with Ĵ which satisfies (3.3) on

Ê. Then for any Banach bundle (E, πE ,M) such that there exists an injective

bundle morphism ι : E −→ Ê with dense range, the restriction J of Ĵ to E is
an almost tangent structure on E and the restriction Ω of Ω̂ to E is an almost
cotangent structure compatible with J and Ω satisfies the relation (3.3) on E.
In particular, for any x0 in M , the triple (J, g,Ω)) defines a (Jx0 , gx0 ,Ωx0)-
structure on E.

Remark 3.7. According to Proposition 3.3, Point 3, if there exists a tangent structure
J on E which is compatible with a cotangent structure Ω such that g(u, v) = Ω(Ju, v)
is a Riemannian metric on ker J , then Ω satisfies the relation (3.3). Therefore we have
a corresponding version of Theorem 3.3 with the previous assumption.

Proof. 1. According to our assumption, by density of ι(E) (identified with E) in Ê

and using compatible bundle atlases for Ê and E (cf. proof of Theorem 3.1) it is easy
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to see that we can extend J and g, to an almost tangent structure Ĵ and a strong
Riemannian metric ĝ on Ê. By the way, if I is the almost complex structure on E
associated to J , we can also extend I to an almost complex structure Î on Ê which is
exactly the almost complex structure associated to Ĵ . Thus this implies, by relation
(3.3), that we can extend Ω into a 2-form Ω̂ on Ê which will satisfy also relation (3.3)

on Ê, using ĝ and Î. Then Ω̂ is a strong non-degenerate 2-form on Ê. Note that
ker Ĵ is the closure in Ê of kerJ and, since J : K −→ kerJ is an isomorphism, this
implies that K̂ = Ĵ(ker Ĵ) is a Banach sub-bundle of Ê such that Ê = ker Ĵ ⊕ K̂.

Moreover, each fibre ker Ĵx of kerJ is exactly the Hilbert space which is the closure of
kerJx provided with the pre-Hilbert product gx. Now, from the construction of the
extension ḡ of g to E, the restriction of J to K is an isometry and so the restriction
of Ĵ to K̂ is also an isometry. This implies that I (resp. Î) is an isometry of ḡ (resp.

ĝ). Fix a point x0 in M and identify the fibres of E and Ê with Ex0 and Êx0 . From
Theorem 3.1, there exists an atlas {(Uα, τα)}α∈A of E and {(Uα, σα)}α∈A such that
τα = σα ◦ ι and the respective transition functions Tαβ and Sαβ are isometries of E

relatively to ḡx0
and ĝx0

. Since I and Î are isometries for ḡ and ĝ, this implies that

I is also a Ix0 -structure on E and Î is a Îx0-structure on Ê. But since J and Ĵ are

canonically defined from I and Î respectively, we obtain a similar result for J and Ĵ .
Finally, according to relation (3.3), we also obtain a similar result for Ω and Ω̂, which
ends the proof.

2. Under the assumptions of Point 2, we can apply all the results of Point 1 to
(Ê, πÊ ,M). In particular, for a decomposition Ê = ker Ĵ ⊕ K̂, Ĵ is an isometry from

K̂ to ker Ĵ and the almost complex structure Î associated to Ĵ is an isometry of
ĝ . We can identify E with ι(E) in Ê. We set K = E ∩ K̂. Then the range of

the restriction of Ĵ to K is included in ker Ĵ . Using compatible bundle atlases for
E and Ê, we can show that if J is the restriction of Ĵ then kerJ = ker Ĵ ∩ E and
E = kerJ ⊕ K so that J is an almost tangent structure on E. Now ĝ induces a
weak Riemannian metric ḡ on E and J is again an isometry from K to kerJ . This
implies that the almost complex structure I associated to J is nothing but than the
restriction of Î to E. Of course, we obtain that the restriction Ω of Ω̂ satisfies the
relation (3.3) relatively to ḡ and I. So the assumptions of Point 1 are satisfied which
ends the proof. �

3.4 Compatible weak symplectic form, weak Riemannian met-
ric and almost complex structures

If g (resp. Ω) is a weak neutral metric (resp. a weak symplectic form) on a Banach
bundle (E, πE ,M), as in the linear context, we denote by g♭ (resp. Ω♭) the associated
morphism from E to E∗ where (E∗, πE∗ ,M) is the dual bundle of (E, πE ,M). More-
over, if I is an almost complex structure on E, following [CaPe2], § B.7, we introduce
the following notions.

Definition 3.8.

1. We say that a weak symplectic form Ω and an almost complex structure I on
E are compatible if (u, v) 7→ Ω(u, Iv) is a weak Riemannian metric on E and
Ω(Iu, Iv) = Ω(u, v) for all u and v in E.
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2. We say that a weak Riemannian metric g and an almost complex structure I
on E are compatible if g(Iu, Iv) = g(u, v) for all u and v in E.

3. We say that a weak Riemannian metric g and a weak symplectic structure Ω on
E are compatible if I = (g♭)−1 ◦ Ω♭ is well defined and is a complex structure
on E.

4. A weak symplectic form Ω on E will be called a Darboux form if there exists
a decomposition E = E1 ⊕ E2 such that for each x ∈ M each fibre (E1)x and
(E2)x is Lagrangian.

Now by application of [CaPe2], Proposition B.34 and Corollary B.35 we obtain:

Theorem 3.5. Consider a Darboux form Ω, a weak Riemannian g and a decompos-
able complex structure I on a Banach space E. Assume that any pair among such a
triple exists on E and is compatible. Then the third one also exists and is compatible
with any element of the given pair. Denote Êx the Hilbert space defined by gx for
each x ∈M . If Ê =

⋃
x∈M

Êx is a Banach bundle over M and there exists an injective

morphism ι : E −→ Ê, then we can extend Ω, g and I to a strong symplectic form Ω̂,
a strong Riemannian metric ĝ and an almost complex structure Î on Ê respectively.
Moreover, for any x0 ∈M , if we identify the typical fibre of E and of Ê with Ex0

and

Êx0 respectively, then the triple (Ω, g, I) (resp. (Ω̂, ĝ, Î)) defines a (Ωx0 , gx0 , Ix0)-

structure (resp. (Ω̂x0
ĝx0

, Îx0
)-structure) on E (resp. Ê).

Conversely, assume that we have such a triple (Ω̂, ĝ, Î) which is compatible on a Hilbert

bundle (Ê, πÊ ,M). For any Banach bundle which can be continuously and densely

embedded in Ê, then this triple induces, by restriction to E, a triple (Ω, g, I) which

is compatible. Therefore, we obtain a (Ωx0 , gx0 , Ix0)-structure (resp. (Ω̂x0 , ĝx0 , Îx0)-

structure) on E (resp. Ê).

Proof. The first property is a direct application of [CaPe2], Proposition B.34 and
Corollary B.35, the other ones are obtained as in the proof of the corresponding parts
of Theorem 3.4. �

Definition 3.9. A Banach bundle πE : E −→ M has a weak (resp. strong) almost
Kähler structure if there exists on E a weak (resp. strong) Darboux form Ω, a weak
(resp. strong) Riemanian metric g and a decomposable almost complex structure I
such that there exists a compatible pair among these three data.

From Remark [CaPe2], B.36, to a weak or strong almost Kähler structure on E
is associated a decomposition E = E1 ⊕ E2 of isomorphic sub-bundles which are la-
grangian and orthogonal. Note that Theorem 3.5 can be seen as sufficient conditions
under which a weak Kähler structure on a Banach bundle E is a tensor structure on E.

3.5 Compatible weak symplectic forms, weak neutral metrics
and almost para-complex structures

If g (resp. Ω) is a weak Riemannian metric (resp. weak symplectic form) on a
Banach bundle (E, πE ,M), as in the linear context, we denote by g♭ (resp. Ω♭)
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the associated morphism from E to E∗ where (E∗, πE∗ ,M) is the dual bundle of
(E, πE ,M). Moreover, if J is an almost para-complex structure on E, following
[CaPe2], § B.7, we introduce the following notions.

Definition 3.10.

1. We say that a weak symplectic form Ω and an almost para-complex structure
J on E are compatible if (u, v) 7→ Ω(u,J v) is a weak neutral metric on E and
Ω(J u,J v) = −Ω(u, v) for all u and v in E.

2. We say that a weak neutral metric g and an almost para-complex structure J
on E are compatible if g(J u,J v) = −g(u, v) for all u and v in E.

3. We say that a weak neutral metric g and a weak symplectic structure Ω on E
are compatible, if J = (g♭)−1 ◦Ω♭ is well defined and is an almost para-complex
structure on E.

According to [CaPe2], Remark B.39 and Theorem 3.5, we have

Theorem 3.6. Consider a Darboux form Ω, a weak neutral metric g and a para-
complex structure J on a Banach space E. Assume that any pair among such a triple
exists on E and is compatible. Then the third one also exists and is compatible with
any element of the given pair. Let h be a Riemaniann metric canonically associated
to some decomposition E = E+ ⊕ E− relatively to g and let Êx be the Hilbert space
defined by the inner product associated to hx for each x ∈ M . If Ê =

⋃
x∈M

Êx is a

Banach bundle over M and there exists an injective morphism ι : E −→ Ê, then we
can extend Ω, g and J to a strong symplectic form Ω̂, a strong neutral metric ĝ and an
almost para-complex structure Ĵ on Ê respectively. Moreover, for any x0 ∈M , if we
identify the typical fibre of E and of Ê with Ex0 and Êx0 respectively, then the triple

(Ω, g,J ) (resp. (Ω̂, ĝ, Ĵ )) defines a (Ωx0
, gx0

,Jx0
)-structure (resp. (Ω̂x0

ĝx0
, Ĵx0

)-

structure) on E (resp. Ê). Conversely, assume that we have such a triple (Ω̂, ĝ, Ĵ )
which is compatible on a Hilbert bundle (Ê, πÊ ,M). For any Banach bundle which

can be continuously and densely embedded in Ê, then this triple induces, by restriction
to E, a triple (Ω, g,J ) which is compatible. Therefore, we obtain a (Ωx0

, gx0
,Jx0

)-

structure (resp. (Ω̂x0 , ĝx0 , Ĵx0)-structure) on E (resp. Ê).

As in finite dimension (cf. [Lib] for instance), we introduce the para-Kähler struc-
tures.

Definition 3.11. A Banach bundle πE : E −→M has a weak (resp. strong) almost
para-Kähler structure if there exists on E a weak (resp. strong) Darboux form Ω, a
weak (resp. strong) neutral metric g and an almost para-complex structure J such
that there exists a compatible pair among these three data.

As for weak or strong almost para-Kähler bundles, from [CaPe2], Remark B.42,
to a weak or strong para-Kähler structure on E is associated a decomposition E =
E1 ⊕ E2 of isomorphic sub-bundles which are Lagrangian and the restriction of g to
E1 (resp. E2) is positive definite (resp. negative definite).
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Note also that Theorem 3.6 can be seen as sufficient conditions under which a weak
almost para-Kähler structure on a Banach bundle E is a tensor structure on E.

4 Examples of integrable tensor structures on a
Banach manifold

4.1 The Darboux Theorem on a Banach manifold

In finite dimension, from the Darboux theorem, a symplectic form on a manifold
defines an integrable tensor structure on M . The extension of such a result to the
Banach framework is given in [Bam] for weak symplectic Banach manifolds.

Definition 4.1. A weak symplectic form on a Banach manifold M modelled on a
Banach space M is a closed 2-form Ω on M which is non-degenerate.

If Ω♭ : TM → T ∗M is the associated morphism, then Ω♭ is an injective bundle
morphism. The symplectic form Ω is weak if Ω♭ is not surjective. Assume that M
is reflexive. We denote by T̂xM the Banach space which is the completion of TxM
provided with the norm || ||Ωx

defined by

||u||Ωx = ||Ω♭
x(u)||∗

where || ||∗ is the norm on T ∗
xM associated to a choice of norm || || on TxM (see

[CaPe2] for more precisions). Recall that T̂xM does not depend on the choice of the
norm on TxM (cf. [CaPe2], Remark B.2). Then Ω can be extended to a continuous

bilinear map Ω̂x on TxM × T̂xM and Ω♭ becomes an isomorphism from TxM to

(T̂xM)∗. We set

T̂M =
⋃

x∈M

T̂xM and (T̂M)∗ =
⋃

x∈M

(T̂xM)∗.

We have the following Darboux Theorem ([Bam]) (see also [Pel2]):

Theorem 4.1 (Local Darboux theorem). Let Ω be a weak symplectic form on a
Banach manifold modelled on a reflexive Banach space M. Assume that we have the
following assumptions:

(i) There exists a neighbourhood U of x0 ∈M such that T̂M |U is a trivial Banach

bundle whose typical fibre is the Banach space (T̂x0M, || ||Ωx0
);

(ii) Ω can be extended to a smooth field of continuous bilinear forms on

TM|U × T̂M |U .

Then there exists a chart (V, F ) around x0 such that F ∗Ω0 = Ω where Ω0 is the
constant form on F (V ) defined by (F−1)∗Ωx0

.
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Definition 4.2. The chart (V, F ) in Theorem 4.1 will be called a Darboux chart
around x0.

Remark 4.3. The assumptions of Darboux theorem in [Bam] (Theorem 2.1) are
formulated in a different way. In fact, the assumption on all those norms || ||Ωx

in

this Theorem 2.1 on the typical fibre M̂ is a consequence of assumptions (i) and (ii)
of Theorem 4.1 after shrinking U if necessary (cf. [Pel2]).

Remark 4.4. If Ω is a strong symplectic form on M , then M is reflexive and Ω♭ is a
bundle isomorphism from TM to T ∗M . In particular, the norm || ||Ωx is equivalent to
any norm || || on TxM which defines its Banach structure and so all the assumptions
(i) and (ii) of Theorem 4.1 are always locally satisfied. Thus Theorem 4.1 recovers
the Darboux Theorem which is proved in [Mar] or [Wei].

Weinstein gives an example of a weak symplectic form Ω on a neighbourhood of 0
of a Hilbert space H for which the Darboux Theorem is not true. The essential reason
is that the operator Ω♭ is an isomorphism from TxU onto T ∗

xU on U \ {0}, but Ω♭
0 is

not surjective.

Finally from Theorem 4.1, we also obtain the following global version of a Darboux
Theorem:

Theorem 4.2 (Global Darboux Theorem). Let Ω be a weak symplectic form on a
Banach manifold modelled on a reflexive Banach space M. Assume that we have the
following assumptions:

(i) T̂M →M is a Banach bundle whose typical fibre is M̂;

(ii) Ω can be extended to a smooth field of continuous bilinear forms on

TM × T̂M |U .

Then, for any x0 ∈M , there exists a Darboux chart (V, F ) around x0.
In particular Ω defines an integrable tensor structure on M if and only if the assump-
tions (i) and (ii) are satisfied.

Note that, from Remark 4.4, a strong symplectic form on a Banach manifold is
always an integrable tensor structure. The reader will find in [Pel2] an example of a
weak symplectic form on a Banach manifold for which the assumptions of Theorem
4.2 are satisfied.

4.2 Flat pseudo-Riemannian metrics on a Banach manifold

In finite dimension, it is well known that a pseudo-riemannian metric on a manifoldM
defines an integrable tensor structure onM if and only if its Levi-Civita connection is
flat. In this section, we give a generalization of this result to the Banach framework.

Definition 4.5. A pseudo-Riemannian metric (resp. a Krein metric) g on a Banach
manifold M is a pseudo-Riemannian metric (resp. a Krein metric) on the tangent
bundle TM .
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When g is a Krein metric, we have a decomposition TM = TM+ ⊕ TM− in a
Whitney sum such that the restriction g+ (resp. −g−) of g (resp. −g). to TM+

(resp. TM−) is a (weak) Riemannian metric. To g is associated a canonical Rieman-
nian metric γ = g+ − g−. According to [CaPe2], § B.10, on each fibre TxM , we have

a norm || ||gx which is associated to the inner product γx. We denote by T̂xM the
Banach Hilbert space associated to the normed space (TxM, || ||gx).

By application of Theorem 3.1 to TM we have the following theorem.

Theorem 4.3.

1. Let g be a Krein metric on a Banach manifold M . Consider a decomposition
TM = TM+ ⊕ TM− in a Whitney sum such that the restriction g+ (resp.
−g−) of g (resp. −g) to TM+ (resp. TM−) is a (weak) Riemannian metric.

Moreover, assume that T̂M =
⋃

x∈M

T̂xM is a Banach bundle over M such that

the inclusion of TM in T̂M is a bundle morphism. Then g can be extended
to a strong Krein metric ĝ on the bundle T̂M and we have a decomposition

T̂M = T̂M
+
⊕ T̂M

−
such that the restriction ĝ+ (resp. ĝ−) of ĝ (resp. −ĝ) to

T̂M
+
(resp. T̂M

−
) is a strong Riemannian metric. In fact T̂M

+
(resp. T̂M

−
)

is the closure of TM+ (resp. TM+) in T̂M .

2. Let (T̂M, π̂,M) be a Banach bundle whose typical fibre is a reflexive Banach

space and let ĝ be a strong Krein metric on T̂M . Assume that there exists an
injective morphism of Banach bundles ι : TM −→ T̂M whose range is dense.
Then the restriction g = ι∗ĝ of ĝ is a Krein metric on M .

Now, as for a strong Riemannian metric on a Banach manifold, to a strong pseudo-
Riemannian metric g is associated a Levi-Civita connection which is a Koszul con-
nection ∇ characterized by

2g(∇XY, Z) = X(g(Y, Z)) + Y (g(Z,X))− Z(g(X,Y ))
+g([X,Y ], Z)− g([Y, Z], X)− g([X,Z], Y )

for all local vector fields X,Y, Z on M .
When g is a weak pseudo-Riemannian metric, a Levi-Civita connection need not exist,
but if it exists, this connection is unique.
For a weak Riemannian metric, there exist many examples of weak Riemannian met-
rics whose Levi-Civita connection is well defined. When the model M of M is a re-
flexive Banach space we will give sufficient conditions for a weak pseudo-Riemannian
metric under which the Levi-Civita connection exists. Before, we need to introduce
some preliminaries.

According to [CaPe2], § B.1, for each x ∈ M , from a given norm || || on TxM ,
we can define a norm || ||gx on TxM and the completion TxMg of the normed space
(TxM, || ||gx) does not depend on the choice of the norm || || (see [CaPe2], Remark
B.2). In this way, g♭x can be extended to an isomorphism from TxMg to T ∗

xM and g♭x
becomes an isomorphism from TxM to (TxMg)

∗. Now we set:

TMg =
⋃

x∈M

TxMg and T ∗Mg =
⋃

x∈M

(TxMg)
∗.
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Note that TM is a subset of TMg and each fibre TxM is dense in TxMg and g♭x can
be extended to an isometry from TxMg to T ∗

xM . With these notations, we have:

Proposition 4.4. Let g be a pseudo-Riemannian metric on a Banach manifold mod-
elled on a reflexive Banach space. Assume that the following assumptions are satisfied:

(i) TMg has a structure of Banach bundle over M ;

(ii) The injective morphism g♭ : TM −→ T ∗M can be extended to a bundle mor-
phism from TMg to T ∗M .

Then the Levi-Civita connection of g is well defined.

Proof. Fix some x0 ∈ M and, for the sake of simplicity, denote by E the Banach
space Tx0

Mg. From assumption (i), it follows that around x0, there exists a trivial-
ization Ψ : (TMg)|U −→ U ×Mg where Mg denotes the typical fibre of TMg. After
shrinking U , if necessary, we may assume that U is a chart domain associated to some
ϕ : U −→ M and so Tπ : TM|U −→ ϕ(U) ×M is a trivialization. We may assume
that Ψ : (TMg)|U −→ ϕ(U)×M is a trivialization and so, without loss of generality,
we can also assume that U is an open subset of M and TM|U = U ×M. Now since
M is dense in Mg, the inclusion of the trivial bundle U ×M into U ×E is an injective
bundle morphism.

For fixed local vector fields X and Y defined on U , the map which, to any local
vector field Z defined on U , associates the second member of (4.2) is a well defined
local 1-form on U denoted αX,Y .
Note that from [CaPe2], since M is reflexive, g♭x can be extended to an isomorphism
from TxM to (TxMg)

∗ and also gives rise to an isomorphism from TxM to (TxMg)
∗.

Thus, from assumption (ii), the extension of g♭ gives rise to a bundle isomorphism
from TM to T ∗Mg again denoted g♭. But it is clear that any 1-form α on U ×M
can be extended to a smooth 1-form (again denoted α) on (TMg)|U = U ×M. This

implies that (g♭)−1(α) is a smooth vector field on U , which ends the proof.
�

Theorem 4.5. Let g be a pseudo-Riemannian metric on a Banach manifold. Assume
that the Levi-Civita connection ∇ of g is defined. Then g defines an integrable tensor
structure if and only if the curvature of ∇ vanishes.

This result is well known but we have no precise and accessible reference to a
complete proof of such a result. We give a sketch of the proof.

Proof. On the principal frame bundle ℓ(TM), the Levi-Civita gives rise to a connec-
tion form ω with values in the Lie algebra gl(M) of the Banach Lie group GL(M) (cf.
[KrMi] 8). Let Ω be the curvature of ω. IfX and Y are local vector fields onM , letXh

and Y h be their horizontal lifts in ℓ(TM) and we have Ω(Xh, Y h) = −ω([Xh, Y h]).
Therefore, the horizontal bundle is integrable if the curvature vanishes. Moreover, in
this case, over any simply connected open set U of M , the bundle ℓ(TM)|U is trivial
(consequence of [KrMi], Theorem 39.2, for instance). Thus, around any point x0 ∈M ,
there exists a chart domain (U, ϕ) such that ℓ(TM)|U ≡ ϕ(U)×GL(M). Without loss
of generality, we may assume that U = M, x0 = 0 ∈M and so ℓ(TM)|U = M×GL(M).
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The horizontal leaves are obtained from M×IdM by right translation in GL(M). Con-
sider a horizontal section ψ : M −→ GL(M) such that ψ(0) = IdM, then ψ(x) = IdM
for all x ∈ M. Since the parallel transport from some point x to some point y does
not depend on the curve which joins x to y, this implies that ψ(x) is the parallel
transport from T0M to TxM. For the same reason, if ∇ is the Levi-Civita connection,
then for any constant vector field X and Y on M , we have ∇YX = 0. As ∇ is com-
patible with g, this implies that, for any X ∈ TxM, we have X{gx(Y, Z)} = 0, for all
x ∈M, all X ∈ TxM and any local constant vector field Y, Z around x. Consider the
diffeomorphism Ψ(x) = x+ IdM of M. The previous property implies that Ψ∗g0 = g.

Let (U1, ϕ1) and (U2, ϕ2) be two charts such that U1 ∩ U2 6= f� and if x0 ∈ U1 ∩ U2

then, for i ∈ {1, 2}, ϕ∗i g = gx0 on ϕi(Ui) ⊂ M ≡ Tx0M where gx0 is the constant
pseudo-Riemannian metric on M defined by gx0

. Then it is easy to see that the the
transition function T12 on U1 ∩U2 associated to Tϕ1 and Tϕ2 belongs to the isotropy
group of gx0

.
Conversely, if g is an integrable tensor structure, locally there exists a chart (U, ϕ)

such that ϕ∗g = gx0
on ϕ(U) ⊂ M ≡ Tx0

M where gx0
is the constant pseudo-

Riemannian defined on M ≡ Tx0
M by gx0

. Then it is clear that the curvature of the
Levi-Civita connection of the constant metric gx0

vanishes. Now since ϕ is an isometry
from (U, g|U ) onto (ϕ(U), (gx0

)|ϕ(U)), the curvature of the Levi-Cevita connection of
g must also vanish on U , which ends the proof. �

Corollary 4.6. A Krein metric g on a Banach manifold M is an integrable tensor
structure if and only if the curvature of the Levi-Civita connection of g vanishes.

4.3 Integrability of almost tangent, para-complex and decom-
posable complex structures

Definition 4.6. An almost tangent structure J (resp. para-complex structure J ,
resp. decomposable complex) structure on a Banach manifoldM is an almost tangent
(resp. para-complex structure J , resp. decomposable complex) structure structure
on the tangent bundle TM of M .

If J is an almost tangent structure, we have a decomposition TM = kerJ ⊕ L,
such that K and L are isomorphic sub-bundles of TM . Moreover, there exists an

isomorphism JL : L→ kerJ such that J can be written as a matrix of type

(
0 JL
0 0

)
.

If J is an almost para-complex structure, there exists a Whitney decomposition
TM = E+⊕E− where E+ and E− are the eigen-bundles associated to the eigenvalues
+1 and −1 of J respectively.

Now for a classical criterion of the integrability of such structures we need the
notion of Nijenhuis tensor.

Definition 4.7. If A is an endomorphism of TM , the Nijenhuis tensor of A is defined,
for all local vector fields X and Y on M , by:

NA(X,Y ) = [AX,AY ]−A[AX,Y ]−A[X,AY ] +A2[X,Y ].
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Theorem 4.7. An almost tangent (resp. para-complex) structure J (resp. J ) struc-
ture on M is integrable if and only its Nijenhuis tensor is null.

Proof. For any almost tangent structure J , since J2 = 0, we have:

NJ(X,Y ) = [JX, JY ]− J [JX, Y ]− J [X, JY ].

Moreover, if X or Y is a section of ker J , we always have NJ(X,Y ) = 0. Therefore
we only have to consider NJ in restriction to L. In particular, we can note that if
NJ ≡ 0, then we have

[JX, JY ] = J [JX, Y ] + J [X, JY ].

Therefore, when we restrict this relation to a section of L, since JL is an isomorphism,
this implies that kerJ is an involutive supplemented sub-bundle of TM .

Fix some x0 ∈ M and consider a chart (U, ϕ) around x0 such that (kerJ)|U
and K|U are trivial. Therefore, Tϕ(TM) = ϕ(U) ×M, Tϕ(kerJ) = ϕ(U) × K and
Tϕ(L) = ϕ(U)× L.

If K ⊂ M and L ⊂ M are the typical fibres of kerJ and L respectively, we have
M = K⊕ L. Therefore, without loss of generality, we may assume that U is an open
subset of M ≡ K × L and TM = U × M, kerJ = U × K and L = U × L. Thus
x 7→ (JL)x is a smooth field which takes values in the set Iso(L,K) of isomorphisms
from L to K and x 7→ Jx is a smooth field from M to L(M) such that kerJx = K.

As in [Bel1], Proposition 2.1, we obtain in our context:

Lemma 4.8. With the previous notations, we have

NJ(X,Y ) = J ′(Y, JX)− J ′(JX, Y ) + J ′(X, JY )− J ′(X, JY )

where J ′ stands for the differential of J as a map from M to L(M).

At first, assume that J is an integrable almost tangent structure. This means
that, for any x ∈ M , the value Jx in L(M) (resp. (JL)x in Iso(L,K)) is a constant.
So from Lemma 4.8. it follows that NJ = 0.

Conversely, assume that NJ = 0 and as we have already seen kerJ is involutive,
if X and Y are sections of L, in the expression of NJ given in Lemma 4.8, we can
replace J by JL and this implies that JL satisfies the assumption of Theorem 1.2 in
[Lan]. By the same arguments as in the proof of the Frobenius Theorem in [Lan], we
produce a local diffeomorphism Ψ from a neighbourhood U0 × V0 ∈ K×L of x0 such
that Ψ∗JL is a smooth field from U0 × V0 to Iso(K,L) which is constant. Thus the
same is true for J , which ends the proof in this case.

Now, let us consider a para-complex structure J . Recall that we have a canonical
Whitney decomposition TM = E+ ⊕ E− where E+ (resp. E−) is the eigen-bundle
associated to the eigenvalue +1 (resp. −1) of J . Note that if P± = 1

2 (Id±J ), then
E± = im P±, kerP± = E∓ and TM = E+⊕E−. Now, we have NJ = 0 if and only if
NP+ = NP− = 0 and E+ and E− are integrable sub-bundles of TM . Note that since
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J 2 = Id, Lemma 4.8 is also valid for J ; So if J is integrable, this implies thatNJ = 0.

Conversely, assume that NJ = 0. Fix some x0 ∈M and denote by E± the typical
fibre of E±. If the sub-bundles E± are integrable, from Frobenius Theorem, there
exists a chart (U±, ϕ±) around x0 where ϕ± is a diffeomorphism from U± onto an
open neighbourhood V ±

1 × V
±
1 in E+ ×E− such that ϕ∗+P

+ and ϕ∗−P
− are the fields

of constant matrices

(
0 IdE+

0 0

)
and

(
0 0
0 IdE−

)
. Now the transition map ϕ− ◦ ϕ−1

+

is necessarily of type (x̄, ȳ) 7→ (α(x̄), β(ȳ)). So the restriction of ϕ+ to U+ ∩ U− is
such that ϕ∗+P

+ and ϕ∗+P
− are also the previous matrices, which ends the proof since

J = P+ + P−.
�

Unfortunately, the problem of integrability of an almost complex structure I on a
Banach manifold M is not equivalent to the relation NI ≡ 0. The reader can find in
[Pat] an example of an almost complex structure I on a smooth Banach manifold M
such that NI ≡ 0 for which there exists no holomorphic chart in which I is isomorphic
to a linear complex structure. However, if M is analytic and if NI ≡ 0 there exists
a holomorphic chart in which I is isomorphic to a linear complex structure (Banach
version of Newlander-Nirenberg theorem see [Bel1]). In particular, there exists a
structure of holomorphic manifold on M .

Definition 4.8. An almost complex structure I on a Banach manifold M is called
formally integrable if NI ≡ 0.
I is called integrable if there exists a structure of complex manifold on M .

4.4 Flat Kähler and para-Kähler Banach manifolds

Following [Tum1], we introduce the following notions.

Definition 4.9. A Kähler (resp. formal-Kähler) Banach structure on a Banach
manifold M is an almost Kähler structure (Ω, g, I) on TM such that the almost
complex structure I is integrable (resp. formally integrable).

Note that if M is analytic, (Ω, g, I) is an almost Kähler structure on TM if and
only if NI ≡ 0, then we have a Kähler structure on M . The reader will find many
examples of weak and strong formal-Kähler Banach manifolds in [Tum2].

In the same way, a weak (resp. strong) para-Kähler Banach structure on a Banach
manifold M is an almost para-Kähler structure (Ω, g,J ) on TM (cf. Definition 3.9)
such that the almost para-complex structure J is integrable.

In what follows, we use the terminology Kähler or para-Kähler mani-
fold instead of weak Kähler or weak para-Kähler manifold.

According to § 3.4, if we have a Kähler or para-Kähler manifold structure on M ,
we have a decomposition TM = E1⊕E2 where E1 and E2 are isomorphic, Lagrangian
and orthogonal sub-bundles of TM .
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Definition 4.10. A formal-Kähler (resp. para-Kähler) Banach structure (Ω, g, I)
(resp. (Ω, g,J )) is said to be flat if the Levi-Civita connection ∇ of g exists and is
flat.

Lemma 4.9. Let (ω, g, I) (resp. (Ω, g,J )) be a Kähler (resp. para-Kähler) Banach
structure such that the Levi-Civita connection ∇ of g exists. Then we have ∇I ≡ 0
(resp. ∇J ≡ 0)

Proof. cf. proof of [Tum2], Proposition 91. �

Theorem 4.10. If a formal-Kähler (resp. para-Kähler) Banach structure (Ω, g, I)
(resp. (Ω, g,J )) on M is flat, for each x0 ∈ M , there exists a chart (U, ϕ) and a
linear Darboux form Ω0, a linear decomposable complex structure I0 and an inner
product g0 (resp. a linear Darboux form Ω0, a linear para-complex structure J0 and
a neutral inner product g0) on M such that ϕ∗Ω0 = Ω, ϕ∗I0 = I and ϕ∗g0 = g (resp.
ϕ∗Ω0 = Ω, ϕ∗J0 = J and ϕ∗g0 = g).

Proof. We only consider the case of an almost para-Kähler manifold, the case of an
almost Kähler manifold is similar.

Consider the decomposition TM = E1 ⊕E2 as recalled previously. Since ∇g = 0,
and E1 and E2 are orthogonal, the connection ∇ induces a connection ∇i on Ei which
preserves the restriction gi of g to Ei for i = 1, 2 and ∇ = ∇1+∇2. Thus, for i = 1, 2,
if X and Y are sections of Ei we have

[X,Y ] = ∇XY −∇YX = ∇i
XY −∇i

YX

and so Ei is integrable. Moreover the parallel transport from Tγ(0)M into Tγ(1)M
along a curve γ : [0, 1] −→ M induces an isometry of the fibre (Ei)γ(0) into (Ei)γ(1)
for i = 1, 2. Fix some x0 ∈ M . Since ∇ is flat, according to the proof of Theorem
4.5, we may assume that M = M and x0 = 0 ∈ M. Moreover, if E1 (resp. and
E2) is the typical fibre of the integrable sub-bundle E1 (resp. E2), we may assume
that M = E1 ⊕ E2. Recall that under the flatness assumption, the diffeomorphism
Ψ(x) = x + IdM is such that T0Ψ is the parallel transport from T0M to TxM and
Ψ0g0 = g. But since E1 and E2 are invariant by parallel transport, and J is invariant
by parallel transport we must have J ◦ TΨ = TΨ ◦ J and so Ψ∗J0 = J . As
Ω(u, v) = g(u,J v), we also get Ψ∗Ω0 = Ω. �

Remark 4.11. Under the assumption of flatness of ∇ in Theorem 4.10, we obtain
the integrability of I. But as we have already seen, in general, the condition of nullity
of NI is not sufficient to ensure the integrability of I.

5 Projective limits of tensor structures

The reference for this section is the book [DGV] where the reader can find the notion
of projective limit for different categories (sets, Banach spaces, manifolds and Lie
groups). Notations for projective limits of Banach vector or principal bundles and
results can be found in [CaPe2].
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5.1 The Fréchet topological group H0 (F)
Let F1 and F2 be Fréchet spaces. The space of continuous linear mappings L (F1,F2)
between these spaces drops out the Fréchet category. However, using the realization
of the Fréchet space F1 (resp. F2) as projective limit of Banach spaces, say F1 =

lim←−E
n
1 (resp. F2 = lim←−E

n
2 ), where

(
µj
1,i

)
j≥i

(resp.
(
µj
2,i

)
j≥i

) are the bonding maps,

L (F1,F2) can be replaced by a new space within the Fréchet framework, as defined
in [Gal2].

For each n ∈ N, we define the set

Hn (F1,F2) =

{
(fi)0≤i≤n ∈

n∏
i=0

L
(
Ei
1,Ei

2

)
: ∀j ∈ {i, . . . , n} : fi ◦ µj

1,i = µj
2,i ◦ fj

}
.

Hn (F1,F2) is a Banach space as a closed space of the Banach space
n∏

i=0

L
(
Ei
1,Ei

2

)
.

Proposition 5.1. The space L (F1,F2) can be represented as the Fréchet space

H (F1,F2) =

{
(fn) ∈

∏
n∈N

L (En
1 ,En

2 ) : lim←−fn exists

}

isomorphic to the Fréchet space lim←−H
n (F1,F2).

Now we consider

Hn
0 (F1,F2) = Hn (F1,F2)

⋂ n∏
i=1

Lis
(
Ei
1,Ei

2

)
.

For a Fréchet space F, we denote Hn
0 (F,F) (resp. H0 (F,F)) by Hn

0 (F) (resp.
H0 (F)).
We then have the following result ([DGV], Proposition 5.1.1)

Proposition 5.2. Every Hn
0 (F) is a Banach Lie group modelled on Hn (F).

Moreover the projective limit lim←−H
n
0 (F) exists and coincides, up to an isomorphism

of topological groups, with H0 (F).
Thus H0 (F) is a Fréchet topological group.

In this situation, the maps (h0)
j
i : H

j
0 (F) −→ Hi

0 (F) are morphisms of topological

groups satisfying, for every i ≤ j ≤ k, the relations (h0)
k
i = (h0)

j
i ◦ (h0)

k
j . Thus(

Hi
0 (F) , (h0)

j
i

)
is a projective system of Banach-Lie groups, but H0 (F) = lim←−H

n
0 (F)

is not necessarily a Fréchet-Lie group because the projective limit of the open sets
Hn

0 (F) is not necessarily open.

5.2 Some Fréchet topological subgroups of H0 (E)

Let
(
Ei, λ

j
i

)
(i,j)∈N×N, j≥i

be a projective sequence of Banach spaces. Consider a

sequence (Gn)n∈N of Banach Lie groups such that, for all n ∈ N, Gn is a weak
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Banach Lie subgroup of GL(En) and denote by LGn(En) ⊂ L(En) the Lie algebra of
Gn. We set

Gn (E) =

(gi)1≤i≤n ∈
n∏

j=0

LGj (Ej) : ∀j ∈ {1, . . . , n} : gi ◦ λji = λji ◦ gj

 .

Note that Gn (E) is a closed linear subspace of Hn (E) and so has a natural structure
of Banach space.
For 0 ≤ i ≤ j, let us consider the natural projection

γji : Gj (E) −→ Gj (E)
(g0, . . . , gj) (g0, . . . , gi)

.

We also consider:

Gn0 (E) = Gn (E)
⋂ n∏

i=1

Lis (Ei) .

By the same arguments used in the proof of [DGV], Proposition 5.1.1, we obtain

Proposition 5.3. Every Gn0 (F) is a Banach Lie group modelled on Gn (F).
Moreover the projective limit lim←−G

n
0 (E) exists and coincides, up to an isomorphism

of topological groups, with G0 (E).
Thus G0 (E) is a Fréchet topological group and a closed topological subgroup of H0 (E).

The group G0 (E) will play the rôle of structure group for the principal bundle of
projective limit of G-structures (cf. § 5).

As in the previous section, the projections γji induce projections

(γ0)
j
i : G

j
0 (F) −→ Gi0 (E)

which are morphisms of topological groups satisfying, for all i ≤ j ≤ k, the relations

(γ0)
k
i = (γ0)

j
i ◦ (γ0)

k
j .

Thus
(
Gi0 (E) , (γ0)

j
i

)
is a projective system of Banach-Lie groups, but G0 (E) =

lim←−G
n
0 (E) is not necessarily a Fréchet-Lie group.

From now on, without ambiguity, these projections (γ0)
j
i will simply denoted γji

for short.

5.3 Projective limits of generalized frame bundles

We extend the notion developed in [DGV], 6.5, to the framework of generalized frame
bundles defined over a projective sequence of Banach manifolds.

Let us consider a projective sequence of Banach vector bundles E = (En, πn,Mn)n∈N
(cf. [CaPe2], Definition 5.15) where the manifoldMn is modelled on the Banach space
Mn and where En is the fibre type of En. The projective limit of E is a Fréchet vector
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bundle (E, π,M) (cf. [CaPe2], Theorem 5.16).
We then define the space

P (En) =
⋃

xn∈Mn

Hn
0

(
E, (En)xn

)
where Hn

0

(
E, (En)xn

)
is{

(q0, . . . , qn) ∈
n∏

i=0

Lis
(
Ei, (Ei)µn

i (xn)

)
: ∀ (i, j) ∈ {0, . . . , n}2 , j ≥ i, λji ◦ qj = qi ◦ λji

}
.

We denote by pn : P (En) −→Mn the natural projection. Then we have:

Proposition 5.4. The quadruple (P (En) ,pn,Mn,Hn
0 (E)) is a Banach principal

bundle over Mn with structural group Hn
0 (E).

Proof. Consider a Fréchet bundle atlas
{(
Uα = lim←−U

α
i , τ

α = lim←−τ
α
i

)}
α∈A

for the

Fréchet bundle (E, π,M). For each i ∈ N, this bundle atlas gives rise to a a
bundle atlas (Uα

i ,Φ
α
i )α∈A for the principal bundle ℓ (Ei) and the transition maps

Tαβ
i : Uα

i ∩ U
β
i −→ GL(Ei) are the same for both these bundles (cf. 2.2).

We consider the map

Φα
n : (pn)

−1
(Uα

n ) −→ Uα
n ×

n∏
i=0

GL(En)

(xn; q0, . . . , qn) 7→
(
xn; (τ̄

α
1 )µn

1 (xn) ◦ q0, . . . , (τ̄α1 )µn
n(xn) ◦ qn

)
where (ταi )xi

= pr2 ◦ (ταi )|(En)xi
(for more details see § 2.3).

Since µj
i and τ

α
i are smooth maps, it follows that Φα

n is smooth. Now, according to
property (PSBVB 5) and the definition of Hn

0

(
E, (En)xn

)
, the map Φα

n takes values
in Hn

0 (E).

Now the map

(xn; g0, . . . gn) 7→
(
xn; {(τ̄α1 )}−1

µn
1 (xn)

(g0), . . . {(τ̄αn )}−1
µn
n(xn)

(gn)
)

is the inverse of Φα
n and this map is also smooth. It follows that ταn is a trivialization.

The transition maps Tαβ
n are given by

Tαβ
n (xn) =

(
Tαβ
1 (µn

1 (xn)), . . . , T
αβ
n (µn

n(xn))
)
.

Again, property (PSBVB 5) implies that, for all j ≥ i ≥ 0,

Tαβ
i (µj

i (xj);λ
j
i (u)) = λji ◦ T

αβ
j (xj ;u)

Thus Tαβ
n (xn) takes values in Hn

0 (E) which ends the proof. �

Definition 5.1. The quadruple (P (En) ,pn,Mn,Hn
0 (E)) is called the generalized

frame bundle of En and is denoted by ℓ (En).



68 Patrick Cabau and Fernand Pelletier

For every j ≥ i, we define the following projection

rji : P (Ej) −→ P (Ei)
(q0, . . . , qj) 7→ (q0, . . . , qi) .

Then, as for [DGV], Lemma 6.5.3, from the previous results and definitions, we obtain

Lemma 5.5. The triple
(
rji , µ

j
i , (h0)

j
i

)
is a principal bundle morphism of

(
P (Ej) ,pj ,Mj ,Hj

0 (E)
)

into
(
P (Ej) ,pi,Mi,Hi

0 (E)
)
.

According to the proof of Proposition 5.4 and Lemma 5.5 and adapting the proof
of [DGV], Proposition 6.5.4, we obtain:

Theorem 5.6. The sequence (ℓ (En))n∈N = (P (En) ,pn,Mn,Hn
0 (E))n∈N is a projec-

tive sequence of principal bundles. The projective limit lim←−P (En) can be endowed with
a structure of smooth Fréchet principal bundle over lim←−Mn whose structural group is

H0 (E).

Remark 5.2. Adapting [DGV], Corollary 6.5.2 in the context of Theorem 5.6 and
according to the proof of Proposition 5.4, we have a Fréchet principal bundle atlas{(
Uα = lim←−U

α
n ,Φ

α = lim←−Φ
α
n

)}
α∈A

such that, for each n ∈ N, each ℓ (En) is trivial-

izable over each Uα
n and the transition maps are

Tαβ
n (xn) =

(
Tαβ
1 (µn

0 (xn)), . . . , T
αβ
n (µn

n(xn))
)

where Tαβ
j are the transition functions of the Banach bundle (Ei, πn,Mi) for the atlas

{(Uα
i , τ

α
i )}α∈A where 0 ≤ i ≤ n.

5.4 Projective limits of G-structures

Let
(
Gi0 (E) , γ

j
i

)
(i,j)∈N×N, j≥i

be a projective sequence of Banach Lie groups asso-

ciated to a sequence (Gn)n∈N of weak Banach Lie subgroups Gn of GL(En) (cf. §
5.2).

Definition 5.3. A sequence (Fn,pn|Fn,Mn,Gn0 (E))n∈N is called a projective se-
quence of G-reductions of a projective sequence of Banach principal bundles (En,pn,Mn,Hn

0 (E))n∈N
if, for each n ∈ N,

(
Fn,pn|Fn

,Mn,Gn0 (E)
)
is a topological principal subbundle of

(P (En) ,pn,Mn,Hn
0 (E)) such that

(
F, π|F ,M,G

)
has its own smooth principal struc-

ture, and the inclusion is smooth.

We then have the following result:

Theorem 5.7. Consider a sequence (ℓ (En))n∈N = (P (En) ,pn,Mn,Hn
0 (E))n∈N of

generalized frame bundles over a projective sequence of Banach manifolds.
Let

(
Fn,pn|Fn

,Mn,Gn0 (E)
)
n∈N be a projective system of G-reductions of (ℓ (En))n∈N.

Then lim←−Pn (En) can be endowed with a structure of Fréchet principal bundle over

lim←−Mn whose structural group is G0 (E).
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Proof. (summarized proof) According to Remark 5.2 where we consider the atlas{(
Uα = lim←−U

α
n ,Φ

α = lim←−Φ
α
n

)}
α∈A

, since each transition function Tαβ
i belongs to

Gn0 (E), thus the transition maps Tαβ = lim←−T
α
n associated to the atlas {(Uα,Φα)}α∈A

belongs to lim←−G
n
0 (E).

�

5.5 Projective limits of tensor structures

5.5.1 Projective limits of tensor structures of type (1, 1)

Recall that a tensor of type (1, 1) on a Banach space E is also an endomorphism of E.

Definition 5.4.

1. Let
(
Ei, λ

j
i

)
(i,j)∈N×N, j≥i

be a projective sequence of Banach spaces. For any

n ∈ N, let An : En −→ En be an endomorphism of the Banach space En.
A sequence (An)n∈N is called a projective sequence of endomorphisms, or is
coherent for short, if, for any integer j ≥ i ≥ 0, it fulfils the coherence condition:

Ai ◦ λji = λji ◦Aj

2. Let (En, πn,Mn)n∈N be a projective sequence of Banach vector bundles. A
sequence (An)n∈N of endomorphisms An of En is called a projective sequence
of endomorphisms, or a coherent sequence for short, if, for each x = lim←−xn, the
sequence

(
(An)xn

)
n∈N is a coherent sequence of endomorphisms of (En)xn

, that
is

∀ (i, j) ∈ N2 : j ≥ i, (Ai)xi
◦ λji = λji ◦ (Aj)xj

.

We have the following properties:

Proposition 5.8. Consider a sequence (An)n∈N of coherent endomorphisms An of
En on a projective sequence of Banach vector bundles (En, πn,Mn)n∈N. Then the
projective limit A = lim←−(An) is well defined and is a smooth endomorphism of the
Fréchet bundle E = lim←−En.

Proof. By definition, a coherent sequence of endomorphisms is nothing but a pro-
jective sequence of linear maps; so the projective limit A = lim←−An is a well defined
endomorphism of E = lim←−En. It follows that, for each x = lim←−xn ∈ M = lim←−Mn,

the projective limit Ax = lim←−(An)xn
is well defined. Now from property (PSBVB 5),

there exists a local trivialization τn : π−1
n (Un) −→ Un × En such that the following

diagram is commutative:

(πi)
−1

(Ui) λji←−
(πj)

−1
(Uj)

τi ↓ ↓ τj
Ui × Ei µj

i × λ
j
i←−−−−−

Uj × Ej

This implies that the restriction of An to (πn)
−1

(Un) is a projective sequence of
smooth maps and so, from [DGV], Proposition 2.3.12, the restriction of A to π−1 (U)
is a smooth map where U = lim←−Un, which ends the proof. �
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Let (En, πn,Mn)n∈N be a projective sequence of Banach vector bundles. Consider
a coherent sequence (An)n∈N of endomorphisms An defined on the Banach bundle
πn : En −→Mn.
Fix any x0 = lim←−x

0
n ∈M = lim←−Mn and identify each typical fibre of En with (En)x0

n
.

For all n ∈ N, we denote by Gn the isotropy group of (An)x0
n
and by Gn0 the associated

weak Banach Lie subgroup of Hn
0 (cf. § 5.2).

Remark 5.5. If each Ai is an isomorphism then so is the projective limit A = lim←−An.

However the converse is not true in general. If for instance some or even all λji are
not injective, then in general, some or all Ai could be not injective even if A is an
isomorphism.

Now according to Theorem 5.7, we have:

Theorem 5.9. Let (En, πn,Mn)n∈N be a projective sequence of Banach vector bun-
dles. Consider a coherent sequence (An)n∈N of endomorphisms An defined on the
Banach bundle πn : En −→Mn.
Then lim←−Pn (En) can be endowed with a structure of Fréchet principal bundle over

lim←−Mn whose structural group is G0 (E) if and only if there exists a Fréchet atlas bun-

dle
{(
Uα = lim←−U

α
n , τ

α = ταn

)}
n∈N,α∈A

such that Aα
n = An|Uα

n
is locally modelled on

(An)x0
n
and the transition maps Tαβ

n (xn) take values in the isotropy group Gn, for

all n ∈ N and all α, β ∈ A such that Uα
n ∩ Uβ

n 6= f� .

Proof. According to Proposition 2.5, for each n ∈ N, the Banach principal bundle
ℓ(En) can be endowed with a structure of Banach principal bundle over Mn whose
structural group is Gn if and only if there exists an atlas bundle (Uα

n , τ
α
n )α∈A such

that Aα
n is locally modelled (An)x0

n
and the transition functions Tαβ (x) belong to

the isotropy group Gn for all xn ∈ Uα ∩ Uβ . Now, assume that we have Fréchet

atlas {(Uα, τα)}α∈A =
{
lim←− (Uα

n , τ
α
n )

}
n∈N,α∈A

for which such a property is true for

all n ∈ N. For all 1 ≤ i ≤ j we have ταi ◦ λ
j
i = µj

i × λ
j
i ◦ ταj for all α ∈ A.

Thus we obtain

Tαβ
i ◦ λji = λji ◦ T

αβ
j

and so (Tαβ
1 , . . . , Tαβ

n ) belongs to Gn0 (E), which implies that lim←−Pn (En) can be en-
dowed with a structure of Fréchet principal bundle over lim←−Mn whose structural group

is G0 (E) according to section 5.4.
Conversely, under such an assumption, according to Theorem 5.7, consider a projec-
tive sequence

(
Fn,pn|Fn

,Mn,Gn0 (E)
)
n∈N of G-reductions for (ℓ (En))n∈N. From the

proof of this theorem and Remark 5.2, each transition map Tαβ
n takes values in Gn

and so the the frame bundle of (En, πn,Mn) can be endowed with a structure of Ba-
nach principal bundle over Mn whose structural group is Gn (cf. § 2.4), which ends
the proof. �
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5.5.2 Projective limits of tensor structures of type (2, 0)

This section is formally analogue to the previous one and we only give an adequate
Definition and results without any proof.

Definition 5.6.

1. Let
(
Ei, λ

j
i

)
(i,j)∈N×N, j≥i

be a projective sequence of Banach spaces. For any

n ∈ N, let ωn : En × En −→ R be a bilinear form of the Banach space En.
(ωn)n∈N is called a projective sequence of 2-forms if it fulfils the coherence
condition

∀ (i, j) ∈ N2 : j ≥ i, ωj = ωi ◦
(
λji × λ

j
i

)
.

2. Let (En, πn,Mn)n∈N be a projective sequence of Banach vector bundles. A
sequence (Ωn)n∈N of bilinear forms Ωn on En is called a projective sequence of
bilinear forms, or is a coherent sequence for short, if for each x = lim←−xn, the
sequence

(
(Ωn)xn

)
n∈N is a coherent sequence of bilinear forms of (En)xn

that is

∀ (i, j) ∈ N2 : j ≥ i, (Ωj)xj
= (Ωi)xi

◦ (λji × λ
j
i ).

We have the following properties:

Proposition 5.10. Consider a sequence (Ωn)n∈N of coherent bilinear forms Ωn of
En on a projective sequence of Banach vector bundles (En, πn,Mn)n∈N.
Then the projective limit Ω = lim←−(Ωn) is well defined and is a smooth bilinear form
on the Fréchet bundle E = lim←−En.

Remark 5.7. If each Ωi is non degenerate then so is the projective limit Ω = lim←−Ωn.

However the converse is not true in general. For instance if some or each λji is not
injective then in general, some or even all Ωi could be degenerated even if Ω is non
degenerate.

Let (En, πn,Mn)n∈N be a projective sequence of Banach vector bundles. Consider
a coherent sequence (Ωn)n∈N of bilinear forms Ωn defined on the Banach bundle
πn : En −→Mn.
Fix any x0 = lim←−x

0
n ∈M = lim←−Mn and identify each typical fibre of En with (En)x0

n
.

For all n ∈ N, we denote by Gn the isotropy group of (Ωn)x0
n
and by Gn0 the associated

weak Banach Lie subgroup of Hn
0 (cf. § 5.2).

Theorem 5.11. Let (En, πn,Mn)n∈N be a projective sequence of Banach vector bun-
dles. Consider a coherent sequence (Ωn)n∈N of bilinear forms Ωn defined on the
Banach bundle πn : En −→Mn.
Then lim←−Pn (En) can be endowed with a structure of Fréchet principal bundle over

lim←−Mn whose structural group is G0 (E) if and only if there exists a Fréchet bundle

atlas
{(
Uα = lim←−U

α
n , τ

α = ταn

)}
n∈N,α∈A

such that Ωα
n = Ωn|Uα

n
is locally modelled on

(An)x0
n
and the transition maps Tαβ

n (xn) take values in the isotropy group Gn, for

all n ∈ N and all (α, β) ∈ A2 such that Uα
n ∩ Uβ

n 6= f� .
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Let (En, πn,Mn)n∈N be a projective sequence of Banach vector bundles. Consider
a coherent sequence (Ωn)n∈N of bilinear forms Ωn defined on the Banach bundle
πn : En −→Mn.
Fix any x0 = lim←−x

0
n ∈M = lim←−Mn and identify each typical fibre of En with (En)x0

n
.

For all n ∈ N, we denote by Gn the isotropy group of (Ωn)x0
n
and by Gn0 the associated

weak Banach-Lie subgroup of Hn
0 .

5.6 Examples of projective limits of tensor structures

5.6.1 Projective limit of compatible weak almost Kähler and almost para-
Kähler structures

We consider the context and notations of [CaPe2], § B.10.7.
If Ω (resp. g, resp. I) is a weak symplectic form (resp. a weak Riemannian metric,
resp. an almost complex structure) on a Fréchet bundle (E, πE ,M), the compatibil-
ity of any pair of the data (Ω, g, I) as given in Definition 3.8 can be easily adapted
to this Fréchet context. We can also easily transpose the notion of ”local tensor T
locally modelled on a linear tensor T” (cf. Definition 2.12) in the Fréchet framework.
We will see that such situations can be obtained by ”projective limit” on a sequence
(En, πn,Mn)n∈N of Banach vector bundles.

Now, we introduce the following notations:

– Let (Tn)n∈N be a sequence of coherent tensors of type (1, 1) or (2, 0) on a

projective sequence of Banach spaces
(
Ei, λ

j
i

)
(i,j)∈N×N, j≥i

.

We denote by Gn(Tn) the isotropy group of Tn. If T = lim←−Tn, then Gn0 (T) is

the Banach Lie group associated to the sequence (Gn(Tn))n∈N (see section 5.2).
We set G0(T) = lim←−G

n
0 (T).

– Given a sequence (En, πn,Mn)n∈N of Banach vector bundles, we provide each
Banach bundle En with a symplectic form Ωn and/or a weak Riemaniann metric
gn and/or an complex structure In.

According to this context, let us consider the following assumption:

(H) Assume that we have a sequence of weak Riemaniann metrics (gn)n∈N on the

sequence (En)n∈N. For each xn ∈Mn, we denote by (Ên)xn the completion (ac-

cording to gxn
) of (En)xn

and we set Ên =
⋃

xn∈Mn

(Ên)xn
and Ê =

⋃
xn∈Mn

(Ên)xn
.

Then π̂n : Ên −→ Mn has a Hilbert vector bundle structure and the inclusion
ιn : En → Ên is a Banach bundle morphism.

From Theorem 3.5, we then obtain:

Theorem 5.12.

1. Under the assumption (H),
(
Ên, π̂n,Mn

)
n∈N

is a projective sequence of Banach

bundles and there exists an injective Fréchet bundle morphism ι : E = lim←−En →
Ê = lim←−Ên with dense range.
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Let Ω̂n, (resp.ĝn, resp. În) be the extension of Ωn (resp. gn, resp. In) to Ên

(cf. Theorem 3.5). If the sequence (Ωn)n∈N, (resp. (gn)n∈N, resp. (In)n∈N)

is coherent, so is the sequence (Ω̂n)n∈N (resp. (ĝn)n∈N, resp.(În)n∈N). We set

Ω̂ = lim←−Ω̂n (resp. ĝ = lim←−ĝn, resp. Î = lim←−În). We then have Ω = lim←−Ωn =

i∗Ω̂, g = lim←−gn = ι∗ĝ and I = lim←−In = ι∗Î. Moreover, if any pair of the

data (Ωn, gn, In) are compatible for all n ∈ N, then (Ω̂, ĝ, Î) and (Ω, g, I) are

compatible structures on the Fréchet vector bundles Ê and E respectively.

2. Let (ℓ (En))n∈N = (P (En) ,pn,Mn,Hn
0 (E))n∈N be the associated sequence of

generalized frame bundles. Denote by Tn any tensor of the triple (Ωn, gn, In).
Assume that Tn defines a T-tensor structure on En for each n ∈ N. Then
lim←−Pn (En) is a Fréchet principal bundle over lim←−Mn whose structural group is

G0 (T).
Moreover, if the sequence (Ωn, gn, In)n∈N is coherent and each triple is a tensor
structure (Ωn, gn, In) on En, then (Ω, g, I) is also a tensor structure on E which
is compatible if (Ωn, gn, In) fulfils this property.

3. Under the assumption (H), all the properties of 2. are also valid for the sequence

(Ω̂n, ĝn, În)n∈N relatively to Ê.

Proof. 1. According to our assumption (H), by density of ιn(En) (identified with En)

in Ên and using compatible bundle atlases for Ê and E (cf. proof of Theorem 3.1),
for each xn ∈ Mn and each n ∈ N, there exist local trivializations τ̂n : π̂−1

n (Un) −→
Un × Ên and τn : π−1

n (Un) −→ Un × En around xn such that τ̂n ◦ ιn = τn where

τ̂n ◦ ιn(π̂−1
n (Un)) is dense in Un × Ên. Now, we can choose such a trivialization so

that that the property (PSBVB 5) is satisfied for the sequence {(En, πn,Mn)}n∈N.

But since, for each yn ∈ Un, the fibre (En)yn
is dense in (Ên)yn

, and each fibre

inclusion (ιn)yn
is bounded, the bounding map (λ̄ji )yj

: (Ej)yj
−→ (Ei)yi

is closed

and (λ̄ji )yj
can be extended to a bounding map (̂̄λji )yj

: (Êj)yj
−→ (Êi)yi

. Thus

(PSBVB 5) is satisfied for the sequence
(
Ên, π̂n,Mn

)
n∈N

. Thus
(
Ên, π̂n,Mn

)
n∈N

is

a projective sequence of Banach bundles and of course

ι = lim←−ιn : E = lim←−En −→ Ê = lim←−Ên

is an injective Fréchet bundle morphism whose range is dense in Ê.

2 and 3. With the notations of Point 2, assume that the sequence (Tn)n∈N is

coherent. Denote by T̂n the extension of Tn to Ên (which is well defined by Theorem
3.5). Using the same arguments as the ones used for the bonding maps, it follows

that
(
T̂n

)
n∈N

is also a coherent sequence. Thus T = lim←−Tn and T̂ = lim←−T̂n are well

defined and by construction we have T = ι∗T̂ . Moreover, assume that each Tn defines
a Tn-structure on En. Then from Theorem 3.5, T̂n is a T̂-structure on Ên. Thus from

Theorem 5.9 or Theorem 5.11, each principal bundle Pn (En) (resp. Pn

(
Ên

)
) is well

defined and we can reduce its structural group Gn0 (T) (resp. Gn0
(
T̂
)
). The last part

of the proof is a direct consequence of the previous properties. �
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Corollary 5.13. Consider an almost Kähler (resp. para-Kähler) structure (Ωn, gn, In)n∈N
on a projective (En, πn,Mn)n∈N of Banach vector bundles. If (Ωn, gn, In)n∈N is coher-

ent, then
(
Ω = lim←−Ωn, g = lim←−gn, I = lim←−In

)
is an almost Kähler (resp. para-Kähler)

structure on the Fréchet bundle E = lim←−En.

5.6.2 Application to sets of smooth maps

LetM be a connected manifold of dimension m and N a connected compact manifold
of dimension n. We denote by Ck(N,M) the set of maps f : N −→ M of class Ck.
It is well known that Ck(N,M) is a Banach manifold modelled on the Banach space
Ck(N,Rm) (cf. [Eli]). If λji : Cj(N,M) −→ Ci(N,M) is the natural injection, the
sequence

(
Ck(N,M)

)
k∈N is a projective sequence of Banach manifolds. By the way,

the projective limit C∞(N,M) = lim←−C
k(N,M) is provided with a Fréchet structure

which is the usual Fréchet manifold structure on C∞(N,M).
Assume that M is a Kähler manifold. Let ω, g and I be the associated symplectic

form, Riemannian metric and complex structure on M respectively.
If ν is a volume measure on N , on the tangent bundle TCk(N,M) we introduce

(cf. [Kum1] and [Kum2]):

– (Ωk)f (X,Y ) =

∫
N

ω
(
Xf(t), Yf(t)

)
dν(t);

– (gk)f (X,Y ) =

∫
N

g
(
Xf(t), Yf(t)

)
dν(t);

– (Ik)f (X)(t) = I
(
Xf(t)

)
.

It is clear that Ωk (resp. gk) is a weak bilinear form (resp. a weak Riemaniann
metric) on Ck(N,M) and Ik is an almost complex structure on TCk(N,M). Moreover,
the compatibility of the triple (ω, g, I) clearly implies the compatibility of (Ωk, gk, Ik);
In fact (Ωk, gk, Ik)k∈N is a coherent sequence. Then, from Corollary 5.13, we get an
almost Kähler structure on C∞(N,M). Note that this structure which can be directly
defined on C∞(N,M) by the same formulae.

If M is a para-Kähler manifold, we can provide C∞(N,M) in the same way.

Remark 5.8. If M is a Kähler manifold, then the almost complex structure is inte-
grable and, in particular, NI ≡ 0. It is clear that that we also have NIk

≡ 0 for all
k ∈ N and NI ≡ 0. Thus I is formally integrable but not integrable in general (cf.
[Kum1] in the case of sets of paths). On the opposite, ifM is a para-Kähler manifold,
then again the Nijenhuis tensor of the almost para-complex structure Jk is zero and,
by Theorem 4.7, this implies that the almost para-complex structure J on C∞(N,M)
is also integrable.

6 Direct limits of tensor structures

In order to endow the direct limit of an ascending sequence of frame bundles (ℓ (En))n∈N =
(Pn (En) ,pn,Mn, Gn)n∈N with a structure of convenient principal bundle, we first
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consider the situation on the base lim−→Mn where the models are supplemented Banach

manifolds. In order to get a convenient structure on the direct limit lim−→ℓ (En) we

have to replace the pathological general linear group GL (E) where E =lim−→En (where

En is the typical fibre of the bundle En) by another convenient Lie group G (E).

The main references for this section are the papers [CaPe1], [CaPe2] and [Pel2]
where the reader can find the notion of direct limit for different categories and nota-
tions used through this section (see also [Bou], [Dah], [Glo], [Nee] and [RoRo]).

6.1 The Fréchet topological group G(E)
Let (En, ι

n+1
n )n∈N be an ascending sequence of supplemented Banach spaces where

E = lim−→En can be endowed with a structure of convenient vector space. The group

GL (E) does not admit any reasonable topological structure. So we replace it by the
convenient Lie group G(E) defined as follows.

Let E0 ⊂ E1 ⊂ · · · be the direct sequence of supplemented Banach spaces; so there
exist Banach subspaces E′

0,E′
1, . . . such that:{

E0 = E′
0,

∀i ∈ N,Ei+1 w Ei × E′
i+1

For (i, j) ∈ N2, i ≤ j, we have the injection

ιji : Ei w E′
0 × · · · × E′

i → Ej w E′
0 × · · · × E′

j

(x′0, . . . , x
′
i) 7→ (x′0, . . . , x

′
i, 0, . . . , 0)

Any An+1 ∈ GL (En+1) is represented by

(
An Bn+1

A′
n B′

n+1

)
where

An ∈ L (En,En) , A
′
n ∈ L

(
En,E′

n+1

)
, Bn+1 ∈ L

(
E′
n+1,En

)
and B′

n+1 ∈ L
(
E′
n+1,E′

n+1

)
.

The group
GL0 (En+1|En) = {A ∈ GL (En+1) : A (En) = En}

can be identified with the Banach-Lie sub-group of operators of type

(
An Bn+1

0 B′
n+1

)
(cf. [ChSt]). The set

Gn = {An ∈ GL(En) : ∀k ∈ {0, . . . , n− 1} , An(Ek) = Ek}

can be endowed with a structure of Banach-Lie subgroup.
An element An of Gn can be seen as

An =



A0 B1 B2 B3

Bi

Bn

0 B′
1

0 B′
2

0 B′
3

. . .

0 B′
i

. . .

0 B′
n


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For 0 ≤ i ≤ j ≤ k, we consider the following diagram

Ek Ak−→ Ek

ιkj ↑ ↓ P k
j

Ej Aj−→
Ej

ιji ↑ ↓ P j
i

Ei Ai−→ Ei

where P j
i : Ej → Ei is the projection along the direction E′

i+1 ⊕ · · · ⊕ E′
j . The map

θji : Gj → Gi

Aj 7→ P j
i ◦Aj ◦ ιji

is perfectly defined and we have(
θji ◦ θkj

)
(Ak) = θji

[
θkj (Ak)

]
= θji

(
P k
j ◦Aj ◦ ιkj

)
= P j

i ◦ P k
j ◦Aj ◦ ιkj ◦ ι

j
i .

Because P j
i ◦P k

j = P k
i (projective sequence) and ιkj ◦ ι

j
i = ιki (inductive sequence), we

have (
θji ◦ θ

k
j

)
(Ak) = P k

i ◦Aj ◦ ιki = θki (Ak)

So
(
Gi, θ

j
i

)
j≥i

is a projective sequence of Banach-Lie groups and the projective limit

G (E) = lim←−Gi can be endowed with a structure of Fréchet topological group.

6.2 Convenient Lie subgroups of G(E)
Let (Hn)n∈N be a sequence where each Hn is a weak Banach-Lie subgroup of G(En)
where

∀ (i, j) ∈ N2 : i ≤ j, θji (Hj) = Hi

Then
(
Hi, θ

j
i

)
(i,j)∈N×N, j≥i

is a projective sequence and the space H (E) = lim←−Hn can

be endowed with a structure of Fréchet group.

6.3 Direct limits of frame bundles

Definition 6.1. A sequence (ℓ (En))n∈N = (Pn (En) ,pn,Mn, Gn)n∈N of tangent
frame bundles is called an ascending sequence of tangent frame bundles if the fol-
lowing assumptions are satisfied:

(ASTFB 1) M =
(
Mn, ε

n+1
n

)
n∈N is an ascending sequence of Banach manifolds;

(ASTFB 2) For any n ∈ N,
(
λn+1
n , εn+1

n , γn+1
n

)
is a morphism of principal bundles

from (Pn (En) ,pn,Mn, Gn) to (Pn+1 (En+1) ,pn+1,Mn+1, Gn) where λn+1
n is

defined via local sections snα of Pn (En) and fulfils the condition

λn+1
n ◦ snα = sn+1

α ◦ εn+1
n ;
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(ASTFB 3) Any x ∈ M = lim−→Mn has the direct limit chart property for (U =

lim−→Un, ϕ = lim−→ϕn);

(ASTFB 4) For any x ∈M = lim−→Mn, there exists a trivialization Ψn : (πn)
−1

(Un) −→
Un × En such that the following diagram is commutative:

(πn)
−1

(Un) λn+1
n−−−→

(πn+1)
−1

(Un+1)

Ψn ↓ ↓ Ψn+1

Un × En

(
εn+1
n × ιn+1

n

)
−−−−−−−−−−→

Un+1 × En+1.

for each n ∈ N.

Theorem 6.1. If (ℓ (E))n∈N = (Pn (E) ,pn,Mn, Gn)n∈N is an ascending sequence of
frame bundles, then the direct limit(

lim−→Pn (E) , lim−→pn, lim−→Mn,G(E)
)

can be endowed with a structure of convenient principal bundle.

Proof. According to (ASTFB 1) and (ASTFB 3),M = lim−→Mn can be endowed with a

structure of non necessary Hausdorff convenient manifold (cf. [CaPe1], § Direct limit
of Banach manifolds). From (ASTFB 2), we deduce πn+1 ◦ λn+1

n = εn+1
n ◦ πn. So the

projection π = lim−→πn : lim−→Pn (En) −→ lim−→Mn is well defined. Let u be an element of

P = lim−→Pn (En); so u belongs to some Pn (En). In particular, x = π (u) ∈Mn where

π = lim−→πn. According to (ASTFB 3) and (ASTFB 4), there exists a local chart (U, ϕ)
of the convenient manifold M whose domain contains x. Moreover, there exists a
local trivialization Ψn : π−1

n (Un) −→ Un ×Gn of Pn (En).
For i ≥ n, one can define the local trivilization Ψi : π

−1
i (Ui) −→ Ui ×Gi of Pi (Ei).

According to (ASTFB 2), the map Ψ : π−1 (U) −→ U× G(E) can be defined and it
is one to one.
Let us study the transition functions. Using the commutativity of the diagram(

Uα
i ∩ U

β
i

)
×Gi

εji×Jj
i−→

(
Uα
j ∩ U

β
j

)
×Gj

Ψα
i ◦

(
Ψβ

i

)−1

↓ ↓ Ψα
j ◦

(
Ψβ

j

)−1

(
Uα
i ∩ U

β
i

)
×Gi

εji×Jj
i−→

(
Uα
j ∩ U

β
j

)
×Gj

we obtain transition functions Ψα◦
(
Ψβ

)−1
which are diffeomorphisms of

(
Uα ∩ Uβ

)
×

G(E) .
We then have a set of local trivializations {(uα,Ψα)}α∈A of P where the projection
π : P −→M is smooth.
This structure is endowed with a right action well defined according to (ASTFB 2).
�

6.4 Direct limit of G-structures

Considering the reductions of the frame bundles, we then get the following result
whose proof is rather analogous to the previous one: We have to check the different
compatibility conditions and replace the structure group G(E) by H (E).
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Theorem 6.2. Let (ℓ (En))n∈N = (Pn (En) ,pn,Mn, Gn)n∈N be an ascending se-
quence of frame bundles.
Let

(
Fn,pn|Fn

,Mn,Hn

)
n∈N be a sequence of associated G-structures where, for any

n ∈ N,
((
λn+1
n

)
|Fn

, εn+1
n , θn+1

n

)
is a morphism of principal bundles.

Then
(
lim−→Fn, lim−→pn|Fn

, lim−→Mn,H(E)
)
can be endowed with a convenient G-structure.

6.5 Direct limits of tensor structures

6.5.1 Direct limits of tensor structures of type (1, 1)

In a similar way to the projective system of tensor of type (1, 1), we also introduce
the following definition and results.

Definition 6.2.

1. Let
(
Ei, λ

j
i

)
(i,j)∈N×N, i≤j

be an ascending sequence of supplemented Banach

spaces.
For any n ∈ N, let An : En → En be an endomorphism of the Banach space En.
(An)n∈N is called an ascending sequence of endomorphisms if it fulfils the co-
herence conditions

∀(i, j) ∈ N2 : i ≤ j, λji ◦Ai = Aj ◦ λji .

2. Let (En, πn,Mn)n∈N be an ascending sequence of supplemented Banach vector
bundles. A sequence (An)n∈N of endomorphisms An of En is called a coherent

sequence of endomorphisms if, for each x = lim−→xn, the sequence
(
(An)xn

)
n∈N

is a coherent sequence of endomorphisms of
(
(En)xn

)
n∈N, that is:

∀(i, j) ∈ N2 : i ≤ j, λji ◦ (Ai)xi
= (Aj)xj

◦ λji .

We have the following properties:

Proposition 6.3. 1. Consider a sequence (An)n∈N of coherent endomorphisms
An of En on an ascending sequence of supplemented Banach spaces (En)n∈N.
If G(An) is the isotropy group of An, then G(An) is a convenient subgroup of
G(E).

2. Consider a sequence (An)n∈N of coherent endomorphisms An of En on an
ascending sequence of supplemented Banach vector bundles (En, πn,Mn)n∈N.
Then the direct limit A = lim←−(An) is a well defined and is a smooth endomor-
phism of the Fréchet bundle E = lim←−En.

Proof.

1. Under our assumption, we have E0 ⊂ E1 ⊂ · · · and Banach spaces E′
0,E′

1, . . .
such that: {

E0 = E′
0,

∀i ∈ N,Ei+1 w Ei × E′
i+1
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Of course G(A0) ⊂ GL(E) = G(E). Assume that, for all 0 ≤ i ≤ n, we have
G(Ai) ⊂ G(Ei). Since En+1 w En × E′

n+1 and the sequence (An)n∈N is coherent, if
Tn+1 belongs to G(An+1), it follows that Tn+1 ◦ An = Tn+1 ◦ An. Thus if Tn is the
restriction of Tn+1 to En, then Tn belongs to GL(En) and so Tn can be written as a
matrix of type (

Tn T ′
n

0 Sn+1

)
Thus Tn+1 belongs to G(En+1), which ends the proof of Point 1.

2. By definition, a coherent sequence of endomorphisms is nothing but an as-
cending system of linear maps, so the direct limit A = lim−→An is a well defined en-
domorphism of E = lim−→En. It follows that, for each x = lim−→xn ∈ M = lim−→Mn, the

direct limit Ax = lim−→(An)xn
is well defined. Now, from property (ASBVB 5), for

each n ∈ N, there exists a trivialization Ψn : (πn)
−1

(Un) −→ Un × En such that, for
any i ≤ j, the following diagram is commutative:

(πi)
−1

(Ui) λji−→
(πj)

−1
(Uj)

Ψi ↓ ↓ Ψj

Ui × Ei εji × ι
j
i−−−−→

Uj × Ej .

This implies that the restriction of An to (πn)
−1

(Un) is an ascending system of
smooth maps and so from [CaPe1], Lemma 3.9, the restriction of A to π−1 (U) is a
smooth map where U = lim−→Un which ends the proof. �

Let (En, πn,Mn)n∈N be an ascending sequence of supplemented Banach vector
bundles. Consider a coherent sequence (An)n∈N of endomorphisms An defined on the
Banach bundle πn : En −→Mn.
Fix any x0 = lim−→x

0
n ∈M = lim−→Mn and identify each typical fibre of En with (En)x0

n
.

For all n ∈ N, we denote by G((An)x0
n
) the isotropy group of (An)x0

n
.

Now, by the same type of arguments as the ones used in the proof of Theorem 5.9
but replacing ”projective sequence” by ”ascending sequence” and ”Fréchet atlas” by
”convenient atlas”, we obtain:

Theorem 6.4. Let (En, πn,Mn)n∈N be an ascending sequence of supplemented Ba-
nach vector bundles. Consider a coherent sequence (An)n∈N of endomorphisms An

defined on the Banach bundle πn : En −→Mn.
Then lim−→Pn (En) can be endowed with a structure of convenient principal bundle over

lim−→Mn whose structural group is G (Ax0) = lim−→G(An)x0
n
if and only if there exists

a convenient atlas bundle
{(
Uα = lim←−U

α
n , τ

α = ταn

)}
n∈N,α∈A

such that Aα
n = An|Uα

n

is locally modelled on (An)x0
n
and the transition maps Tαβ

n (xn) take values in to the

isotropy group G((An)x0
n
), for all n ∈ N and all α, β ∈ A such that Uα

n ∩ Uβ
n 6= f� .

6.5.2 Direct limits of tensor structures of type (2, 0)

We adapt the results obtained for coherent sequences tensor of type (1, 1) to such
sequences of (2, 0)-tensors.
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Definition 6.3. 1. Let
(
Ei, λ

j
i

)
(i,j)∈N×N, i≤j

be an ascending sequence of supple-

mented of Banach spaces.
For any n ∈ N, let ωn : En × En −→ R be a bilinear form of the Banach space
En.
(ωn)n∈N is called a projective sequence of 2-forms if it fulfils the coherence con-
dition,

∀ (i, j) ∈ N2 : i ≤ j, ωi = ωj

(
λji × λ

j
i

)
2. Let (En, πn,Mn)n∈N be a projective sequence of Banach vector bundles.

A sequence (Ωn)n∈N of bilinear forms Ωn on En is called a coherent sequence

of bilinear forms if for each x = lim−→xn, the sequence
(
(Ωn)xn

)
n∈N is a coherent

sequence of bilinear forms of (En)xn
, that is

∀ (i, j) ∈ N2 : i ≤ j, (Ωi)xi = (Ωj)xj (λ
j
i × λ

j
i )

We have the following properties:

Proposition 6.5.

1. Consider a sequence (Ωn)n∈N of coherent bilinear forms Ωn of En on an ascending
sequence of supplemented Banach spaces (En)n∈N. If G(Ωn) is the isotropy group of
Ωn, then G(Ω) = lim−→G(Ωn) is a convenient subgroup of G(E).

2. Consider a sequence (Ωn)n∈N of coherent bilinear forms Ωn of En on an ascending
sequence of supplemented Banach vector bundles (En, πn,Mn)n∈N. Then the projec-
tive limit Ω = lim−→(Ωn) is a well defined and is a smooth bilinear form of the convenient
bundle E = lim−→En.

Let (En, πn,Mn)n∈N be an ascending sequence of supplemented Banach vector
bundles. Consider a coherent sequence (Ωn)n∈N of bilinear forms Ωn defined on the
Banach bundle πn : En −→Mn.
Fix any x0 = lim−→x

0
n ∈M = lim−→Mn and identify each typical fibre of En with (En)x0

n
.

For all n ∈ N, we denote by G((Ωn)x0
n
) the isotropy group of (Ωn)x0

n
.

Theorem 6.6. Let (En, πn,Mn)n∈N be an ascending sequence of supplemented Ba-
nach vector bundles.
Consider a coherent sequence (Ωn)n∈N of bilinear forms Ωn defined on the Banach
bundle πn : En −→Mn.
Then lim−→Pn (En) can be endowed with a structure of Fréchet principal bundle over

lim←−Mn whose structural group can be reduced to G((Ω)x0) = lim←−G((Ωn)x0
n
) if and only

if there exists a convenient atlas bundle
{(
Uα = lim←−U

α
n , τ

α = ταn

)}
n∈N,α∈A

such that

Ωα
n = An|Uα

n
is locally modelled (Ωn)x0

n
and the transition maps Tαβ

n (xn) take val-
ues in to the isotropy group G((Ωn)x0

n
), for all n ∈ N and all (α, β) ∈ A2 such that

Uα
n ∩ Uβ

n 6= f� .
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6.6 Examples of direct limits of tensor structures

6.6.1 Direct limit of compatible weak almost Kähler and almost para-
Kähler structures

We consider the context and notations of [CaPe2], § B.7.
If Ω (resp. g, resp. I) is a weak symplectic form (resp. a weak Riemannian metric,
resp. an almost complex structure) on a convenient bundle (E, πE ,M), the compati-
bility of any pair of the data (Ω, g, I) as given in Definition 3.8 can be easily adapted
to this convenient context. We can also easily transpose the notion of ”local tensor T
locally modelled on a linear tensor T” (cf. Definition 2.12) in the convenient frame-
work. We will see that such situations can be obtained by some ”direct limit” of a
sequence {(En, πn,Mn)}n∈N of Banach vector bundles. Once again, this context is
very similar to the context of § 5.6 and we will only write down the details without
any proof.

First we introduce the following corresponding notations:

– Let (Tn)n∈N be a sequence of coherent tensor of type (1, 1) or (2, 0) on an

ascending sequence of supplemented Banach spaces
(
Ei, λ

j
i

)
(i,j)∈N×N, i≤j

. We

denote by G(Tn) the isotropy group of Tn. If T = lim−→Tn, then G(T) = lim−→G(Tn)

is convenient sub-group of G(E)

– Given an ascending sequence (En, πn,Mn)n∈N of supplemented Banach vector
bundles, we provide each Banach bundle En with a symplectic form Ωn,and/or
a weak Riemaniann metric gn and/or an almost complex structure In.

According to this context, let us consider the following assumption:

(H) Assume that we have a sequence of weak Riemaniann metrics (gn)n∈N on the

sequence (En)n∈N. For each xn ∈ Mn, we denote by (Ên)xn
the completion of

(En)xn
and we set Ên =

⋃
xn∈Mn

(Ên)xn
. Then π̂n : Ên −→ Mn has a Hilbert

vector bundle structure and the inclusion ιn : En → Ên is a Banach bundle
morphism.

From Theorem 3.5, we then obtain

Theorem 6.7.

1. Under the assumption (H),
(
Ên, π̂n,Mn

)
n∈N

is an ascending sequence of sup-

plemented Banach bundles and there exists an injective convenient bundle mor-
phism ι : E = lim−→En → Ê = lim−→Ên with dense range.

Let Ω̂n, (resp. ĝn, resp. În) the extension of Ωn (resp. gn, resp. In) to

Ên (cf. Theorem 3.5). If (Ωn)n∈N, (resp. (gn)n∈N, resp. (In)n∈N) is a co-

herent sequence, so is the sequence (Ω̂n)n∈N (resp. (ĝn)n∈N, resp.(În)n∈N).

We set Ω̂ = lim−→Ω̂n (resp. ĝ = lim−→ĝn, resp. Î = lim−→În). We then have

Ω = lim−→Ωn = i∗Ω̂, g = lim−→gn = ι∗ĝ and I = lim−→In = ι∗Î. Moreover, if any
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pair of the data (Ωn, gn, In) is compatible for all n ∈ N, then (Ω̂, ĝ, Î) (resp.

(Ω, g, I)) on the Fréchet vector bundle Ê (resp. E) respectively is compatible.

2. Let (ℓ (En))n∈N = (P (En) , πn,Mn,Hn
0 (E))n∈N be the associated sequence of

generalized frame bundles. Denote by Tn any tensor among (Ωn, gn, In). As-
sume that Tn defines a T-tensor structure on En for each n ∈ N. Then lim−→Pn (En)
is a convenient principal bundle over lim−→Mn whose structural group can be re-

duced to G (T). Moreover, if the sequence (Ωn, gn, In)n∈N is coherent and each
triple is a tensor structure on En, then (Ω, g, I) is also a tensor structure on E
which is compatible if (Ωn, gn, In) are so.

3. Under the assumption (H), all the properties of Point 2 are also valid for the

sequence (Ω̂n, ĝn, În)n∈N relatively to Ê.

Corollary 6.8. Consider an almost Kähler (resp. para-Kähler) structure (Ωn, gn, In)n∈N
on an ascending sequence {(En, πn,Mn)}n∈N of Banach vector bundles. If (Ωn, gn, In)n∈N
is coherent, then (Ω = lim−→Ωn, g = lim−→gn, I = lim−→In) is an almost Kähler (resp. para-

Kälher) structure on the Fréchet bundle E = lim−→En.

6.6.2 Application to Sobolev loop spaces

It is well known that if M is a connected manifold of dimension m, the set Lpk(S1,M)
of loops γ : S1 −→ M of Sobolev class Lpk is a Banach manifold modelled on the
Sobolev space Lpk(S1,Rm) (see [Pel2]).

Let us consider now an ascending sequence {(Mn, ωn)}n∈N of finite dimensional
manifolds. Then the direct limitM = lim−→Mn is modelled on the convenient space R∞.

According to [Pel2], Proposition 34, the direct limit Lpk(S1,M) = lim−→(Lpk(S1,Mn))
has a Hausdorff convenient manifold structure modelled on the convenient space
Lpk(S1,R∞) = lim−→(Lpk(S1,Rm)).

Assume now that each Mn is a Kähler manifold and let ωn, gn and In be the
associated symplectic form, Riemannian metric and complex structure on Mn respec-
tively. Moreover, we suppose that each sequence (ωn)n∈N, (gn)n∈N and (In)n∈N is a
coherent sequence on the ascending sequence (Mn)n∈N.

For p and k fixed, on the tangent bundle TLpk(S1,Mn), we introduce (cf. [Kum1]
and [Kum2]):

– (Ωn)γ(X,Y ) =

∫
S1
ωn

(
Xγ(t), Yγ(t)

)
dt;

– (gn)γ(X,Y ) =

∫
S1
gn

(
Xγ(t), Yγ(t)

)
dν(t);

– (In)γ(X)(t) = In
(
Xγ(t)

)
.

It is clear that Ωn (resp. gn) is a weak bilinear form (resp. a Riemaniann metric) on
Lpk(S1,M) and In is an almost complex structure on TLpk(S1,M). The compatibility
of the triple (ω, g, I) implies clearly the compatibility of any (Ωn, gn, In). Moreover,
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(Ωn, gn, In)n∈N is a coherent sequence. Then, from Corollary 6.8, we get an almost
Kähler structure on Lpk(S1,M).

If each Mn is a para-Kähler manifold, we can provide Lpk(S1,M) with an almost
para-Kähler structure in the same way.

Remark 6.4. As in the projective limit context, if each Mn is a Kähler manifold,
then the almost complex structure is integrable and, in particular, the Nijenhuis
tensor NIn

vanishes. It is clear that we also have NIn
≡ 0 for all n ∈ N and also

NI ≡ 0, by classical direct limit argument; Thus I is formally integrable but not
integrable in general. On the opposite, if each Mn is a para-Kähler manifold, then,
again, the Nijenhuis tensor of the almost para-complex structure Jn vanishes and, by
Theorem 4.7, this implies that the almost para-complex structure J on Lpk(S1,M) is
also integrable.
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finie, Thèse, Ecole Polytechnique, 2005.

[Vai] I. Vaisman, Lagrange geometry on tangent manifolds, Intern. J. of Math. and
Math. Sci., 2003(51) (2003) 3241–3266.

[Wei] A. Weinstein, Symplectic Manifolds and Their Lagrangian Submanifolds, Ad-
vances in Math. 6 (1971) 329–346.

[Wen] J. Wenzel, Real and complex operator Ideals, Quaestiones Mathematicae, 18
(1995).

Authors’ addresses:

Patrick Cabau and Fernand Pelletier
Unité Mixte de Recherche 5127 CNRS,
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