
Geodesic flow on Finsler manifolds of hyperbolic type

F. Houenou, C. Ogouyandjou and L. Todjihounde

Abstract. Let (X,F ) be a compact Finsler (no reversibility is assumed)
manifold and X̃ be its Finsler universal covering. In this work we study
the geodesic flow restricted to the set of all geodesics that are minimal
on X̃. In particular we give a comparison result between the topological
entropy and the volume entropy of (X,F ).
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1 Introduction

Let (X, g) be a closed (compact without boundary) and connected Riemannian man-
ifold, p : (X̃, g̃) → (X, g) its Riemannian universal covering map and π : TX → X
the canonical projection from its tangent bundle. Let us denote by x̃, the lift in X̃,
for any picked x ∈ X. An interesting asymptotic invariant hg (volume entropy also
called volume growth) has been introduced in [8] as follows: if volg̃B(x̃, r) denotes the
volume of the open ball B(x̃, r) centered at x̃ with radius r in the universal covering
(X̃, g̃) of (X, g), then the quantity

hg := lim
r→+∞

log volg̃B(x̃, r)

r
,

where the limit on the right hand side exists for all x̃ ∈ X̃ and, in fact, is independent
of x̃. This asymptotic invariant describes the exponential growth rate of the volume
on the universal covering and is related to the geometry, the topology and the dynamic
of manifolds (see [10]).

Besides, iterating any homeomorphism φ on a metric space (X, d), leads to a
dynamical system. The study and the understanding of this system strongly relies on
the answers to the questions such as how many different orbits it has, how fast it mixes
together various sets, etc. In fact, it is well known that to any homeomorphism of
a compact Hausdorff topological space, there is an attached real which characterizes
the induced action by the homeomorphism on the finite open covering of the space:
the topological entropy. It represents the exponential growth rate of the number of
distinguishable orbits of the iterate for the dynamical system given by an iterated
homeomorphism. Denoting by {ϕt}t the geodesic flow of g in the unit tangent bundle
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SX = {(x, v) ∈ TX ; gx(v, v) = 1} ⊂ TX and by htop(ϕ
t) = htop(ϕ

t
SX), the

topological entropy of {ϕt}t, it was established in [8], that

htop(ϕ
t) > hg

with equality when g is of non positive curvature. This estimation was generalized
by A. Freire and R. Mañé to Riemannian metrics without conjugate points (see [4]).
Later on, the authors in [6] proved that it is sufficient to consider minimal geodesics
to generate exponential complexity (providing hg > 0). Indeed, denoting by X̃ the

closed and ϕt-invariant subset of SX̃ which consists of all (x̃, ṽ) ∈ SX̃ such that the

geodesic cṽ with speed
d

dt
cṽ(0) = ṽ is globally length-minimizing, by X = p∗(X̃ ) the

projection of X̃ onto SX, by {ϕtX }t and {ϕtX̃ }t the geodesic flow restricted to X and

X̃ respectively :

Theorem 1.1 (see [6]). Let (X, g) be a compact Riemannian manifold and ϕtX be the
geodesic flow ϕt restricted to the set of the minimal geodesics X ⊂ SX. Then

(1.1) htop(ϕ
t
X ) > hg.

Recall that a compact manifold of hyperbolic type is a compact manifold admitting
a strictly negative curvature. A fruitful attempt to prove the reverse inequality of (1.1)
has been made on compact manifold of hyperbolic type :

Theorem 1.2 (see [5]). Let (X, g) be a compact Riemmannian manifold of hyperbolic
type. There exists a constant β depending only on (X, g) such that for each compact
set K ⊂ X̃ :

(1.2) htop(ϕ
t, π−1(K) ∩ X̃ , β) 6 hg.

The inequalities (1.1) and (1.2) highlighted the relationship between the volume
entropy and the topological entropy on a Riemmannian manifold. Since Finsler mani-
fold is a generalization of Riemmanian manifold, it is natural to study the equivalence,
the properties and the implication of such relationship in Finsler geometry setting ;
this is the aim of the present work. Let us mention that some researchers have
treated question related to volume entropy of fundamental group of Finsler manifold
(see [10] and references therein), but according to the authors knowledge, nothing is
yet known about the topological entropy and its relationship with the volume one in
Finsler geometry setting. This work brings them into light.

To do so, let us assume that (X,F ) is a Finsler manifold with p : (X̃, p∗F ) −→
(X,F ) its Finsler universal covering map and π : TX −→ X the natural projection
from the tangent bundle TX onto X. In the sequel, we will still denote p∗F by F .
Pick any x ∈ X and let x̃ be its lift in X̃ and SF X̃ = {(x̃, v) ∈ TX̃ ;F (x̃, v) = 1} the
unit tangent bundle. The geodesic flow {ϕtF }t of F is defined by

ϕtF : SF X̃ −→ SF X̃

v 7−→ d

dt
cv(0) = v.
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Let us denote by X̃F the closed and ϕtF -invariant subset of SF X̃ consisting of all

(x̃, v) ∈ SF X̃ such that the geodesic cṽ with speed
d

dt
cv(0) = v is globally length-

minimizing. Let XF = p∗(X̃F ) stands for the projection of X̃F onto SFX, while
{ϕtXF

}t and {ϕtX̃F
}t will denote the geodesic flow restricted to XF and X̃F respectively.

We obtain the following result showing that the topological entropy of a geodesic
flow on a compact Finsler manifold is bounded from bellow by its volume entropy.

Theorem A Let (X,F ) be a compact Finsler manifold and let {ϕtXF
}t denotes the

restriction to XF ⊂ SFX of the geodesic flow {ϕtF }t of (X,F ). Then

(1.3) htop(ϕ
t
XF

) > hF .

Assuming that (X,F ) is of hyperbolic type, we prove that the topological entropy
is bounded above by the volume entropy as follows :

Theorem B Let (X,F ) be a compact Finsler manifold of hyperbolic type and K ⊂ X̃
a compact set in the universal cover X̃ of X. Let F = SK ∩ X̃F , where SK =
π−1(K) ∩ SF X̃. Then there is some constant β depending only on (X,F ) such that

(1.4) htop(ϕ
t
F ,F , β) 6 hF .

After gathering in Section 2 some needed materials for the sake of completeness
and easy reading we study the ideal boundary of a Finsler manifold of hyperbolic
type and the Morse Lemma. In Section 3, we recall the Bowen’s definition for the
topological entropy, afterward we present and prove our comparison results for the
topological entropy.

2 Background materials

In this section we give an overview of some basics tools needed for easy reading and
understanding of the present work for the sake of completeness. We refer to [2, 10]
and references therein for more details.

2.1 Finsler geometry structure

Roughly speaking, as Riemannian geometry extends Euclidean geometry, Finsler ge-
ometry gives a larger environnement than the Riemannian one to study geometrical
objets.

Definition 2.1. Let X be a differentiable manifold. A Finsler structure on X is a
function

F : TX −→ [0; +∞)

on the tangent bundle TX of X with the following properties:

1. F is C∞ on the slit tangent bundle TXr 0 where 0 stands for the zero section
(Regularity) ;



98 F. Houenou, C. Ogouyandjou and L. Todjihounde

2. F (x, λv) = λF (x, v) for all x ∈ X, v ∈ TxX and λ > 0 (positive 1-homogeneity)
;

3. The n× n Hessian matrix (gij)ij :=

(
1

2

∂2

∂vi∂vj
F 2

)
ij

is positively defined at

every point (x, v) of TXr 0 given then a metric gx,v (strict convexity).

Therefore, every Riemannian manifold (M, g) is a natural example of a Finsler
manifold with F =

√
g.

Consider a and b reals satisfying a 6 b. Given γ : [a, b] → X, a piecewise C∞ curve

with velocity
dγ

dt
=
dγi

dt

∂

∂xi
∈ Tγ(t)X on a Finsler manifold (X,F ), one computes its

length as lF (γ) =

∫ b

a

F
(
γ,
dγ

dt

)
dt.

For two elements x and y in a Finsler manifold (X,F ), let us denote by C∞(x, y)
the collection of all piecewise C∞ curves γ : [a, b] → X starting from γ(a) = x and
ending to γ(b) = y. The metric distance from x to y is defined by:

dF (x, y) = inf
γ∈C∞(x,y)

lF (γ).

In general, F is non reversible then the induced metric dF is non symmetric.
If a Finsler function F satisfies

F (x, λv) = |λ|F (x, v) for all λ ∈ R,

one says that it is absolute homogeneous and for such Finsler function, the associated
distance dF is symmetric.

It is important for the whole theory of Finlser manifolds that one does not sym-
metrize or reduce the general Finsler metric to the special Riemannian or reversible
Finsler case. The non-reversibility is essential, which should be preserved because it
results from the main difference between Finsler geometry and Riemannian geometry.

The metric tensor g on a Riemannian manifold (X, g) depends only on the points x
of that manifold X, namely g = gx ; whereas in Finsler geometry, although the metric
tensor g on a Finsler manifold (X,F ) depends on a point x of X it also depends on
tangent vector v to X at x i.e. g = gx,v. The non reversibility of the associated
metric to a Finsler function strongly relies on the dependence in the tangent vector.
Nevertheless there is a way to overcome the non reversibility on some Finsler manifold
without symmetrization.

Definition 2.2. A Finsler manifold (X,F ) is called uniform if there exists a constant
αF such that

(2.1)
1

αF
· gx,v1 6 gx,v2 6 αF · gx,v1 ∀ x ∈ X and ∀ v1, v2 ∈ TxX r {0}.

The constant αF in (2.1) is called the uniformity constant of (X,F ) and in this case
αF is finite it is given by

αF = sup
x∈X

{
sup

u,v1,v2∈TxXr{0}

√
gx,v1(u, u)√
gx,v2(u, u)

}
.
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Let us remark that since dF is non symmetric, the inequality (2.1) gives a helpful
and powerful tool for estimation. In fact, as a consequence to (2.1), we have for all
distinct pair of points x and y :

dF (y, x) 6 α2
F dF (x, y).

Observe that compact Finsler manifolds and their Finsler universal coverings are
uniform with the same uniformity constant αF .

Let us denote by B+
F (x, r) = {y ∈ X, dF (x, y) < r} the forward open ball of

radius r centered at x and B−
F (x, r) = {y ∈ X, dF (y, x) < r} the backward open

ball of radius r centered at x (namely the set of center of balls of radius r containing
x). Every Finsler manifold comes with a natural volume form, which is described as
follows:

fix an arbitrary Riemannian metric g on X, let dvg be its volume form ; pick
x ∈ X and denote by volgBg(x, 1) and volgB

+
F (x, 1) the volume with respect to g of

the unit open ball in (X, g) and (X,F ) respectively ; the Finsler volume form on X
is given by

dvF (x) =
volgBg(x, 1)

volgB
+
F (x, 1)

dvg(x),

and is independent of the choice of the Riemannian metric g. Then the Finsler volume

for any subset A of (X,F ) is volF (A) =

∫
A

dvF (x).

Proposition 2.1. Let α be a strictly positive real number and let Ω be a fundamental
domain with diameter α in X̃. Then for all r > α and for all x̃ and ỹ in Ω one has:

B+
F (x̃, r − α) ⊆ B+

F (ỹ, r) ⊆ B+
F (x̃, r + α).

Consequently for all x̃ and ỹ in X̃ the following holds

volF (B
+
F (x̃, r − α)) 6 volF (B

+
F (ỹ, r)) 6 volF (B

+
F (x̃, r + α)).

Proof. Take z̃ ∈ B+
F (x̃, r−α) meaning dF (x̃, z̃) < r−α which infers that dF (x̃, z̃)+α <

r. Since Ω is of diameter α then for all x̃ and ỹ in Ω one has max(dF (x̃, ỹ), dF (ỹ, x̃)) 6
α. Therefore dF (ỹ, z̃) 6 dF (ỹ, x̃) + dF (x̃, z̃) < r. In the other hand taking z̃ ∈
B+

F (y, r), i.e dF (ỹ, z̃) < r, we have by the same argument that dF (x̃, z̃) 6 dF (x̃, ỹ) +
dF (ỹ, z̃) < α+ r. �

Proposition 2.2. Let (X,F ) be a closed Finsler manifold, x̃ ∈ X̃ and B+
F (x̃, r) the

forward ball of radius r in the universal covering X̃ of X. Then

hF := lim
r→+∞

1

r
log volF (B

+
F (x̃, r))

exists and is independent of x̃.

Proof. Choose a fundamental domain Ω in X̃ with diameter α. Then

B+
F (x̃, r − α) ⊆ B+

F (ỹ, r) ⊆ B+
F (x̃, r + α), ∀ x̃, ỹ ∈ Ω.
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Consequently for all x̃ and ỹ in X̃ the following holds

volF (B
+
F (x̃, r − α)) 6 volF (B

+
F (ỹ, r)) 6 volF (B

+
F (x̃, r + α))

since the covering transformations that bring x̃ and ỹ in Ω are isometries. Also for
all positive reals r and s,

B+
F (x̃, r + s) =

∪
ỹ∈B+

F (x̃,r)

B+
F (ỹ, s).

Let N be a maximal subset of B+
F (x̃, r) whose points are pair-wise b apart. We have∪

ỹ∈N

B+
F (ỹ,

b

2
) ⊆ B+

F (x̃, r +
b

2
)

which infers

(2.2)

∑
ỹ∈N volF (B

+
F (ỹ, b2 )) 6 volF (B

+
F (x̃, r + b

2 ))

⇒ cardN · infy∈X volF (B
+
F (ỹ, b2 )) 6 volF (B

+
F (x̃, r + b

2 ))

⇒ cardN · inf ỹ∈X volF (B
+
F (ỹ, b2 )) 6 volF (B

+
F (x̃, r + b

2 )).

Therefore, a maximal subset N of B+
F (x̃, r) whose point are pair-wise b apart has

cardinality at most
1

cb
volF

(
B+

F (x̃, r+
b

2
)
)
where the constant cb is inf

z̃∈X
volF (B

+
F (z̃,

b

2
))

and depends on the curvature. Since every point of B+
F (x̃, r) is within b of some ỹ in

N then

B+
F (x̃, r + s) =

∪
ỹ∈N

B+
F (ỹ, s+ b).

One may assume that volF (B
+
F (ỹ, r)) is unbounded. Hence one can choose b so that

cb = 1. Put Λ = α+
3b

2
then

(2.3) volFB
+
F (x̃, r + s) 6 volFB

+
F (x̃, r +

b

2
)volFB

+
F (x̃, s+ α+ b);

hence

volFB
+
F (x̃, r + s) 6 volFB

+
F (x̃, r)volFB

+
F (x̃, s+ Λ)

since
volFB

+
F (x̃, r + s) = volFB

+
F (x̃, r − b

2 + b
2 + s)

6 volFB
+
F (x̃, r)volFB

+
F (x̃, r − b

2 + b
2 + s+ α).

Using again the relation (2.3), if ks 6 r < (k + 1)s then

volFB
+
F (x̃, r) 6 volFB

+
F (x̃, (k + 1)s)

6 volFB
+
F (x̃, ks)volFB

+
F (x̃, s+ Λ)

6 · · · 6 volFB
+
F (x̃, s)volFB

+
F (x̃, s+ Λ)k,
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1

r
log volFB

+
F (x̃, r) 6 1

r
log volFB

+
F (x̃, s) +

k

r
log volFB

+
F (x̃, s+ Λ)

6 1

r
log volFB

+
F (x̃, s) +

1

s
log volFB

+
F (x̃, s+ Λ)

lim sup
r→+∞

1

r
log volFB

+
F (x̃, r) 6 1

s
log volFB

+
F (x̃, s+ Λ) ∀ s > 0(2.4)

and so

lim sup
r→+∞

1

r
log volFB

+
F (x̃, r) 6 lim inf

s→+∞

1

s
log volFB

+
F (x̃, s+Λ) = lim inf

s→+∞

1

s
log volFB

+
F (x̃, s)

which shows that lim sup
r→+∞

log volFB
+
F (x̃, r) exists. �

Definition 2.3. Let (X,F ) be a compact Finsler manifold. Analogously to the
Riemannian metric case, one defines the volume entropy of F as follows:

hF = lim
r→∞

log volF (B
+

F̃
(x̃, r))

r
.

Let us recall some terminologies for the sake of reading:

Definition 2.4. Let (X,F ) be a Finsler manifold and X̃ its Finsler universal covering

1. A curve c : [a, b] → X̃ satisfying F (ċ) = 1 is said to be minimal if lF (c) =
dF (c(a), c(b)).

2. A curve c : [0; +∞) → X̃ is called a forward ray if c|[a,b]
is minimal for allowed

[a, b] ⊂ [0;+∞).

3. A curve c : (−∞, 0] → X̃ is called a backward ray if c|[a,b]
is minimal for allowed

[a, b] ⊂ (−∞, 0].

4. A curve c : R → X̃ is said minimal if c|[a,b]
is minimal for allowed [a, b] ⊂ R.

5. A C∞ curve c : R → X̃ is called a geodesic if it has constant speed and for all
sufficiently closed positive reals a < b one has lF (c|[a,b]

) = dF (c(a), c(b)).

The Finsler manifold (X,F ) is said to be forward complete if any geodesic defined
over [a, b[ can be extended to a geodesic over [a,+∞[. Similarly (X,F ) is said to be
backward complete if any geodesic defined over ]a, b] can be extended to a geodesic
over ] − ∞, b]. We say that (X,F ) is complete if it is both forward complete and
backward complete.

Lemma 2.3. If a uniform Finsler manifold (X,F ) is forward complete, it is also
backward complete, thus complete.

Let us denote by SF X̃ the unit tangent bundle of (X̃, F ), SF X̃ = {(x̃, v) ∈ SX̃ :
F (x̃, v) = 1}. The geodesic flow Φt

F : SF X̃ → SF X̃ of F is defined by Φt
F (x̃, v) = ċv(t),

where cv : R → X̃ is the F -geodesic defined by cv(0) = x̃ and ċv(0) = v. Let X̃F

be the closed and Φt
F -invariant subset of SF X̃ consisting of all (x̃, v) ∈ SF X̃ such

that the geodesic cv with cv(0) = x̃ and ċv(0) = v is a minimal geodesic. We denote
by XF = p∗(X̃F ) the projection of X̃F to SFX and by ϕtXF

, ϕtX̃F
the geodesic flow

restricted to XF and X̃F , respectively.
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2.2 Morse lemma and ideal boundary of a Finsler manifold of
hyperbolic type

For the use made of them in the work, the ideal boundary and the Morse lemma
was presented and discussed in this section. For more details, we refer to [1] and
references therein.

Definition 2.5. Let (X,F ) be a Finsler manifold. The function F is uniformly
equivalent to a Riemannian metric g on X, if there is a positive constant α0 such that

1

α0
· F 6 ∥ · ∥g 6 α0 · F.

Consequently one has for the associated metrics dF and dg:

1

α0
· dF (·, ·) 6 dg(·, ·) 6 α0 · dF (·, ·).

If in addition, the Riemmanian metric g is of strictly negative curvature then the
Finsler manifold (X,F ) is said to be of hyperbolic type and the metric g is called the
associated metric of strictly negative curvature to the Finsler structure F on X.

For any subset A of X and any x ∈ X the distance from x to A denoted by
dF (x,A) and the distance from A to x denoted by dF (A, x) are respectively defined
as follows:

dF (x,A) = inf
a∈A

dF (x, a) resp. dF (A, x) = inf
a∈A

dF (a, x).

Also for any two subsets A and B the F -Hausdorff distance between A and B is
defined as follows:

dHF (A,B) = sup
a∈A

dF (a,B).

Observe that dF (x,A) 6 α2
F dF (A, x) and d

H
F (A,B) 6 α2

F d
H
F (B,A).

The following result is fundamental for the study of the topological entropy of
ϕtXF

when (X,F ) is a compact Finsler manifold of hyperbolic type ; it was proved
by Morse on a 2-dimensionnal Riemannian manifold [9] and was extended in Finsler
geometry setting by Zaustinsky [11]. Thanks to Klingenberg [7] the Morse lemma
holds in arbitrary dimension.

Let (X,F ) be a compact Finsler manifold (so F is uniform) of hyperbolic type
(so F is uniformly equivalent to a Riemannian metric of strictly negative curvature).
From now on, we assume the existence of a fixed Riemannian metric g0 on X with
strictly negative curvature associated to F ; we denoted by αF the uniformity constant
of F and by α0 the uniformly equivalence constant of F to g0.

Proposition 2.4 (Morse Lemma). Let (X,F ) be a Finsler manifold of hyperbolic
type. Then there is a constant r0 = r0(F, g0) > 0 with the following properties:

(i) if γ : [a, b] −→ X̃ and χ : [a0, b0] −→ X̃ are minimizing geodesic segments with
respect to F and g0, respectively, joining γ(a) = χ(a0) to γ(b) = χ(b0), then

dHF (γ[a, b], χ[a0, b0]) 6 r0.
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(ii) for any minimizing F -geodesic γ : R → X̃ there is a g0-geodesic χ : R → X̃
and conversely for any g0-geodesic χ : R → X̃ there is a minimizing F -geodesic
γ : R → X̃ with

dHF (γ(R), χ(R)) 6 r0.

Now let (X,F ) be a compact Finsler manifold of hyperbolic type and (X̃, F )
be its Finsler universal covering. Let g0 denote the associated metric of strictly
negative curvature on X. Note that the Riemannian universal covering X̃0 of (X, g0)
is a Hadamard manifold. Let us denote by X̃0(∞) its ideal boundary. Two F -
geodesics c and c′ are said to be asymptotic if there exists a constant η > 0 such
that dHF

(
c(R+), c

′(R+)
)
6 η, where dHF is the Hausdorff distance with respect to the

distance dF . This defines an equivalence relation on the set of minimizing F -geodesics
rays of X̃. Let X̃(∞) be the coset of asymptotic minimizing F -geodesics rays c of X̃.
For each minimizing F -geodesic ray c of X̃, it follows from Morse lemma that there
exists a g0-geodesic ray γ such that dHF (c(R+), γ(R+)) 6 η, where η is the constant
in Morse Lemma. Let [c] be the equivalence class of minimizing F -geodesic ray c and
let [γ] be the equivalence class of the g0-geodesic γ. The map f defined by

f : X̃(∞) −→ X̃0(∞)
[c] 7−→ [γ]

is bijective. Then f defines on X̃(∞) a natural topology with respect to which X̃(∞)
and X̃0(∞) are homeomorphic.

Let G0 be the set of the g0-geodesics γ : R −→ X̃ and denote by X̃F (γ) the
following set

X̃F (γ) := {(x, v) ∈ XF : cv(−∞) = γ(−∞) and cv(+∞) = γ(+∞)}.

Using the Morse Lemma we have

X̃F =
∪

γ∈G0

X̃F (γ).

3 Topological entropy estimation in Finsler
geometry

In this section we present and prove our main results on estimation of the topological
entropy in Finsler geometry setting by providing a lower and an upper bounds for the
topological entropy.

3.1 Bowen’s definition of topological entropy

Here we recall Bowen’s definition of topological entropy. Let φ : V → V be a
homeomorphism of a metric space (V, d), not necessarily compact. By iterating φ,
one obtains a dynamical system (X,N, ψ) where ψ : (x, n) 7−→ ψ(x, n) = φn(x). For
each n ∈ N, a metric on V is defined by

dn(x, y) := max
06j<n

d(φj(x), φj(y)).
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Let H be a subset of V . For any ε > 0 and any integer n, we say that a set Y ⊂ V is
(n, ε)-spanning for H if the closed balls B̄n(y, ε) = {x ∈ V : dn(y, x) 6 ε} with y ∈ Y
cover H. If Y ⊂ H and B̄n(y, ε) ∩ Y = {y} for all y ∈ Y , we say that Y is an (n, ε)-
separated subset of H. Let rn(F, ε) denote the minimal cardinality of (n, ε)-spanning
sets for H and let sn(H, ε) denote the maximal cardinality of (n, ε)-separated subsets
of H. It is easy to see that for any ε > 0 we have

rn(H, ε) 6 sn(H, ε) 6 rn(H, ε/2).

If H is compact then rn(H, ε) <∞,

We recall the following definitions of topological entropy:

• htop(f,H, ε) := lim sup
n→∞

1

n
log rn(H, ε);

• htop(f,H) := lim
ε→0

htop(f,H, ε) ;

• htop(f) := sup
H⊂V compact

htop(f,H).

Note that for any ε > 0 we have htop(f,H, ε) 6 htop(f,H) and if V is itself

compact, we have htop(f) = htop(f, V ). If we use sn(H, ε) instead of rn(H, ε), we

obtain the same value for htop(f,H). For details on topological entropy we refer to

[12].

We need the following less known concept of local entropy introduced by Bowen
[3]. For x ∈ V and β > 0 set

Zβ(x) :=
{
y ∈ V ; d(fn(x), fn(y)) 6 β, ∀n ∈ Z

}
.

The β-local entropy htop,loc(f, β) of f is given by: htop,loc(f, β) := sup
x∈V

htop(f, Zβ(x)).

One says that f is β-entropy-expansive for β > 0 if htop,loc(f, β) = 0.

We consider the following setting: let (Ṽ , d̃) be a metric space and Γ ⊂ Iso(Ṽ )
acting on Ṽ . Assume that the quotient V := Ṽ /Γ is compact and equipped with a
metric d such that the projection p : Ṽ −→ V is a local isometry. Let f̃ : Ṽ −→ Ṽ
be a homeomorphism which commutes with the group Γ and let f : V −→ V be the
projection defined by f(x) = pf̃p−1(x) (this is well-defined since f̃ , Γ-commutes).
Note that f is a homeomorphism as well.

The following theorem is a slight extension of a result of Bowen (see [3]). It allows
us to estimate the topological entropy using coverings and will be crucial for our
applications.

Theorem 3.1. (see [5] for details) Let K ⊂ Ṽ be a compact set such that p(K) = V .
Then for any β > 0 we have

(3.1) htop(f) 6 htop(f̃ , K, β) + htop,loc(f̃ , β).
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3.2 Lower bound for the topological entropy

Recall the notation p : X̃ −→ X for the universal cover of X and

X̃F = {(x̃, v) ∈ SF X̃ ; cv(0) = x̃, cv is a minimal F -geodesic } ⊂ SF X̃,

XF = p∗(X̃F ) ⊂ SFX.

The following theorem is an extension to Finsler manifolds of the result of Katok and
Hasselblatt in Riemannian geometry (see [6]).

Theorem 3.2. Let (X,F ) be a compact Finsler manifold and ϕtXF
be the geodesic

flow ϕtF restricted to XF ⊂ SFX. Then

(3.2) htop(ϕ
t
XF

) > hF .

The following lemma is useful for the proof of Theorem 3.2. For any positive real
numbers δ and T , recall that sT (Y, δ) denotes the maximal cardinality of a (T, δ)-
separated subsets of Y .

Lemma 3.3. Assume that (X,F ) is a Finsler manifold with associated Finsler dis-
tance dF . Let (ϕt)t be a continuous flow on X and Y ⊂ X. For times 0 = t0 < t1 <
· · · < tm = T and δ > 0, we have

m∏
i=1

sti−ti−1(ϕ
ti−1Y, δ) > sT (Y, 2δ), ∀ i = 1, · · · ,m.

Proof. Let L be a maximal (T, 2δ)-separated subset of Y and let Li be a maximal
(ti − ti−1, δ)-separated subsets of ϕti−1(Y ) for i = 1, 2, · · · ,m. For (x1, x2, · · · , xm) ∈
L1 × L2 × · · · × Lm set

B(x1, x2, · · · , xm) :=
{
z ∈ L ; dF

(
ϕt+ti−1(z), ϕt(z)

)
< δ, ∀ 1 6 i 6 m, t ∈ [0, ti−ti−1]

}
.

Since L is (T, 2δ)-separated, the triangle inequality implies that cardB(x1, · · · , xm) 6
1. Therefore, since the cardinalities of the Li are maximal implying that they are also
(ti − ti−1, δ)-spanning,

cardL = card

 ∪
(x1,x2,··· ,xm)

B(x1, x2, · · · , xm)

 6
m∏
i=1

cardLi.

�

Lemma 3.4. Let (X,F ) be a closed Finsler manifold of injectivity radius δ = inj(X,F ).
Denote by (X̃, F ) the Finsler universal covering of (X,F ) with uniformity constant
αF . Let ω be a positive real number satisfying 0 < ω < 2

1+α2
F
. Let (Tk)k ∈ N

be a sequence tending to +∞ starting from T0 (sufficiently large) and defined by
Tk+1 = Tk + ω δ

2 . Fix x̃ ∈ X̃, for any ỹ in N , the maximal 2δ-separated set contains

in the annulus B
+

F (x̃, Tk + ω δ
2 ) r B+

F (x̃, Tk), let cỹ : [0, dF (x̃, ỹ)] −→ X̃ denotes the
minimal geodesic segment from x̃ = cỹ(0) to ỹ = cỹ(dF (x̃, ỹ)). Then for any pair of
different points ỹ1 and ỹ2 in Nk we have

dF
(
cỹ1(Tk), cỹ2(Tk)

)
> δ.
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Proof. The proof is a straightforward computation using the triangular inequality and
the fact that cỹi for i = 1, 2 are geodesic segments from x̃ to ỹi. In one hand we have:

dF (ỹ1, ỹ2) 6 dF
(
ỹ1, cỹ1(Tk)

)
+ dF

(
cỹ1(Tk), cỹ2(Tk)

)
+ dF

(
cỹ2(Tk), ỹ2

)
,

which infers

dF
(
cỹ1(Tk), cỹ2(Tk)

)
> dF (ỹ1, ỹ2)− dF

(
ỹ1, cỹ1(Tk)

)
− dF

(
cỹ2(Tk), ỹ2

)
.

On the other hand we have

dF (x̃, ỹi) = dF (x̃, cỹi(Tk)) + dF (cỹi(Tk), ỹi) < Tk +
ωδ

2
,

whence dF (cỹi(Tk), ỹi) <
ωδ
2 , ∀i = 1, 2. Using the uniform property of F , one gets

dF (ỹ1, cỹ1(Tk)) < α2
F dF (cỹ1(Tk), ỹ1) < α2

F

ωδ

2
.(3.3)

Therefore

dF
(
cỹ1(Tk), cỹ2(Tk)

)
> 2δ − ωδ

2
(1 + α2

F ).

Since ω is such that 0 < ω <
2

1 + α2
F

, one obtains dF
(
cỹ1(Tk), cỹ2(Tk)

)
> δ. �

We can now give the proof of Theorem 3.2.

Proof. (Proof of Theorem 3.2)

Fix x̃ ∈ X̃, ε > 0 and write

δ := inj (X,F ) > 0, a := sup
y∈X̃F

volB+
F (y, 2δ), b := htop(ϕ

t
SFX).

There exists a constant ω satisfying 0 < ω <
2

1 + α2
F

and a sequence (Tk)k tending

to +∞ such that

(3.4) volB+
F (x̃, Tk + ω

δ

2
)r volB+

F (x̃, Tk) > ehF (1−ε)Tk ,

for otherwise adding up the volume of the annuli B+
F

(
x̃, Tk + ω δ

2

)
r B+

F (x̃, Tk) with

Tk+1 = Tk + ω δ
2 starting at T0 sufficiently large would yield that the exponential

growth rate is less than hF (1− ε).
Let Nk be a maximal 2δ-separated set in the annulus B̄+

F (x̃, Tk+ω
δ
2 )rB

+
F (x̃, Tk),

then we have for all k ∈ N

a ·card Nk > vol

 ∪
ỹ∈Nk

B+
F (ỹ, 2δ)

 > volB+
F (x̃, Tk+

δ

2
)rvolB+

F (x̃, Tk) > ehF (1−ε)Tk .

For ỹ ∈ Nk let cỹ : [0, dF (x̃, ỹ)] → X̃ be a minimal F -geodesic segment with cỹ(0) = x̃
and cỹ(dF (x̃, ỹ)) = ỹ. Now, if ỹ1, ỹ2 ∈ Nk with ỹ1 ̸= ỹ2 we have, by Lemma 3.4,

(3.5) dF (cỹ1(Tk), cỹ2(Tk)) > dF (ỹ1, ỹ2)− dF (ỹ1, cỹ1(Tk))− dF (cỹ2(Tk), ỹ2) > δ,
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and therefore, the following sets

S̃k :=

{
d

dt
cỹ(0) : ỹ ∈ Nk

}
are (Tk, δ)-separated with respect to the following metric d1F on SF X̃,

d1F (u, v) = max
t∈[0,1]

dF (cu(t), cw(t)), ∀ (x̃, u), (x̃, v) ∈ SF X̃.

In SFX, the sets Sk := p∗(S̃k) are (Tk,
δ
2 )-separated. We define the decreasing se-

quence of compact sets

Xk := p∗

{
(x̃, v) ∈ SF X̃ ; cv :

[
−
√
Tk,
√
Tk

]
−→ X̃ is minimal

}
and take

∩
k∈N

Xk = XF .

In order to find large separated sets in XF we shall find them in the sets Xk, observing
that for t ∈

[√
Tk, Tk −

√
Tk
]
we have

ϕtFSk ⊂ Xk.

Assume that k is large enough, such that

s√Tk

(
Sk,

δ

4

)
6 e2b

√
Tk and

√
Tk > 2b

εhF
.

We apply Lemma 3.3 and obtain

sTk−
√
Tk
(ϕ

√
Tk

F Sk,
δ

4
) · s√Tk

(Sk,
δ

4
) > sTk

(Sk,
δ

4
) > card Nk > 1

a
ehF (1−ε)Tk ,

showing that

sTk−
√
Tk
(ϕ

√
Tk

F Sk,
δ

4
) > 1

a
ehF (1−ε)Tk−2b

√
Tk > 1

a
ehF (1−2ε)Tk .

Let now

T ∈
(
0, Tk −

√
Tk

]
and set mk =

⌊
Tk −

√
Tk

T

⌋
∈ N.

Applying Lemma 3.3 again we have:(
mk−1∏
i=0

sT (ϕ
iT+

√
Tk

F Sk,
δ

8
)

)
sTk−

√
Tk−mkT

(ϕmkT+
√
Tk

F Sk,
δ

8
) > sTk−

√
Tk

(
ϕ
√
Tk

F Sk,
δ

4

)
> 1

a
ehF (1−2ε)Tk(3.6)

and hence

mk−1∏
i=0

sT (ϕ
iT+

√
Tk

F Sk,
δ

8
) >

1
ae

hF (1−2ε)Tk

sTk−
√
Tk−mkT

(ϕmkT+
√
Tk

T Sk,
δ
8 )

>
1
ae

hF (1−2ε)Tk

sT (SFX,
δ

8
)

> 1

a
ehF (1−2ε)Tk−2bT ,(3.7)
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where in the last step we assumed that T is large, so that sT (SM, δ8 ) 6 e2bT . Hence
one of the factors in the last product has to be “ large”, i.e., for some i ∈ {0, · · · ,mk−
1} we have

sT (ϕ
iT+

√
Tk

F Sk,
δ

8
) > 1

a
e

hF (1−2ε)Tk−2bT

mk > 1

a
ehF (1−2ε)T e

− 2bT
mk .

Note also that ϕiT+
√
Tk

F Sk ⊂ Xk, so when letting k → ∞ while fixing T and using
mk −→ ∞, we find a (T, δ8 )-separated set in XF = ∩kXk of cardinality at least

1

a
ehF (1−2ε)T lim

k→∞
e
− 2bT

mk =
1

a
ehF (1−2ε)T .

Hence

hF − 2ε 6 htop(ϕ
t
XF
,
δ

8
) 6 htop(ϕ

t
XF

),

which completes the proof of Theorem 3.2. �

3.3 Upper bound for the topological entropy of a Finsler
manifolds of hyperbolic type

We equipped SF X̃ with the metric d1F defined as follows:

d1F (ũ, ṽ) := max
t∈[0,1]

dF (cu(t), cv(t)) ∀ (x̃, u), (x̃, v) ∈ SF X̃.

Let (X,F ) be a compact Finsler manifold of hyperbolic type, g0 its associated Rie-
mannian metric with strictly negative curvature, αF the uniformity constant of F , α0

the uniformly equivalence constant of F to g0 and r0 the constant in Morse Lemma.

In this subsection we prove the following theorem:

Theorem 3.5. Let (X,F ) be a compact Finsler manifold of hyperbolic type, X̃ its
Finsler universal covering and K a compact subset of X̃. Let F = SK ∩ X̃F , where
SK = π−1(K)∩SF X̃. Then there is some constant β = β(F, g0, αF , α0, r0) such that

htop(ϕ
t
F ,F , β) 6 hF .

In order to prove this theorem, we construct spanning sets for F . Let K ⊂ X̃ be
a compact set with diam K = a. For r > a consider

Kr := {z̃ ∈ X̃, r − a 6 dF (z̃, K) 6 r}

Let Kε and Kε
r be the minimal ε-spanning sets for K and Kr, respectively. For

ỹ ∈ Kε, z̃ ∈ Kε
r , let χỹz̃ : R → X̃ be the g0-geodesic connecting ỹ and z̃ such that

χỹz̃(0) = ỹ and χỹz̃(dg(ỹ, z̃)) = z̃. By the Morse Lemma, there exists a (unit speed)

minimizing F -geodesic γỹz̃ : R → X̃ that is r0-close to χỹz̃(R). Set

(3.8) Pr := {γ̇ỹz̃(0) ; ỹ ∈ Kε, z̃ ∈ Kε
r} ⊂ X̃F .

Using similar arguments like in [5], we obtain the following result:
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Lemma 3.6. Assume that the subset Pr in relation (3.8) is defined, then Pr is a
(r − 1, β)-spanning set for F = SK ∩ X̃F with respect to the metric d1F where β is
given by β := (2 + 3α4

F )r0 + (α2
0 + α4

F (α
2
0 + 1))ε.

Proof. Let γ : R −→ X̃ be a minimizing F -geodesic with γ(0) ∈ K. Then γ(r) ∈ Kr

and one can choose ỹ ∈ Kε and z̃ ∈ Kε
r such that

max
(
dF (ỹ, γ(0)), dF (γ(0), ỹ)

)
6 ε and max

(
dF (z̃, γ(r)), dF (γ(r), z̃)

)
6 ε.

Let χ be the g0-geodesic connecting γ(0) and γ(r) parametrized such that χ(0) = γ(0)
and χ(dg0(ỹ, z̃)) = γ(r). Due to the negative curvature, the function

ψ : t ∈ [0, dg0(ỹ, z̃] −→ ψ(t) = dg0(χ(t), χỹz̃(t))

is convex thus for all t ∈ [0, dg0(y, z)], one has:
(3.9)
dg0(χ(t), χyz(t)) 6 max{dg0(γ(0), ỹ), dg0(γ(r), z̃)} 6 εα0 , ∀ t ∈ [0, dg0(ỹ, z̃)].

In fact, for any t ∈ [0, dg(ỹ, z̃)], we write t = c × 0 + (1 − c) × dg0(ỹ, z̃) for some
c ∈ [0, 1]. Then

ψ(t) = ψ
(
c× 0 + (1− c)× dg0(ỹ, z̃)

)
= c ψ(0) + (1− c)ψ(dg0(ỹ, z̃))

= c dg0(χ(0), χỹz̃(0)) + (1− c)dg0(χ(dg0(ỹ, z̃)), χỹz̃(dg0(ỹ, z̃)))

= c dg0(γ(0), ỹ) + (1− c)dg0(γ(r), z̃)

6 max{dg0(γ(0), ỹ) dg0(γ(r), z̃)}.

Also,
dg0(γ(0), ỹ) = dg0(ỹ, γ(0)) 6 α0dF (ỹ, γ(0)) 6 εα0,

dg0(γ(r), z̃) = dg0(z̃, γ(r)) 6 α0dF (z̃, γ(r)) 6 εα0,

and γ and χ are minimizing geodesics.

LetA = γ[0, r] andB = γỹz̃[0, r
′] be the segment of γỹz̃ lying r0-close to χỹz̃[0, dg(ỹ, z̃)]

with respect to the F -Hausdorff metric dHF (γỹz̃ is a minimal geodesic in the r0-tube
around χỹz̃, showing that B exists and 0 < r′ 6 dg0(ỹ, z̃)), namely

dHF
(
χỹz̃([0, dg0(ỹ, z̃)]), B

)
6 r0.

Using the Morse Lemma (Proposition 2.4) and equation (3.9), we find (omitting
for the moment the intervals [0, dg(ỹ, z̃)] for χ, χỹz̃)

dHF (A,B) 6 dHF (A,χ) + dHF (χ, χỹz̃) + dHF (χỹz̃, B) 6 2r0 + α2
0ε.

By the definition of the F -Hausdorff distance dHF , for any t ∈ [0, r] there is some
t′ ∈ [0, r′] satisfying

dF (γ(t), γỹz̃(t
′)) 6 2r0 + εα2

0.

Recall that γ and γỹz̃ are minimal F -geodesics and

dF (γ(0), γỹz̃(0)) 6 max
(
dF (ỹ, γ(0)), dF (γ(0), ỹ)

)
6 r0 + ε.
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• If t 6 t′ then

t+ t′ = dF
(
γỹz̃(0), γỹz̃(t+ t′)

)
6 dF

(
γỹz̃(0), γ(0)

)
+ dF

(
γ(0), γ(t)

)
+ dF

(
γ(t), γỹz̃(t

′)
)
+ dF

(
γỹz̃(t

′), γỹz̃(t+ t′)
)

6 r0 + ε+ t+ 2r0 + εα2
0 + t = 2t+ 3r0 + ε(α2

0 + 1)

implying that t′ − t 6 3r0 + ε(α2
0 + 1) 6 α2

F

(
3r0 + ε(α2

0 + 1)
)
.

• If t′ < t then

t = dF (γ(0), γ(t))

6 dF
(
γ(0), γỹz̃(0)

)
+ dF

(
γỹz̃(0), γỹz̃(t

′)
)
+ dF

(
γỹz̃(t

′), γ(t)
)

6 dF
(
γ(0), γỹz̃(0)

)
+ dF

(
γỹz̃(0), γỹz̃(t

′)
)
+ α2

F dF
(
γ(t), γỹz̃(t

′)
)

6 r0 + ε+ t′ + α2
F (2r0 + εα2

0)

6 α2
F (r0 + ε) + t′ + α2

F (2r0 + εα2
0)

implying that t− t′ 6 α2
F

(
3r0 + ε(α2

0 + 1)
)
.

Thus for any t ∈ [0, r] there is some t′ ∈ [0, r′] satisfying

dF (γ(t), γỹz̃(t
′)) 6 2r0 + εα2

0

such that one has in one hand

|t− t′| 6 α2
F

(
3r0 + ε(α2

0 + 1)
)

and in another hand

dF (γỹz̃(t
′), γỹz̃(t)) 6 max

{
dF

(
γỹz̃(min(t, t′)), γỹz̃(max(t, t′))

)
, α2

F dF
(
γỹz̃(min(t, t′)), γỹz̃(max(t, t′))

)}
6 max(|t− t′|, α2

F |t− t′|)
= α2

F |t− t′|
6 α4

F

(
3r0 + ε(α2

0 + 1)
)
.

Therefore

dF (γ(t), γỹz̃(t)) 6 dF (γ(t), γỹz̃(t
′)) + dF (γỹz̃(t

′), γỹz̃(t))

6 2r0 + α2
0ε+ α4

F

(
3r0 + ε(α2

0 + 1)
)

= (2 + 3α4
F )r0 + (α2

0 + α4
F (α

2
0 + 1))ε.(3.10)

Taking β := (2 + 3α4
F )r0 + (α2

0 + α4
F (α

2
0 + 1))ε, we obtain

d1F (γ̇(t), γ̇ỹz̃(t)) = max
s∈[0,1]

dF (γ(t+ s), γỹz̃(t+ s)) 6 β ∀t ∈ [0, r − 1].

�

We can now prove the theorem 3.5.
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Proof of Theorem 3.5. Using inequality (2.2), we have for any x ∈ K,

card Kε
r 6 Cε · volB+

F

(
x̃, r + a+

ε

2

)
, where Cε :=

(
inf
y∈X

volB+
F (ỹ,

ε

2
)

)−1

,

which implies that

card Pr 6 card Kε · card Kε
r 6 card Kε · Cε · volB+

F

(
x̃, r + a+

ε

2

)
.

Hence

htop(ϕ
t
F ,F , β) 6 lim

r→+∞

1

r − 1
log card Pr 6 lim

r→+∞

1

r − 1
log volB+

F

(
x̃, r + a+

ε

2

)
.

Since

lim
r→+∞

1

r − 1
log volB+

F

(
x̃, r + a+

ε

2

)
= lim

r→+∞

r + a+ ε
2

r − 1
·
log volB+

F

(
x̃, r + a+

ε

2

)
r + a+ ε

2


= hF .

Then htop(ϕ
t
F ,F , β) 6 hF . �
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