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Abstract. This paper is concerned with a class of null (lightlike) curves,
called null f -rectifying curves, in Minkowski space-time E4

1. Here, f is
a nowhere vanishing real-valued integrable function in pseudo-arc length
parameter of concerned null curve in E4

1. A null f -rectifying curve in
E4
1 is introduced as a curve γ parametrized by pseudo-arc length s in

E4
1 such that its f -position vector field γf , defined by γf (s) =

∫
f(s)dγ,

always lies in its rectifying space (i.e., the orthogonal complement Nγ
⊥

of its unit principal normal vector field Nγ) in E4
1. In particular, some

characterizations and classification of such null curves in E4
1 are thoroughly

investigated.
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1 Introduction

In a proper pseudo-Riemannian manifold M (i.e., a smooth manifold M endowed with
an everywhere non-degenerate metric g of index ν satisfying 1 ≤ ν ≤ dimM − 1), a
tangent vector v to M can have exactly one among three causal characters: it is
spacelike, null or timelike if and only if g(v, v) > 0, g(v, v) = 0 or g(v, v) < 0,
respectively [1]. This terminology is adopted from Theory of Relativity. Accordingly,
an arbitrary curve γ in M may locally or globally have exactly one among these three
causal characters completely determined by causal characters of its velocity vectors
γ′(t). Thus, a curve γ in M is spacelike, null or timelike if and only if all of its velocity
vectors γ′(t) are respectively spacelike, null or timelike [1]. In particular, null vectors
and null curves in a Lorentz manifold (i.e., a pseudo-Riemannian manifold endowed
with a metric of index ν = 1) are also known as lightlike vectors and lightlike curves
respectively. In the study of null curves, the main obstacle is to normalizing their
velocity vectors in the usual way because their arc length functions vanish identically.
To overcome this, one needs to introduce another parameter, called pseudo-arc length
function, which normalizes acceleration vectors of null curves. In [2], W.B. Bonnor
defined the curvature functions of a null curve in Minkowski space-time E4

1 in terms
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of pseudo-arc length where the first curvature can have only two values: 0 if the curve
is linear or 1 in the remaining cases.

In [3], B.Y. Chen introduced the notion of a rectifying curve in the Euclidean
3-space E3 as a tortuous space curve whose position vector field always lies in its
rectifying plane, i.e., the plane generated by its unit tangent and unit binormal vector
fields. This is equivalent to saying that a rectifying curve in E3 is a tortuous space
curve whose position vector field always lies in the orthogonal complement of its unit
principal normal vector field.

Let I denote a non-trivial interval in R, i.e., a connected set in R containing at
least two points. Let γ : I −→ E3 be a unit-speed curve (i.e., a curve parametrized by
its arc length function s) possessing continuous derivatives at least up to fourth order.
We consider the Frenet apparatus {Tγ , Nγ , Bγ , κγ , τγ} for the curve γ which is defined
as follows: Tγ is the unit tangent vector field of γ, Nγ is the unit principal normal
vector field of γ obtained by normalizing T ′

γ , Bγ = Tγ × Nγ is the unit binormal
vector field of γ such that the dynamic Frenet frame {Tγ , Nγ , Bγ} is positive definite
along γ having the same orientation as that of E3; κγ : I −→ (0,∞) is the curvature
function and τγ : I −→ R is the torsion of γ. The planes spanned by {Tγ , Nγ},
{Tγ , Bγ} and {Nγ , Bγ} are respectively called the osculating plane, rectifying plane
and normal plane of γ in E3. Consequently, the rectifying plane of γ is the orthogonal
complement of its unit principal normal vector field Nγ . More elaborations may be
found in [3, 24, 25, 26, 27].

Thus, the position vector field of a rectifying curve γ : I −→ E3 parametrized by
arc length s satisfies equation

γ(s) = λ(s)Tγ(s) + µ(s)Bγ(s)

for all s ∈ I, where λ, µ : I −→ R are two smooth functions in parameter s. In
[3], B.Y. Chen investigated some characterizations of rectifying curves in E3 in terms
of distance functions, tangential, normal and binormal components of their position
vector fields and also in terms of ratios of their curvatures and torsions. Moreover,
in the same paper, the author explored a classification of such curves in E3 based on
a sort of dilation applied on unit-speed curves on the unit-sphere S2(1). Thereafter,
in [4], B.Y. Chen and F. Dillen studied rectifying curves as extremal curves and
centrodes in E3. In particular, they established a relation between rectifying curves
and centrodes in E3 which plays a significant role in defining the curves of constant
precession in Differential Geometry as well as Kinematics or, in general, Mechanics.

Furthermore, several characterizations of rectifying curves in Euclidean spaces were
inquired by B.Y. Chen in [5], by S. Deshmukh, B.Y. Chen and S. Alshamari in [6],
by K. İlarslan and E. Nesovic in [7] and by S. Cambie, W. Goemans and I. Van den
Bussche in [8]. Meanwhile, the notion of rectifying curves were extended to several
sorts of Riemannian and pseudo-Riemannian spaces. As for example, rectifying curves
in 3D sphere S3(r) and 3D hyperbolic space H3(−r) were studied by P. Lucas and
J.A. Ortega-Yagües in [9] and [10] respectively. Again, many characterizations of
rectifying curves in Minkowski 3-space E3

1 were investigated by K. İlarslan, E. Nešović
and T. M. Petrović in [11] and by K. İlarslan and E. Nešović in [12], and the same
for null, pseudo-null and partially null rectifying curves in Minkowski space-time E4

1

were explored by K. İlarslan and E. Nešović in [13]. Also, some characterizations
of rectifying spacelike curves in E4

1 were investigated by T.A. Ali and M. Onder in
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[14]. Moreover, some relations between normal curves and rectifying curves in E4
1

were presented by K. İlarslan and E. Nešović in [15]. In [16], F. Hathout introduced
a new kind of curves which generalizes rectifying curves and helices in E3. Also,
some characterizations and classification of non-null and null f -rectifying curves in
Minkowski 3-space E3

1 were investigated by Z. Iqbal and J. Sengupta in [17] and [18]
respectively. In this paper, we study null f -rectifying curves in Minkowski space-time
E4
1.
We organize this paper with four sections. In the first section, we revisit some

requisite basic ideas and results. Then, in the next section, we introduce the notion of
null f -rectifying curves in Minkowski space-time E4

1, where f is a nowhere vanishing
integrable real-valued function in pseudo-arc length parameter of concerned null curve.
Thereafter, the third section is devoted to investigate some characterizations of null
f -rectifying curves in E4

1 having everywhere vanishing or nowhere vanishing tangential
components. Finally, in the concluding section, we attempt for some classification of
such null f -rectifying curves in terms of parametrizations based on their f -position
vector fields in E4

1.

2 Preliminaries

Minkowski space-time E4
1 is an 4D pseudo-Euclidean space on which metric has index

ν = 1, i.e., an 4D real vector space R4 endowed with an everywhere non-degenerate
metric g having signature (−,+,+,+) or (+,−,−,−) [1, 22]. It describes a flat space
when no mass is present. A metric g on E4

1 is calledMinkowski inner product or Lorentz
inner product or sometimes pseudo-inner product on E4

1 [1, 22]. In general, Geometers
and Relativists prefer Minkowski inner product having signature (−,+,+,+) while
Particle Physicists tend to choose the same having signature (+,−,−,−). Through-
out this paper, we consider Minkowski space-time according to signature (−,+,+,+).
The Minkowski inner product g having signature (−,+,+,+) is defined by

g(v, w) = −v1w1 + v2w2 + v3w3 + v4w4

for all tangent vectors v = (v1, v2, v3, v4), w = (w1, w2, w3, w4) to E4
1. Since the metric

g is non-degenerate everywhere on E4
1, it follows that a tangent vector v to E4

1 can
have exactly one among the following Lorentzian causal characters ([1]):

1. v is a spacelike vector if and only if g(v, v) > 0 or v = 0.

2. v is a lightlike vector or a null vector if and only if g(v, v) = 0 and v ̸= 0.

3. v is a timelike vector if and only if g(v, v) < 0.

For each point p ∈ E4
1, the set of null vectors in the tangent space TpE4

1 is called the
null-cone at the point p. The norm of a tangent vector v to E4

1 having any one of
three causal characters is denoted and defined by ∥v∥ =

√
|g(v, v)|. It is trivial to

mention that a tangent vector v to E4
1 is called a unit vector if and only if ∥v∥ = 1,

i.e., if and only if g(v, v) = ±1. As usual, two tangent vectors v and w to E4
1 are

called orthogonal if and only if g(v, w) = 0.
A basis for E4

1 is a set consisting of four mutually orthogonal tangent vectors to
E4
1. In particular, an orthonormal basis for E4

1 is a basis consisting of four mutually



116 Zafar Iqbal and Joydeep Sengupta

orthogonal unit tangent vectors to E4
1. It is necessary that an orthonormal basis for

E4
1 must include one timelike together with three spacelike unit tangent vectors. The

standard orthonormal basis for E4
1 is the orthonormal basis {e1, e2, e3, e4} given by

ei = (δi1, δi2, δi3, δi4) for each i ∈ {1, 2, 3, 4}, δij =

{
1 if i = j,

0 if i ̸= j

such that

g (e1, e1) = −1, g (e2, e2) = 1, g (e3, e3) = 1, g (e4, e4) = 1.

For any three tangent vectors u = (u1, u2, u3, u4), v = (v1, v2, v3, v4) and w =
(w1, w2, w3, w4) to E4

1, the vector product of u, v and w is the unique tangent vector
to E4

1, denoted by u ∧ v ∧ w, such that for any tangent vector x to E4
1, the following

equation is satisfied
g (u ∧ v ∧ w, x) = det(u, v, w, x).

Here, det(u, v, w, x) is the determinant of the matrix [u, v, w, x] formed by positioning
the coordinates of u, v, w and x by columns with respect to the standard orthonormal
basis {e1, e2, e3, e4} for E4

1. Then we easily find{
g (e1 ∧ e2 ∧ e3, e4) = 1, g (e2 ∧ e3 ∧ e4, e1) = −1,

g (e3 ∧ e4 ∧ e1, e2) = 1, g (e4 ∧ e1 ∧ e2, e3) = −1.

Thus, one finds the following expression for u ∧ v ∧ w in terms of coordinates of u, v
and w with respect to the basis {e1, e2, e3, e4} ([20, 21]):

u ∧ v ∧ w = −

∣∣∣∣∣∣∣∣
−e1 e2 e3 e4
u1 u2 u3 u4

v1 v2 v3 v4
w1 w2 w3 w4

∣∣∣∣∣∣∣∣ .
Let γ : I −→ E4

1 be an arbitrary curve in E4
1 and γ′ denote its velocity vector field.

Then γ may locally or globally have exactly one of the following causal characters
completely determined by the causal characters of its velocity vectors γ′(t) ([1]):

1. γ is spacelike if and only if all of its velocity vectors γ′(t) are spacelike (i.e.,
g (γ′(t), γ′(t)) > 0 or γ′(t) = 0) for all possible t.

2. γ is null (lightlike) if and only if all of its velocity vectors γ′(t) are null (lightlike)
(i.e., g (γ′(t), γ′(t)) = 0 and γ′(t) ̸= 0) for all possible t.

3. γ is timelike if and only if all of its velocity vectors γ′(t) are timelike (i.e.,
g (γ′(t), γ′(t)) < 0) for all possible t.

Thus, γ is globally spacelike, null or timelike in E4
1 if and only if its velocity vector

field γ′ is respectively everywhere spacelike, null or timelike along γ. If γ is a non-null
(spacelike or timelike) curve in E4

1 and we change an arbitrary parameter t by arc

length function s = s(t) starting at some t0 ∈ I given by s(t) =
∫ t

t0
∥γ′(u)∥ du such

that g (γ′(s), γ′(s)) = ±1 for all possible s, then γ is said to be parametrized by arc
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length s or unit-speed in E4
1. Again, if γ is a null curve in E4

1 with g (γ′′(t), γ′′(t)) ̸= 0
for all t ∈ I and we change an arbitrary parameter t by pseudo-arc length func-
tion s = s(t) starting at some t0 ∈ I given by s(t) =

∫ t

t0

√
∥γ′′(u)∥ du such that

g (γ′′(s), γ′′(s)) = 1 for all possible s, then γ is said to be parametrized by pseudo-arc
length s or unit-speed in E4

1.
Let γ : I −→ E4

1 be a unit-speed null curve (parametrized by pseudo-arc length s)
in E4

1. Then its velocity vector field γ′ is a null vector field and its acceleration vector
field γ′′ is normalized by the pseudo-arc length s, i.e., g (γ′′(s), γ′′(s)) = 1 for all s ∈ I
unless γ is linear. We consider the Frenet apparatus {Tγ , Nγ , Bγ1, Bγ2, κγ1, κγ2, κγ3}
for the curve γ in E4

1 which is defined as follows:

• Tγ = γ′ is the tangent vector field of γ which is a null vector field along γ.

• Nγ is the principal normal vector field of γ which is a spacelike unit vector field
along γ such that Nγ = T ′

γ unless the curve γ is linear.

• Bγ1 is the first binormal vector field of γ which is a null vector field along γ
and is completely determined by g

(
Tγ(s), Bγ1(s)

)
= 1 for all s ∈ I.

• Bγ2 is the second binormal vector field of γ which is the unique spacelike
unit vector field along γ orthogonal to each three dimensional subspace of E4

1

spanned by
{
Tγ(s), Nγ(s), Bγ1(s)

}
such that {Tγ , Nγ , Bγ1, Bγ2} forms the dy-

namic Frenet frame along γ having the same orientation as that of E4
1. That is,

Bγ2 can have the expression Bγ2 = ϵ Tγ ∧Nγ ∧Bγ1, where ϵ can take value +1
or −1 to make the Frenet frame {Tγ , Nγ , Bγ1, Bγ2} positively oriented along γ.

• κγ1, κγ2 and κγ3 denote the first curvature, second curvature and the third
curvature of the curve γ in E4

1, respectively.

Then the Frenet formulae for the curve γ in E4
1 are given by [2, 19]

(2.1)


T ′
γ

N ′
γ

Bγ
′
1

Bγ
′
2

 =


0 κγ1 0 0

κγ2 0 −κγ1 0
0 −κγ2 0 κγ3

−κγ3 0 0 0




Tγ

Nγ

Bγ1
Bγ2

 ,

where

(2.2)



g (Tγ(s), Tγ(s)) = 0, g (Tγ(s), Nγ(s)) = 0,

g
(
Tγ(s), Bγ1(s)

)
= 1, g

(
Tγ(s), Bγ2(s)

)
= 0,

g (Nγ(s), Nγ(s)) = 1, g
(
Nγ(s), Bγ1(s)

)
= 0,

g
(
Nγ(s), Bγ2(s)

)
= 0, g

(
Bγ1(s), Bγ1(s)

)
= 0,

g
(
Bγ1(s), Bγ2(s)

)
= 0, g

(
Bγ2(s), Bγ2(s)

)
= 1

for all s ∈ I. In this case, the first curvature κγ1 can take only two values: κγ1 ≡ 0
if γ is linear or κγ1 ≡ 1 in the remaining cases [2]. Thus, γ has only two significant
curvatures: the second curvature κγ2 and the third curvature κγ3. The second cur-
vature κγ2 has less obvious geometrical significance whereas the third curvature κγ3
performs a role analogous to the third curvature in the Euclidean 4-space E4 [23]. It
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follows that κγ3 ≡ 0 if and only if the curve γ lies wholly in a hypersurface in E4
1.

This is equivalent to saying that κγ3 ̸≡ 0 if and only if the curve γ lies wholly in E4
1.

There exist null helices having everywhere vanishing second curvature in E4
1. If γ has

everywhere vanishing second and third curvatures (i.e., κγ2 ≡ 0 and κγ3 ≡ 0), then
γ is a parametrization of the null cubic in E4

1. Furthermore, if γ has constant second
curvature and nowhere vanishing constant third curvature (i.e., κγ2 is a constant and
κγ3 is a non-zero constant), then γ is a null helix lying on a circular cylinder in E4

1

[2, 19]. Throughout this paper, we consider null curves in E4
1 having first curvature

κγ ≡ 1, (vanishing or non-vanishing) second curvature κγ2 and nowhere vanishing
third curvature κγ3.

We recall that the hypersurface in E4
1 defined by

S31(1) :=
{
v ∈ E4

1 : g(v, v) = 1
}

is called the pseudo-sphere of unit radius with centre at the origin in E4
1, and the

hypersurface in E4
1 defined by

H3
0(1) :=

{
v ∈ E4

1 : g(v, v) = −1
}

is called the pseudo-hyperbolic space of unit radius with centre at the origin in E4
1.

Both the hypersurfaces S31(1) and H3
0(1) are the central hyperquadrics in E4

1 [1]. We
also recall that the rectifying space of γ in E4

1 is the orthogonal complement Nγ
⊥ of

its unit principal normal vector field Nγ in E4 defined by

Nγ
⊥ :=

{
v ∈ E4

1 : g (v,Nγ) = 0
}
.

Consequently, Nγ
⊥ at each point γ(s) on γ is a three dimensional subspace of E4

1

spanned by
{
Tγ(s), Bγ1(s), Bγ2(s)

}
. Since γ is a null curve in E4

1, it follows that

Nγ is a spacelike vector field along γ. Thus Nγ
⊥ at each point γ(s) on γ is a three

dimensional timelike subspace of E4
1.

3 Null f-rectifying curves in E4
1

Let γ : I −→ E4
1 be a unit-speed null curve (parametrized by pseudo-arc length s) with

Frenet apparatus {Tγ , Nγ , Bγ1, Bγ2, κγ1, κγ2, κγ3}. Then γ : I −→ E4
1 is a rectifying

curve in E4
1 if and only if its position vector field always lies in its rectifying space,

i.e., if and only if its position vector field satisfies equation

γ(s) = λ(s)Tγ(s) + µ1(s)Bγ1(s) + µ2(s)Bγ2(s)

for all s ∈ I, where λ, µ1, µ2 : I −→ R are smooth functions in parameter s ([13]).
Now, for some nowhere vanishing integrable function f : I −→ R in parameter s,

the f -position vector field of the curve γ in E4
1 is denoted by γf and is defined by

γf (s) :=

∫
f(s) dγ

for all s ∈ I. Here the integral sign is used in this sense that after differentiating
previous equation, one finds

γ′
f (s) = f(s)Tγ(s)
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for all s ∈ I, and so γf is an integral curve of fTγ . Using this notion of f -position
vector field of a curve in E4

1, we define an f -rectifying curve which is null in E4
1 as

follows:

Definition 3.1. Let γ : I −→ E4
1 be a unit-speed null curve (parametrized by pseudo-

arc length s) with Frenet apparatus
{
Tγ , Nγ , Bγ1, Bγ2, κγ1(≡ 1), κγ2, κγ3(̸≡ 0)

}
and

let f : I −→ R be a nowhere vanishing integrable function in parameter s. The
curve γ is called an f -rectifying curve in E4

1 if its f -position vector field γf =
∫
f dγ

always lies in its timelike rectifying space Nγ
⊥ in E4

1, i.e., if its f -position vector field
γf =

∫
f dγ satisfies equation

(3.1) γf (s) = λ(s)Tγ(s) + µ1(s)Bγ1(s) + µ2(s)Bγ2(s)

for all s ∈ I, where λ, µ1, µ2 : I −→ R are three smooth functions in parameter s.

Remark 3.2. In particular, if f is a non-zero constant function on I, then, up to
isometries of E4

1, a null f -rectifying curve γ : I −→ E4
1 is congruent to a null rectifying

curve in E4
1 and the study coincides with the same incorporated in [13].

4 Some characterizations of null f-rectifying curves
in E4

1

In many papers, several interesting results were found primarily attempting towards
characterizations of rectifying curves. For example, in three dimensional Euclidean
space [3, 4, 6] or Minkowski space [11, 12], some characterizations of rectifying curves
are found in terms of components of their position vector fields and ratios of their cur-
vatures and torsions. In higher dimensional Euclidean spaces [7, 8] or in Minkowski
space-time [13, 14], characterizations of rectifying curves are mostly based on com-
ponents of their position vector fields and their curvatures. In this section, we char-
acterize unit-speed null f -rectifying curves in E4

1 in terms of their curvatures and
components of their f -position vector fields.

First, in the following theorem, we establish a necessary as well as sufficient con-
dition for a unit-speed null curve to be an f -rectifying curve in E4

1.

Theorem 4.1. Let γ : I −→ E4
1 be a unit-speed null curve (parametrized by pseudo-

arc length s) having first curvature κγ1 ≡ 1, second curvature κγ2 and nowhere van-
ishing third curvature κγ3. Also, let f : I −→ R be a nowhere vanishing integrable
function in parameter s. Then, up to isometries of E4

1, γ is congruent to an f -
rectifying curve in E4

1 if and only if for each s ∈ I, the following equation is satisfied:

(4.1) c1 κγ
′
2(s) +

(
c1

∫
κγ3(s) ds− c2

)
κγ3(s) = f(s),

where c1 is a constant and c2 is a non-zero constant.

Proof. Let us first assume that γ : I −→ E4
1 be a unit speed null f -rectifying curve

having first curvature κγ1 ≡ 1, second curvature κγ2 and nowhere vanishing third
curvature κγ3, where f : I −→ R is a nowhere vanishing integrable function in
parameter s. Then its f -position vector field γf satisfies equation (3.1) for some
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smooth functions λ, µ1, µ2 : I −→ R in parameter s. Differentiating (3.1) and then
applying (2.1), we obtain

f(s)Tγ(s) =
(
λ′(s)− µ2(s)κγ3(s)

)
Tγ(s) +

(
λ(s)− µ1(s)κγ2(s)

)
Nγ(s)(4.2)

+ µ′
1(s)Bγ1(s) +

(
µ′
2(s) + µ1(s)κγ3(s)

)
Bγ2(s)

for all s ∈ I. Equating the coefficients of like-terms from both sides of (4.2), we get

(4.3)


λ′(s)− µ2(s)κγ3(s) = f(s),

λ(s)− µ1(s)κγ2(s) = 0,

µ′
1(s) = 0,

µ′
2(s) + µ1(s)κγ3(s) = 0

for all s ∈ I. From the last three equations of (4.3), we find

(4.4)


λ(s) = c1 κγ2(s),

µ1(s) = c1,

µ2(s) = −c1

∫
κγ3(s) ds+ c2

for all s ∈ I, where c1 is a constant and c2 is a non-zero constant. Substituting the
first and third of relations (4.4) in the first one of equations (4.3), we obtain our
desired equation (4.1).

Conversely, we assume that γ : I −→ E4
1 is a unit-speed null curve having first

curvature κγ1 ≡ 1, second curvature κγ2 and nowhere vanishing third curvature κγ3,
and f : I −→ R is a nowhere vanishing integrable function in parameter s such that
for each s ∈ I, equation (4.1) is satisfied. We define a vector field V along γ by

V (s) = γf (s)− c1 κγ2(s)Tγ(s)− c1 Bγ1(s)−
(
−c1

∫
κγ3(s) ds+ c2

)
Bγ2(s)

for all s ∈ I. Differentiating the previous equation and then applying (2.1) and (4.1),
we find that V ′(s) = 0 for all s ∈ I. Consequently, V is a constant vector field along
γ. Hence, up to isometries of E4

1, γ is congruent to an f -rectifying curve in E4
1. �

Remark 4.1. Since g
(
Tγ(s), Bγ1(s)

)
= 1 for all s ∈ I, by using (3.1) and (4.4), the

tangential component g(γf , Tγ) of the f -position vector field γf is obtained by

g (γf (s), Tγ(s)) = µ1(s) = c1

for all s ∈ I, where c1 is a constant. Consequently, the following two cases come up
for consideration:
Case I. If c1 = 0, then the tangential component g(γf , Tγ) of γf vanishes everywhere.
Case II. If c1 ̸= 0, then the tangential component g(γf , Tγ) of γf vanishes nowhere.

Accordingly, in the following theorem, we exhibit some characterizations of unit
speed null f -rectifying curves in E4

1 having everywhere vanishing tangential compo-
nent.
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Theorem 4.2. Let γ : I −→ E4
1 be a unit-speed null curve (parametrized by pseudo-

arc length s) having first curvature κγ1 ≡ 1, second curvature κγ2 and nowhere van-
ishing third curvature κγ3. Also, let f : I −→ R be a nowhere vanishing integrable
function in parameter s. If γ is an f -rectifying curve in E4

1 having everywhere van-
ishing tangential component (i.e. g(γf , Tγ) ≡ 0), then the following statements are
true:

1. γ has everywhere spacelike f -position vector field γf and the norm function
ρ = ∥γf∥ is a positive constant.

2. The third curvature κγ3 of γ is a non-zero constant multiple of the function f .

3. The first binormal component g(γf , Bγ1) of γf vanishes everywhere and the
second binormal component g(γf , Bγ2) of γf is a non-zero constant given by

(4.5) g
(
γf (s), Bγ2(s)

)
= − f(s)

κγ3(s)

for all s ∈ I.

Conversely, if γ : I −→ E4
1 is a unit-speed null curve having first curvature

κγ1 ≡ 1, second curvature κγ2 and nowhere vanishing third curvature κγ3, and if
f : I −→ R is a nowhere vanishing integrable function in parameter s and any one
of the statements (1), (2) or (3) is true, then γ is an f -rectifying curve in E4

1 having
everywhere vanishing tangential component.

Proof. We first assume that γ : I −→ E4
1 is a unit-speed null f -rectifying curve having

first curvature κγ1 ≡ 1, second curvature κγ2, nowhere vanishing third curvature κγ3
and having everywhere vanishing tangential component ( i.e. g(γf , Tγ) ≡ 0), where
f : I −→ R is a nowhere vanishing integrable function in parameter s. Then its
f -position vector field γf satisfies equation (3.1) for some smooth functions λ, µ1, µ2 :
I −→ R. Also, from the proof of Theorem 4.1, we have sets of expressions (4.3) and
(4.4). Since g(γf , Tγ) ≡ 0, it follows that c1 = 0 and therefore relations (4.4) reduce
to

(4.6) λ(s) = 0, µ1(s) = 0 and µ2(s) = c2

for all s ∈ I, where c2 ̸= 0 is a constant. Then equation (3.1) becomes

γf (s) = c2Bγ2(s)

for all s ∈ I. We obtain the following:
1. Using the last equation, we find

g (γf (s), γf (s)) = c22 > 0

for all s ∈ I. This implies that γf is everywhere spacelike and the norm function
ρ = ∥γf∥ is a positive constant.

2. Substituting (4.6) in the first equation of (4.3), we obtain

(4.7) κγ3(s) = − 1

c2
f(s)
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for all s ∈ I, where c2 ̸= 0 is a constant. This proves that κγ3 is a non-zero constant
multiple of f .

3. Using (2.2), (3.1) and (4.6), the first binormal component g(γf , Bγ1) of γf is
given by

g
(
γf (s), Bγ1(s)

)
= λ(s) = 0

for all s ∈ I, and the second binormal component g(γf , Bγ2) of γf is given by

g
(
γf (s), Bγ2(s)

)
= µ2(s) = c2

for all s ∈ I. Substituting (4.7) in the previous equation, we obtain (4.5).
Conversely, we assume that γ : I −→ E4

1 is a unit-speed null curve having first
curvature κγ1 ≡ 1, second curvature κγ2 and nowhere vanishing third curvature
κγ3, f : I −→ R is a nowhere vanishing integrable function in parameter s and the
statement (1) is true. Then there exists a constant c > 0 such that

g (γf (s), γf (s)) = c

for all s ∈ I. Differentiating and using the nowhere vanishing nature of f , we obtain

g (γf (s), Tγ(s)) = 0

for all s ∈ I. Differentiating again and applying the Frenet formulae (2.1), we find

g (γf (s), Nγ(s)) = 0

for all s ∈ I. This implies that γf lies in the rectifying space Nγ
⊥ of γ in E4

1. Hence
γ is an f -rectifying curve in E4

1 having everywhere vanishing tangential component.
Next, we assume that the statement (2) is true. Then there exists a non-zero

constant b such that κγ3 can be expressed as

κγ3(s) = bf(s)

for all s ∈ I. Now, applying Frenet formulae (2.1) in the previous equation, after
some computations, one finds

d

ds

(
γf (s) +

1

b
Bγ2(s)

)
= 0

for all s ∈ I. Then, up to isometries of E4
1, γf has the expression

γf (s) = −1

b
Bγ2(s)

for all s ∈ I. Therefore, using last equation and (2.2), we obtain for all s ∈ I,

g (γf (s), Tγ(s)) = 0, g (γf (s), Nγ(s)) = 0.

Consequently, up to isometries of E4
1, γ is congruent to an f -rectifying curve in E4

1

having everywhere vanishing tangential component.
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Finally, we assume that the statement (3) is true. Then we have

g
(
γf (s), Bγ1(s)

)
= 0,(4.8)

g
(
γf (s), Bγ2(s)

)
= − f(s)

κγ3(s)
(4.9)

for all s ∈ I. Differentiating (4.8) and using (2.1), (2.2), (4.9), we obtain for all s ∈ I,

g (γf (s), Nγ(s)) = 0.

This implies that γf lies in the rectifying space Nγ
⊥ of γ in E4

1. Again, differentiating
(4.9) and applying Frenet formulae (2.1), we get

g (γf (s), Tγ(s)) = 0

for all s ∈ I. Hence γ is an f -rectifying curve in E4
1 having everywhere vanishing

tangential component. �

In the next theorem, we explore some characterizations of unit speed null f -
rectifying curves in E4

1 having nowhere vanishing tangential component.

Theorem 4.3. Let γ : I −→ E4
1 be a unit-speed null curve (parametrized by pseudo-

arc length s) having first curvature κγ1 ≡ 1, second curvature κγ2 and nowhere van-
ishing third curvature κγ3. Also, let f : I −→ R be a nowhere vanishing integrable
function in parameter s having a primitive function F . If γ is an f -rectifying curve
in E4

1 having nowhere vanishing tangential component (i.e. g(γf , Tγ) ̸≡ 0), then the
following statements are true:

1. The norm function ρ = ∥γf∥ is given by

(4.10) ρ(s) =
√

|2 c1F (s)|

for all s ∈ I, where c1 ̸= 0 is a constant.

2. The first binormal component g(γf , Bγ1) and the second binormal component
g(γf , Bγ2) of γf are respectively given by

(4.11)


g
(
γf (s), Bγ1(s)

)
= c1κγ2(s),

g
(
γf (s), Bγ2(s)

)
=

c1κγ
′
2(s)− f(s)

κγ3(s)

for all s ∈ I, where c1 ̸= 0 is a constant.

3. The third curvature κγ3 of γ is given by

(4.12) κγ3(s) =
ϵ c1κγ

′
2(s)− ϵ f(s)√

2 c1
(
F (s)− c1κγ2(s)

)
for all s ∈ I, where c1 ̸= 0 is a constant and ϵ can take value +1 or −1 depending
strictly on sign of the second binormal component g(γf , Bγ2) of γf .
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Conversely, if γ : I −→ E4
1 is a unit-speed null curve having first curvature κγ1 ≡

1, second curvature κγ2 and nowhere vanishing third curvature κγ3, and if f : I −→ R
is a nowhere vanishing integrable function in parameter s having a primitive function
F and any one of the statements (1), (2) or (3) is true, then γ is an f -rectifying
curve in E4

1 having nowhere vanishing tangential component.

Proof. First, we assume that for some nowhere vanishing integrable function f :
I −→ R having a primitive function F , γ : I −→ E4

1 is a unit-speed null f -rectifying
curve (parametrized by pseudo-arc length s) having first curvature κγ1 ≡ 1, second
curvature κγ2, nowhere vanishing third curvature κγ3 and having nowhere vanishing
tangential component (i.e. g(γf , Tγ) ̸≡ 0). Then its f -position vector field γf satisfies
equation (3.1) for some smooth functions λ, µ1, µ2 : I −→ R in parameter s. Also,
from the proof of Theorem 4.1, we have (4.3) and (4.4). Since g(γf , Tγ) ̸= 0, it follows
that c1 ̸= 0. Now, from (4.3) and (4.4), we can write

λ′(s)µ1(s) + λ(s)µ′
1(s) + µ2(s)µ

′
2(s) = c1f(s)

for all s ∈ I. Integrating the last equation with respect to s, we find

(4.13) 2λ(s)µ1(s) + µ2
2(s) = 2 c1

∫
f(s) ds = 2 c1F (s)

for all s ∈ I. Again, substituting first two relations of (4.4) in the first equation of
(4.3), we easily compute

(4.14) µ2(s) =
c1κγ

′
2(s)− f(s)

κγ3(s)

for all s ∈ I. We obtain the following:
1. Using (2.2), (3.1) and (4.13), the norm function ρ = ∥γf∥ is given by

ρ2(s) = ∥γf (s)∥2 = |g (γf (s), γf (s))| =
∣∣2λ(s)µ1(s) + µ2

2(s)
∣∣ = |2 c1F (s)|

for all s ∈ I, that is,
ρ(s) =

√
|2 c1F (s)|

for all s ∈ I, where c1 ̸= 0 is a constant.
2. Using (2.2), (3.1) and (4.4), the first binormal component g(γf , Bγ1) of γf is

given by
g
(
γf (s), Bγ1(s)

)
= λ(s) = c1κγ2(s)

for all s ∈ I. Again, using (2.2), (3.1) and (4.14), the second binormal component
g(γf , Bγ2) of γf is given by

g
(
γf (s), Bγ2(s)

)
= µ2(s) =

c1κγ
′
2(s)− f(s)

κγ3(s)

for all s ∈ I.
3. Applying the first two relations of (4.4) in (4.13), we obtain

µ2
2(s) = 2 c1

(
F (s)− c1κγ2(s)

)
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for all s ∈ I. Since µ2
2(s) ≥ 0 for all s ∈ I, it follows that

(4.15) µ2(s) = ϵ
√
2 c1

(
F (s)− c1κγ2(s)

)
for all s ∈ I, where ϵ can take value +1 or −1 depending strictly on sign of the second
binormal component g(γf , Bγ2) of γf . Comparing the previous equation with the last
one of (4.4), we have

−c1

∫
κγ3(s) ds+ c2 = ϵ

√
2 c1

(
F (s)− c1κγ2(s)

)
for all s ∈ I. Differentiating the last equation, we find (4.12).

Conversely, we assume that γ : I −→ E4
1 is a unit-speed null curve having first

curvature κγ1 ≡ 1, second curvature κγ2 and nowhere vanishing third curvature κγ3
such that for some nowhere vanishing integrable function f : I −→ R in parameter s
having a primitive function F , the statement (1) is true. Then we must have

g (γf (s), γf (s)) = 2 c1F (s)

for all s ∈ I, where c1 ̸= 0 is a constant. Differentiating and using the nowhere
vanishing nature of f , we obtain

g (γf (s), Tγ(s)) = c1

for all s ∈ I. Again, differentiating and applying Frenet formulae (2.1), we obtain for
all s ∈ I,

g (γf (s), Nγ(s)) = 0.

This implies that γf lies in the rectifying space Nγ
⊥ of γ in E4

1. Hence γ is an
f -rectifying curve in E4

1 having nowhere vanishing tangential component.
Next, we assume that the statement (2) is true. Then differentiating the first one

of (4.11) and applying (2.1), (2.2) and the second one of (4.11), after simplification,
we find for all s ∈ I,

g (γf (s), Nγ(s)) = 0.

This implies that γf lies in the rectifying space Nγ
⊥ of γ in E4

1. Furthermore, the
tangential component g (γf , Tγ) of γf is given by

g (γf (s), Tγ(s)) = c1 ̸= 0

for all s ∈ I. Hence γ is an f -rectifying curve in E4
1 having nowhere vanishing

tangential component.
Finally, we assume that the statement (3) is true so that the third curvature κγ3

of γ is given by (4.12). Then the second binormal component g(γf , Bγ2) ≡ µ2 of γf
satisfies (4.15). Now, we define a vector field W along γ by

W (s) = γf (s)− c1 κγ2(s)Tγ(s)− c1 Bγ1(s)−
(
ϵ
√
2 c1

(
F (s)− c1κγ2(s)

))
Bγ2(s)

for all s ∈ I, where c1 ̸= 0 is a constant. Differentiating the previous equation and
then applying (2.1) and (4.12), we find that W ′(s) = 0 for all s ∈ I. This implies that
W is a constant vector field along γ. Hence, up to isometries of E4

1, γ is congruent
to an f -rectifying curve in E4

1 having nowhere vanishing tangential component. This
completes the proof. �
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5 Classification of null f-rectifying curves in E4
1

In this section, we attempt for some classification of null f -rectifying curves in E4
1

based on the parametrizations of their f -position vector fields.
First, in the following theorem which is an immediate consequence of Theorem 4.2,

we give a classification of null f -rectifying curves in E4
1 having everywhere vanishing

tangential component.

Theorem 5.1. Let γ : I −→ E4
1 be a unit-speed null curve (parametrized by pseudo-

arc length s) having first curvature κγ1 ≡ 1, second curvature κγ2 and nowhere van-
ishing third curvature κγ3. Also, let f : I −→ R be a nowhere vanishing integrable
function in parameter s. Then γ is an f -rectifying curve in E4

1 having everywhere
vanishing tangential component if and only if, up to a parametrization, its f -position
vector field γf is given by

(5.1) γf (t) = c α(t)

for all t ∈ J , where c > 0 is a constant and α : J −→ S31(1) is a unit-speed null curve
having t : I −→ J as pseudo-arc length function.

Finally, the following theorem is concerned with a classification of null f -rectifying
curves in E4

1 having nowhere vanishing tangential component.

Theorem 5.2. Let γ : I −→ E4
1 be a unit-speed null curve (parametrized by pseudo-

arc length s) having first curvature κγ1 ≡ 1, second curvature κγ2 and nowhere van-
ishing third curvature κγ3. Also, let f : I −→ R be a nowhere vanishing integrable
function in parameter s having a primitive function F . Then γ is an f -rectifying
curve in E4

1 having spacelike (or timelike) f -position vector field and nowhere vanish-
ing tangential component if and only if, up to a parametrization, its f -position vector
field γf is given by

(5.2) γf (t) =
√
2 c1F (s0) exp(t)α(t)

for all t ∈ J , where c1 ̸= 0 is a constant and s0 ∈ I such that c1F (s0) > 0 and
α : J −→ S31(1) is a unit-speed timelike curve (or α : J −→ H3

0(1) is a unit-speed
spacelike curve) having t : I −→ J as arc length function starting at s0.

Proof. We first assume that γ : I −→ E4
1 is a unit-speed null f -rectifying curve having

spacelike f -position vector field and nowhere vanishing tangential component, where
f : I −→ R is a nowhere vanishing integrable function in parameter s with a primitive
function F . Then we have

g (Tγ(s), Tγ(s)) = 0, g (γf (s), γf (s)) > 0, g (γf (s), Tγ(s)) ̸= 0

for all s ∈ I. Therefore, by applying Theorem 4.3, we obtain

ρ2(s) = g (γf (s), γf (s)) = 2 c1F (s) > 0

for all s ∈ I, where c1 ̸= 0 is a constant. Now, we define a curve α = α(s) by

α(s) :=
1

ρ(s)
γf (s)
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for all s ∈ I. Then we have

(5.3) γf (s) =
√

2 c1F (s)α(s)

for all s ∈ I. Also, we have

g (α(s), α(s)) =
g (γf (s), γf (s))

ρ2(s)
= 1

for all s ∈ I. This implies that α is a curve in S31(1). Differentiating the previous
equation, we obtain

g (α(s), α′(s)) = 0

for all s ∈ I. Again, differentiating (5.3) and applying last two equations, we easily
find for all s ∈ I,

g (α′(s), α′(s)) = − f2(s)

4F 2(s)

This indicates that α is a timelike curve. Using the previous equation, we compute

∥α′(s)∥ =
√
|g (α′(s), α′(s))| = f(s)

2F (s)

for all s ∈ I. For some s0 ∈ I, let t : I −→ J be arc length function of α starting at
s0 in S31(1) given by

t =

∫ s

s0

∥α′(u)∥ du.

Then we easily find

t =
1

2
lnF (s)− 1

2
lnF (s0)

Thus, α : J −→ S31(1) is a unit-speed timelike curve having arc length function t and
it is obvious that c1F (s0) > 0. Putting the last equation in (5.3), we obtain (5.2).

Conversely, we assume that γ : I −→ E4
1 be a unit-speed null curve and f :

I −→ R is a nowhere vanishing integrable function in parameter s such that the f -
position vector field γf of γ is given by equation (5.2), where c1 ̸= 0 is a constant and
s0 ∈ I with c1F (s0) > 0 and α : J −→ S31(1) is a unit-speed timelike curve having
t : I −→ J as arc length function starting at s0. Then we have g(α′(t), α′(t)) = −1,
g(α(t), α(t)) = 1 and consequently g(α(t), α′(t)) = 0 for all t ∈ J . Therefore, using
(5.2), we find

(5.4) g (γf (t), γf (t)) = 2 c1F (s0) exp(2t)

for all t ∈ J . Then we observe that g (γf (t), γf (t)) > 0 for all s ∈ I. This implies that
γf is spacelike. Now, γ may be reparametrized by

t =
1

2
(lnF (s)− lnF (0)) .

Then s becomes pseudo-arc length function of γ. Therefore, (5.4) reduces to

g (γf (s), γf (s)) = 2 c1F (s)
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for all s ∈ I, and hence the norm function ρ = ∥γf∥ is given by

ρ(s) =
√
|g (γf (s), γf (s))| =

√
|2 c1F (s)|

for all s ∈ I, where c1 ̸= 0 is a constant. Therefore, by applying Theorem 4.3, we
conclude that γ is an f -rectifying curve in E4

1 having nowhere vanishing tangential
component.

The proof is analogous when γ is considered as a unit-speed null f -rectifying curve
in E3

1 having a timelike f -position vector field γf and nowhere vanishing tangential
component. �

6 Conclusions

In this paper, we presented some differential geometric aspects of null f -rectifying
curves in Minkowski space-time. First, we introduced the notion of f -rectifying curves
which are null in E4

1. Thereafter, we exhibited some characterizations of such curves
in Theorem 4.1, Theorem 4.2 and Theorem 4.3. Finally, we attempted for some
classifications in Theorem 5.1 and Theorem 5.2. Analogous characterizations and
classifications may be obtained for f -rectifying curves which are non-null (spacelike
or timelike) in Minkowski space-time.
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