Twisted products Berwald metrics of polar type

G. Nibaruta, M. Karimumuryango, A. Nibirantiza and D. Ndayirukiye

Abstract

Let (\bar{M}, \bar{F}) be an (n-1)-dimensional compact Finslerian manifold with $n>1$. Let consider a Finslerian metric on $M \equiv(0, \infty) \times \bar{M}$ of the form $F(x, y)=\sqrt{\left(y^{1}\right)^{2}+f\left(x^{1}, x^{2}, \ldots, x^{n}\right) \bar{F}^{2}\left(x^{2}, \ldots, x^{n}, y^{2}, \ldots, y^{n}\right)}$ where f is a positive function on M and $\left(x^{1}, \ldots, x^{n}, y^{1}, \ldots, y^{n}\right)$ is a local coordinate of a point (x, y) in the tangent bundle of M. In this paper, we express the geometry of (M, F) in term of f and the geometry of (\bar{M}, \bar{F}). Curvatures are calculated in the Berwald case. An example of a twisted product Berwald metric is given for $n=3$.

M.S.C. 2010: 53C60, 70G45, 16S35.

Key words: Finslerian metric; Berwald manifold; polar metric.

1 Introduction

Twisted product metrics are natural extensions of warped product metrics [1]. These both kinds of metrics play a major role in Differential Geometry as well as in General Relativity. For examples, the warped product metrics are used to construct Riemannian metrics with negative curvature [3] and the twisted product metrics are applied in theory of projective mappings. In general relativity, many basic solutions of the Einstein equation are warped products metrics[6]. In Finslerian realm the twisted product of manifolds was studied for the first time by Kozma, Peter and Shimada [5]. Later, in 2013, Peyghan, Tayebi and Nourmohammadi Far [7] studied locally dually flat twisted product Finsler manifold.

Let $(\widetilde{M}, \widetilde{F})$ and (\bar{M}, \bar{F}) be two Finslerian manifolds. Consider $f_{i}: \widetilde{M} \times \bar{M} \longrightarrow$ $(0, \infty)$ with $i=1,2$ two C^{∞} maps. Then, on the product manifold $\widetilde{M} \times \bar{M}$, one can define the Finslerian metric

$$
\begin{equation*}
F\left(x_{1}, x_{2}, y_{1}, y_{2}\right)=\sqrt{f_{1}\left(x_{1}, x_{2}\right) \widetilde{F}^{2}\left(x_{1}, y_{1}\right)+f_{2}\left(x_{1}, x_{2}\right) \bar{F}^{2}\left(x_{2}, y_{2}\right)} \tag{1.1}
\end{equation*}
$$

for any $\left(x_{1}, x_{2}\right) \in \widetilde{M} \times \bar{M}$ and $\left(y_{1}, y_{2}\right) \in \stackrel{\circ}{T} \widetilde{M} \times \stackrel{\circ}{T} \bar{M}$ where $\stackrel{\circ}{T} \widetilde{M} \equiv T \widetilde{M} \backslash\{0\}$. The couple ($f_{1} \widetilde{M} \times f_{2} \bar{M}, F$) is called a doubly twisted product Finslerian manifold. If $f_{1}\left(x_{1}, x_{2}\right)=1$ then the doubly twisted product manifold ${ }_{f_{1}} \widetilde{M} \times f_{2} \bar{M}$ is called a twisted product manifold [7] and is denoted by $\widetilde{M} \times{ }_{f_{2}} \bar{M}$.

[^0]In this paper we study the geometry of the twisted product Finslerian manifold $\left(\widetilde{M} \times_{f} \bar{M}, F\right)$ when F is a Berwald metric and $\widetilde{M} \equiv(0, \infty)$. In particular, if the twisted function $f\left(x_{1}, x_{2}\right)=f\left(x_{1}\right)$ then $\left(\widetilde{M} \times_{f} \bar{M}, F\right)$ becomes a warped product Berwald manifold of polar type.

This work is organised as follows. In Section 2, we give some basic notions on Finslerian manifolds. The Section 3 is devoted to study the Berwald curvatures. The Berwald Ricci and scalar curvatures are evaluated in natural coordinates. Finally, as an example, we show that the application $F: T((0, \infty) \times U) \longrightarrow \mathbb{R}$ defined by

$$
\begin{equation*}
F\left(x^{1}, x^{2}, x^{3} ; y^{1}, y^{2}, y^{3}\right)=\sqrt{\left(y^{1}\right)^{2}+f e^{\rho\left(x^{2}, x^{3}\right)}\left(y^{2}\right)^{2 p}\left(y^{3}\right)^{2 q}} \tag{1.2}
\end{equation*}
$$

where ρ is a C^{∞} function on $U \subset \mathbb{R}^{2}$, and p and q are some real numbers, is a twisted product Berwald metric of polar type on $(0, \infty) \times U$.

2 Some basic notions on Finslerian manifolds

Let M be an n-dimensional manifold. We denote by $T_{x} M$ the tangent space at $x \in M$ and by $T M:=\bigcup_{x \in M} T_{x} M$ the tangent bundle of M. Set $\stackrel{\circ}{T} M=T M \backslash\{0\}$ and $\pi: T M \longrightarrow M: \pi(x, y) \longmapsto x$ the natural projection. Let $\left(x^{1}, \ldots, x^{n}\right)$ be a local coordinate on an open subset U of M and ($x^{1}, \ldots, x^{n}, y^{1}, \ldots, y^{n}$) be the local coordinate on $\pi^{-1}(U) \subset T M$. The local coordinate system $\left(x^{i}\right)_{i=1, \ldots, n}$ produces the coordinate bases $\left\{\frac{\partial}{\partial x^{i}}\right\}_{i=1, \ldots, n}$ and $\left\{d x^{i}\right\}_{i=1, \ldots, n}$ respectively, for $T M$ and cotangent bundle $T^{*} M$. We use Einstein summation convention: repeated upper and lower indices will automatically be summed unless otherwise will be noted.

Definition 2.1. Let M be an n-dimensional manifold. A function $F: T M \longrightarrow$ $[0, \infty)$ is called a Finslerian metric on M if :
(i) F is C^{∞} on the entire slit tangent bundle $\stackrel{\circ}{T} M$,
(ii) F is positively 1-homogeneous on the fibers of $T M$, that is $\forall c>0, F(x, c y)=c F(x, y)$,
(iii) the Hessian matrix $\left(g_{i j}(x, y)\right)_{1 \leq i, j \leq n}$ with elements

$$
\begin{equation*}
g_{i j}(x, y):=\frac{1}{2} \frac{\partial^{2} F^{2}(x, y)}{\partial y^{i} \partial y^{j}} \tag{2.1}
\end{equation*}
$$

is positive definite at every point (x, y) of $\stackrel{\circ}{T} M$.
Consider the differential map π_{*} of the submersion $\pi: \stackrel{\circ}{T} M \longrightarrow M$. The vertical subspace of $T \stackrel{\circ}{T} M$ is defined by $\mathcal{V}:=\operatorname{ker}\left(\pi_{*}\right)$ and is locally spanned by the set $\left\{F \frac{\partial}{\partial y^{i}}, 1 \leq i \leq n\right\}$, on each $\pi^{-1}(U) \subset \stackrel{\circ}{T} M$.

An horizontal subspace \mathcal{H} of $T \overparen{T} M$ is by definition any complementary to \mathcal{V}. The bundles \mathcal{H} and \mathcal{V} give a smooth splitting

$$
\begin{equation*}
T \stackrel{\circ}{T} M=\mathcal{H} \oplus \mathcal{V} \tag{2.2}
\end{equation*}
$$

An Ehresmann connection is a selection of a horizontal subspace \mathcal{H} of $T \check{T}^{\circ} M$. It is known [4] that \mathcal{H} can be canonically defined from the geodesics equation.

Definition 2.2. Let $\pi: \stackrel{\circ}{T} M \longrightarrow M$ be the restricted projection.
(1) An Ehresmann-Finsler connection of π is the subbundle \mathcal{H} of $T \stackrel{\circ}{T} M$ given by

$$
\begin{equation*}
\mathcal{H}:=k e r \theta \tag{2.3}
\end{equation*}
$$

where $\theta: T \stackrel{\circ}{T} M \longrightarrow \pi^{*} T M$ is the bundle morphism defined by

$$
\begin{equation*}
\left.\theta\right|_{(x, y)}=\frac{\partial}{\partial x^{i}} \otimes \frac{1}{F}\left(d y^{i}+N_{j}^{i} d x^{j}\right) \tag{2.4}
\end{equation*}
$$

with $N_{j}^{i}(x, y):=\frac{\partial G^{i}(x, y)}{\partial y^{j}}$ for
$(2.5) G^{i}(x, y):=\frac{1}{4} g^{i l}(x, y)\left[\frac{\partial g_{j l}}{\partial x^{k}}(x, y)+\frac{\partial g_{k l}}{\partial x^{j}}(x, y)-\frac{\partial g_{j k}}{\partial x^{l}}(x, y)\right] y^{j} y^{k}$.
(2) The form $\theta: T \stackrel{\circ}{T} M \longrightarrow \pi^{*} T M$ induces a linear map

$$
\begin{equation*}
\left.\theta\right|_{(x, y)}: T_{(x, y)} \stackrel{\circ}{T} M \longrightarrow T_{x} M \tag{2.6}
\end{equation*}
$$

for each point $(x, y) \in \stackrel{\circ}{T} M$; where $x=\pi(x, y)$.
The vertical lift of a section ξ of $\pi^{*} T M$ is a unique section $\mathbf{v}(\xi)$ of $T \overparen{T} M$ such that for every $(x, y) \in \stackrel{\circ}{T} M$,

$$
\begin{equation*}
\left.\pi_{*}(\mathbf{v}(\xi))\right|_{(x, y)}=0_{(x, y)} \text { and }\left.\theta(\mathbf{v}(\xi))\right|_{(x, y)}=\xi_{(x, y)} \tag{2.7}
\end{equation*}
$$

(3) The differential projection $\pi_{*}: T \stackrel{\circ}{T} M \longrightarrow \pi^{*} T M$ induces a linear map

$$
\begin{equation*}
\left.\pi_{*}\right|_{(x, y)}: T_{(x, y)} \stackrel{\circ}{T} M \longrightarrow T_{x} M \tag{2.8}
\end{equation*}
$$

for each point $(x, y) \in \stackrel{\circ}{T} M$; where $x=\pi(x, y)$.
The horizontal lift of a section ξ of $\pi^{*} T M$ is a unique section $\mathbf{h}(\xi)$ of $T \stackrel{\circ}{T} M$ such that for every $(x, y) \in \check{T} M$,

$$
\begin{equation*}
\left.\pi_{*}(\mathbf{h}(\xi))\right|_{(x, y)}=\xi_{(x, y)} \text { and }\left.\theta(\mathbf{h}(\xi))\right|_{(x, y)}=0_{(x, y)} \tag{2.9}
\end{equation*}
$$

We have the following.
Definition 2.3. A Finslerian tensor field T of type $\left(q, 0 ; p_{1}, p_{2}\right)$ on $\stackrel{\circ}{T} M$ is a C^{∞} section of the tensor bundle

$$
\begin{equation*}
\underbrace{\pi^{*} T^{*} M \otimes \ldots \otimes \pi^{*} T^{*} M}_{p_{1}-\text { times }} \otimes \underbrace{T^{*} \stackrel{\circ}{T} M \otimes \ldots \otimes T^{*} \stackrel{\circ}{T} M}_{p_{2} \text {-times }} \otimes \bigotimes^{q} \pi^{*} T M \tag{2.10}
\end{equation*}
$$

Remark 2.4. In a local chart,

$$
T=T_{i_{1} \ldots i_{p_{1}} j_{1} \ldots j_{p_{2}}}^{k_{1} \ldots k_{1}} \partial_{k_{1}} \otimes \ldots \otimes \partial_{k_{q}} \otimes d x^{i_{1}} \otimes \ldots \otimes d x^{i_{p_{1}}} \otimes \varepsilon^{j_{1}} \otimes \ldots \otimes \varepsilon^{j_{p_{2}}}
$$

where $\left(\partial_{k_{1}} \otimes \ldots \otimes \partial_{k_{q}} \otimes d x^{i_{1}} \otimes \ldots \otimes d x^{i_{p_{1}}} \otimes \varepsilon^{j_{1}} \otimes \ldots \otimes \varepsilon^{j_{p_{2}}}\right)_{k \in\{1, \ldots, n\}^{q}, i \in\{1, \ldots, n\}^{p_{1}}, j \in\{1, \ldots, n\}^{p_{2}}}$ is a basis section of this tensor and, the $\partial_{k_{r}}:=\frac{\partial}{\partial x^{k_{r}}}$ as well as $\varepsilon^{j_{s}}$ are respectively the basis sections for $\pi^{*} T M$ and $T^{*} \stackrel{\circ}{T} M$ dual of $T \stackrel{\circ}{T} M$.

Example 2.5. (1) The Hessian matrix g, defined in (2.1), is of type (0,$0 ; 2,0$).
(2) The Ehresmann-Finsler form θ is of type $(1,0 ; 0,1)$.

The following lemma defines the Chern connection on $\pi^{*} T M$.
Lemma 2.1. [8] Let (M, F) be a Finslerian manifold and g its fundamental tensor. There exists a unique linear connection ∇ on the vector bundle $\pi^{*} T M$ such that, for all $X, Y \in \chi(\stackrel{\circ}{T} M)$ and for every $\xi, \eta \in \Gamma\left(\pi^{*} T M\right)$, one has the following properties:
(i) $\nabla_{X} \pi_{*} Y-\nabla_{Y} \pi_{*} X=\pi_{*}[X, Y]$,
(ii) $X(g(\xi, \eta))=g\left(\nabla_{X} \xi, \eta\right)+g\left(\xi, \nabla_{X} \eta\right)+2 \mathcal{A}(\theta(X), \xi, \eta)$
where $\mathcal{A}:=\frac{F}{2} \frac{\partial g_{i j}}{\partial y^{k}} d x^{i} \otimes d x^{j} \otimes d x^{k}$ is the Cartan tensor.
One has $\nabla_{\frac{\delta}{\delta x^{j}}} \frac{\partial}{\partial x^{k}}=\Gamma_{j k}^{i} \frac{\partial}{\partial x^{i}}$ where

$$
\begin{equation*}
\Gamma_{j k}^{i}:=\frac{\partial^{2} G^{i}}{\partial y^{j} \partial y^{k}} \tag{2.11}
\end{equation*}
$$

which can be written as

$$
\begin{equation*}
\Gamma_{j k}^{i}=\frac{1}{2} g^{i l}\left(\frac{\delta g_{j l}}{\delta x^{k}}+\frac{\delta g_{l k}}{\delta x^{j}}-\frac{\delta g_{j k}}{\delta x^{l}}\right) \tag{2.12}
\end{equation*}
$$

with

$$
\begin{equation*}
\left\{\frac{\delta}{\delta x^{i}}:=\frac{\partial}{\partial x^{i}}-N_{i}^{j} \frac{\partial}{\partial y^{j}}=\mathbf{h}\left(\frac{\partial}{\partial x^{i}}\right)\right\}_{i=1, \ldots, n} \tag{2.13}
\end{equation*}
$$

Definition 2.6. Let F be a Finslerian metric on an n-dimensional manifold M and $x \in M . F$ is called a Berwald metric if, for a local coordinate $\left(x^{i}, y^{i}\right)_{i=1, \ldots, n}$ in $\stackrel{\circ}{T} M$, the Christoffel symbols $\Gamma_{i j}^{l}$ of the Chern connection are only functions of the point x in M.

Example 2.7. All Riemannian metrics and all locally Minkowskian metrics are examples of Berwald metrics. In fact,
(1) for Riemannian metrics, $\Gamma_{j k}^{i}=\gamma_{j k}^{i}=\frac{1}{2} g^{i l}\left(\frac{\partial g_{j l}}{\partial x^{k}}+\frac{\partial g_{l k}}{\partial x^{j}}-\frac{\partial g_{j k}}{\partial x^{l}}\right)$. In particular, the functions $\Gamma_{j k}^{i}$ are independant of y.
(2) for locally Minkowskian metrics, in a neighborhood V of a point $x \in M$, the functions $\Gamma_{j k}^{i}$ vanish identically. Hence, on $V, \Gamma_{j k}^{i}$ can depend at most on x.

3 Berwald Ricci and scalar curvatures

Let (\bar{M}, \bar{F}) be an $n-1$ dimensional Finslerian manifold and f a positive C^{∞} function on $(0, \infty) \times \bar{M}$. One can show that $F: T((0, \infty) \times \bar{M}) \longrightarrow[0, \infty)$, defined by
$F\left(x^{1}, x^{2}, \ldots, x^{n} ; y^{1}, y^{2}, \ldots, y^{n}\right)=\sqrt{\left(y^{1}\right)^{2}+f\left(x^{1}, x^{2}, \ldots, x^{n}\right) \bar{F}^{2}\left(x^{2}, \ldots, x^{n} ; y^{2}, \ldots, y^{n}\right)}$,
(3.1)
is a Finslerian metric on $M \equiv(0, \infty) \times \bar{M}$. In particular, if $f\left(x^{1}, x^{2}, \ldots, x^{n}\right)=f\left(x^{1}\right)$ then F is warped product Finslerian metric of cylindrical type. If $f\left(x^{1}, x^{2}, \ldots, x^{n}\right)=$ $f\left(x^{2}, \ldots, x^{n}\right)$ then $f \bar{F}^{2}$ can be treated as a conformal metric of \bar{F}^{2} whose conformal factor is f. In this last case, F can be seen as a simple product Finslerian metric.

For the Finsler metric $F(x, y)=\sqrt{\left(y^{1}\right)^{2}+f(x) \bar{F}^{2}(\bar{x}, \bar{y})}$ where $(\bar{x})=\left(x^{2}, \ldots, x^{n}\right)$ is a local coordinate in \bar{M} and $(\bar{y})=\left(y^{2}, \ldots, y^{n}\right)$ are vector components in $T_{\bar{x}} \bar{M}$, the fundamental tensor is

$$
\left(g_{i j}(x, y)\right)=\left(\begin{array}{cc}
1 & 0 \tag{3.2}\\
0 & f(x)\left(\bar{g}_{i j}(\bar{x}, \bar{y})\right)
\end{array}\right)
$$

where \bar{g} is the fundamental tensor associated with \bar{F}.
The inverse g^{-1} of g is given by

$$
\left(g^{i j}(x, y)\right)=\left(\begin{array}{cc}
1 & 0 \tag{3.3}\\
0 & f^{-1}(x)\left(\bar{g}^{i j}(\bar{x}, \bar{y})\right)
\end{array}\right)
$$

Definition 3.1. The full curvature associated with the Chern connection ∇ on the vector bundle $\pi^{*} T M$ over the manifold $\grave{T} M$ is the application

$$
\begin{array}{clc}
\phi: \chi(\stackrel{\circ}{T} M) \times \chi(\stackrel{\circ}{T} M) \times \Gamma\left(\pi^{*} T M\right) & \rightarrow & \Gamma\left(\pi^{*} T M\right) \\
(X, Y, \xi) & \mapsto & \phi(X, Y) \xi=\nabla_{X} \nabla_{Y} \xi-\nabla_{Y} \nabla_{X} \xi-\nabla_{[X, Y]} \xi
\end{array}
$$

By the relation (2.2), we have

$$
\begin{equation*}
\nabla_{X}=\nabla_{\hat{X}}+\nabla_{\check{X}} \tag{3.4}
\end{equation*}
$$

where $X=\hat{X}+\check{X}$ with $\hat{X} \in \Gamma(\mathcal{H})$ and $\check{X} \in \Gamma(\mathcal{V})$.
Using the metric F, one can define the full curvature of ∇ as:

$$
\begin{aligned}
\Phi(\xi, \eta, X, Y) & =g(\phi(X, Y) \xi, \eta) \\
& =g(\phi(\hat{X}, \hat{Y}) \xi+\phi(\hat{X}, \check{Y}) \xi+\phi(\check{X}, \hat{Y}) \xi+\phi(\check{X}, \check{Y}) \xi, \eta) \\
& =\mathbf{R}(\xi, \eta, X, Y)+\mathbf{P}(\xi, \eta, X, Y)+\mathbf{Q}(\xi, \eta, X, Y)
\end{aligned}
$$

where $\mathbf{R}(\xi, \eta, X, Y)=g(\phi(\hat{X}, \hat{Y}) \xi, \eta), \mathbf{P}(\xi, \eta, X, Y)=g(\phi(\hat{X}, \check{Y}) \xi, \eta)+g(\phi(\check{X}, \hat{Y}) \xi, \eta)$ and $\mathbf{Q}(\xi, \eta, X, Y)=g(\phi(\tilde{X}, \tilde{Y}) \xi, \eta)$ are respectively the first (horizontal) curvature, mixed curvature and vertical curvature.

In particular, if ∇ is the Chern connection, the \mathbf{Q}-curvature vanishes.
In a local coordinate system, the components of the Chern curvature are:
$\Phi\left(\partial_{i}, \partial_{j}, \hat{\partial}_{k}+\check{\partial}_{k}, \hat{\partial}_{l}+\check{\partial}_{l}\right)=\mathbf{R}\left(\partial_{i}, \partial_{j}, \hat{\partial}_{k}+\check{\partial}_{k}, \hat{\partial}_{l}+\check{\partial}_{l}\right)+\mathbf{P}\left(\partial_{i}, \partial_{j}, \hat{\partial}_{k}+\check{\partial}_{k}, \hat{\partial}_{l}+\check{\partial}_{l}\right)$

$$
\begin{equation*}
=\left(\frac{\delta \Gamma_{i l}^{s}}{\delta x^{k}}-\frac{\delta \Gamma_{i k}^{s}}{\delta x^{l}}\right) g_{j s}+\left(\Gamma_{i k}^{s} \Gamma_{l s}^{r}-\Gamma_{i l}^{s} \Gamma_{k s}^{r}\right) g_{j r}-F \frac{\partial \Gamma_{i k}^{s}}{\partial y^{l}} g_{j s} \tag{3.6}
\end{equation*}
$$

where $\partial_{i}:=\frac{\partial}{\partial i} \in \pi^{*} T M, \hat{\partial}_{k}:=\frac{\delta}{\delta x^{k}} \in \mathcal{H}$ and $\check{\partial}_{k}:=F \frac{\partial}{\partial y^{k}} \in \mathcal{V}$.
Remark 3.2. In natural coordinates, the curvatures \mathbf{R} and \mathbf{P} can also be found in [2].

For the Berwald metric $F(x ; y)=\sqrt{\left(y^{1}\right)^{2}+f(x) \bar{F}^{2}(\bar{x}, \bar{y})}$, by the Definition 2.6, the Christoffel symbols are

$$
\begin{align*}
\Gamma_{i j}^{1} & =0 \text { for } i, j \in[1, n] \tag{3.7}\\
\Gamma_{11}^{k} & =0 \text { for } k \in[1, n] \tag{3.8}\\
\Gamma_{1 b}^{a} & =\frac{1}{2 f} \frac{\partial f}{\partial x^{1}} \delta_{b}^{a} \text { for } a, b \in[2, n], \tag{3.9}\\
\Gamma_{b c}^{a} & =\frac{1}{2} g^{a d}\left(\frac{\partial g_{b d}}{\partial x^{c}}+\frac{\partial g_{c d}}{\partial x^{b}}-\frac{\partial g_{b c}}{\partial x^{d}}\right) \text { for } a, b, c, d \in[2, n] \\
& =\frac{1}{2} f^{-1} \bar{g}^{a d}\left[\frac{\partial\left(f \bar{g}_{b d}\right)}{\partial x^{c}}+\frac{\partial\left(f \bar{g}_{c b}\right)}{\partial x^{b}}-\frac{\partial\left(f \bar{g}_{b c}\right)}{\partial x^{d}}\right] \\
& =\bar{\Gamma}_{b c}^{a}+\frac{1}{2} f^{-1}\left(\frac{\partial f}{\partial x^{c}} \delta_{b}^{a}+\frac{\partial f}{\partial x^{b}} \delta_{c}^{a}-\frac{\partial f}{\partial x^{d}} \bar{g}^{a d} \bar{g}_{b c}\right) . \tag{3.10}
\end{align*}
$$

If F is a Berwald metric then the relation (3.6) becomes

$$
\begin{align*}
\Phi_{i j k l} & =\left(\frac{\partial \Gamma_{i l}^{s}}{\partial x^{k}}-\frac{\partial \Gamma_{i k}^{s}}{\partial x^{l}}\right) g_{j s}+\left(\Gamma_{i k}^{s} \Gamma_{l s}^{r}-\Gamma_{i l}^{s} \Gamma_{k s}^{r}\right) g_{j r} \\
& \stackrel{(3.9)}{=}\left(\frac{\partial \Gamma_{i l}^{a}}{\partial x^{k}}-\frac{\partial \Gamma_{i k}^{a}}{\partial x^{l}}\right) g_{j a}+\left(\Gamma_{i k}^{a} \Gamma_{l a}^{d}-\Gamma_{i l}^{a} \Gamma_{k a}^{d}\right) g_{j d} \tag{3.11}
\end{align*}
$$

where $\Phi_{i j k l}=\Phi\left(\partial_{i}, \partial_{j}, \hat{\partial}_{k}+\check{\partial}_{k}, \hat{\partial}_{l}+\check{\partial}_{l}\right)$. In particular, by the relations (3.7)-(3.10)
(3.12) $\Phi_{i 1 k l}=0$,
(3.13) $\Phi_{1 b 11}=0$,

$$
\begin{align*}
\Phi_{1 b 1 c} & =\left(\frac{\partial \Gamma_{1 c}^{a}}{\partial x^{1}}-\frac{\partial \Gamma_{11}^{a}}{\partial x^{c}}\right) g_{b a}+\left(\Gamma_{11}^{a} \Gamma_{c a}^{d}-\Gamma_{1 c}^{a} \Gamma_{1 a}^{d}\right) g_{b d} \\
& =\left[-\frac{1}{2 f}\left(\frac{\partial f}{\partial x^{1}}\right)^{2}+\frac{1}{2} \frac{\partial^{2} f}{\partial\left(x^{1}\right)^{2}}\right] \bar{g}_{b c}-\frac{1}{2 f} \frac{\partial f}{\partial x^{1}} \delta_{c}^{a}\left(\frac{1}{2 f} \frac{\partial f}{\partial x^{1}} \delta_{a}^{d}\right) f \bar{g}_{b d} \\
& =\frac{1}{2}\left[\frac{\partial^{2} f}{\partial\left(x^{1}\right)^{2}}-\frac{3}{2 f}\left(\frac{\partial f}{\partial x^{1}}\right)^{2}\right] \bar{g}_{b c} \tag{3.14}
\end{align*}
$$

$$
\begin{aligned}
= & \frac{1}{2}\left[\frac{\partial^{2} f}{\partial\left(x^{1}\right)^{2}}-\frac{3}{2 f}\left(\frac{\partial f}{\partial x^{1}}\right)^{2}\right] \bar{g}_{b c}, \\
\Phi_{a b c d}= & \left(\frac{\partial \Gamma_{a d}^{r}}{\partial x^{c}}-\frac{\partial \Gamma_{a c}^{r}}{\partial x^{d}}\right) g_{b r}+\left(\Gamma_{a c}^{r} \Gamma_{d r}^{s}-\Gamma_{a d}^{r} \Gamma_{c r}^{s}\right) g_{b s} \\
= & \left\{\frac{\partial}{\partial x^{c}}\left[\bar{\Gamma}_{a d}^{r}+\frac{1}{2} f^{-1}\left(\frac{\partial f}{\partial x^{d}} \delta_{a}^{r}+\frac{\partial f}{\partial x^{a}} \delta_{d}^{r}-\frac{\partial f}{\partial x^{s}} \bar{g}^{r s} \bar{g}_{a d}\right)\right]\right. \\
& \left.-\frac{\partial}{\partial x^{d}}\left[\bar{\Gamma}_{a c}^{r}+\frac{1}{2} f^{-1}\left(\frac{\partial f}{\partial x^{c}} \delta_{a}^{r}+\frac{\partial f}{\partial x^{a}} \delta_{c}^{r}-\frac{\partial f}{\partial x^{s}} \bar{g}^{r s} \bar{g}_{a c}\right)\right]\right\} f \bar{g}_{b r} \\
& +\left\{\left[\bar{\Gamma}_{a c}^{r}+\frac{1}{2} f^{-1}\left(\frac{\partial f}{\partial x^{c}} \delta_{a}^{r}+\frac{\partial f}{\partial x^{a}} \delta_{c}^{r}-\frac{\partial f}{\partial x^{s}} \bar{g}^{r s} \bar{g}_{a c}\right)\right]\right. \\
& \times\left[\bar{\Gamma}_{d r}^{s}+\frac{1}{2} f^{-1}\left(\frac{\partial f}{\partial x^{r}} \delta_{d}^{s}+\frac{\partial f}{\partial x^{d}} \delta_{r}^{s}-\frac{\partial f}{\partial x^{t}} \bar{g}^{s s} \bar{g}_{d r}\right)\right] \\
& -\left[\bar{\Gamma}_{a d}^{r}+\frac{1}{2} f^{-1}\left(\frac{\partial f}{\partial x^{d}} \delta_{a}^{r}+\frac{\partial f}{\partial x^{a}} \delta_{d}^{r}-\frac{\partial f}{\partial x^{s}} \bar{g}^{r s} \bar{g}_{a d}\right)\right] \\
& \left.\times\left[\bar{\Gamma}_{c r}^{s}+\frac{1}{2} f^{-1}\left(\frac{\partial f}{\partial x^{r}} \delta_{c}^{s}+\frac{\partial f}{\partial x^{c}} \delta_{r}^{s}-\frac{\partial f}{\partial x^{t}} \bar{g}^{t s} \bar{g}_{c r}\right)\right]\right\} f \bar{g}_{b s} .
\end{aligned}
$$

It follows that

$$
\begin{align*}
& \Phi_{a b c d}=f \bar{\Phi}_{a b c d} \\
& +\frac{1}{4 f}\left(\frac{\partial f}{\partial x^{c}} \frac{\partial f}{\partial x^{a}} \bar{g}_{b d}+\frac{\partial f}{\partial x^{c}} \frac{\partial f}{\partial x^{d}} \bar{g}_{a b}-\frac{\partial f}{\partial x^{c}} \frac{\partial f}{\partial x^{b}} \bar{g}_{a d}\right. \\
& +\frac{\partial f}{\partial x^{c}} \frac{\partial f}{\partial x^{a}} \bar{g}_{b d}+\frac{\partial f}{\partial x^{a}} \frac{\partial f}{\partial x^{d}} \bar{g}_{b c}-\frac{\partial f}{\partial x^{a}} \frac{\partial f}{\partial x^{b}} \bar{g}_{c d} \\
& \left.-\frac{\partial f}{\partial x^{r}} \frac{\partial f}{\partial x^{s}} \bar{g}^{r s} \bar{g}_{a c} \bar{g}_{b d}-\frac{\partial f}{\partial x^{s}} \frac{\partial f}{\partial x^{d}} \bar{g}^{r s} \bar{g}_{a c} \bar{g}_{b r}+\frac{\partial f}{\partial x^{s}} \frac{\partial f}{\partial x^{b}} \bar{g}^{r s} \bar{g}_{a c} \bar{g}_{d r}\right) \\
& +\frac{1}{2}\left(\frac{\partial f}{\partial x^{b}} \bar{g}_{c r} \bar{\Gamma}_{a d}^{r}-\frac{\partial f}{\partial x^{r}} \bar{g}_{b c} \bar{\Gamma}_{a d}^{r}+\frac{\partial f}{\partial x^{t}} \bar{g}^{r t} \bar{g}_{a d} \bar{g}_{b s} \bar{\Gamma}_{c r}^{s}\right) \\
& -\frac{1}{2}\left(\frac{\partial f}{\partial x^{b}} \bar{g}_{d r} \bar{\Gamma}_{a c}^{r}-\frac{\partial f}{\partial x^{r}} \bar{g}_{b d} \bar{\Gamma}_{a c}^{r}+\frac{\partial f}{\partial x^{t}} \bar{g}^{r t} \bar{g}_{a c} \bar{g}_{b s} \bar{\Gamma}_{d r}^{s}\right) \\
& -\frac{1}{4 f}\left(\frac{\partial f}{\partial x^{d}} \frac{\partial f}{\partial x^{a}} \bar{g}_{b c}+\frac{\partial f}{\partial x^{d}} \frac{\partial f}{\partial x^{c}} \bar{g}_{a b}-\frac{\partial f}{\partial x^{d}} \frac{\partial f}{\partial x^{b}} \bar{g}_{a c}\right. \\
& +\frac{\partial f}{\partial x^{d}} \frac{\partial f}{\partial x^{a}} \bar{g}_{b c}+\frac{\partial f}{\partial x^{a}} \frac{\partial f}{\partial x^{c}} \bar{g}_{b d}-\frac{\partial f}{\partial x^{a}} \frac{\partial f}{\partial x^{b}} \bar{g}_{c d} \\
& \left.-\frac{\partial f}{\partial x^{r}} \frac{\partial f}{\partial x^{s}} \bar{g}^{r s} \bar{g}_{a d} \bar{g}_{b c}-\frac{\partial f}{\partial x^{s}} \frac{\partial f}{\partial x^{c}} \bar{g}^{r s} \bar{g}_{a d} \bar{g}_{b r}+\frac{\partial f}{\partial x^{s}} \frac{\partial f}{\partial x^{b}} \bar{g}^{r s} \bar{g}_{a d} \bar{g}_{c r}\right) \\
& -\frac{1}{2 f}\left(\frac{\partial f}{\partial x^{c}} \frac{\partial f}{\partial x^{d}} \bar{g}_{a b}+\frac{\partial f}{\partial x^{c}} \frac{\partial f}{\partial x^{a}} \bar{g}_{b d}-\frac{\partial f}{\partial x^{c}} \frac{\partial f}{\partial x^{b}} \bar{g}_{a d}\right) \\
& +\frac{1}{2}\left[\frac{\partial^{2} f}{\partial x^{c} \partial x^{d}} \bar{g}_{a b}+\frac{\partial^{2} f}{\partial x^{c} \partial x^{a}} \bar{g}_{b d}-\frac{\partial^{2} f}{\partial x^{c} \partial x^{b}} \bar{g}_{a d}-\frac{\partial f}{\partial x^{s}} \frac{\partial}{\partial x^{c}}\left(\bar{g}^{r s} \bar{g}_{a d}\right) \bar{g}_{b r}\right] \\
& +\frac{1}{2 f}\left(\frac{\partial f}{\partial x^{d}} \frac{\partial f}{\partial x^{c}} \bar{g}_{a b}+\frac{\partial f}{\partial x^{d}} \frac{\partial f}{\partial x^{a}} \bar{g}_{b c}-\frac{\partial f}{\partial x^{d}} \frac{\partial f}{\partial x^{b}} \bar{g}_{a c}\right) \\
& -\frac{1}{2}\left[\frac{\partial^{2} f}{\partial x^{d} \partial x^{c}} \bar{g}_{a b}+\frac{\partial^{2} f}{\partial x^{d} \partial x^{a}} \bar{g}_{b c}-\frac{\partial^{2} f}{\partial x^{d} \partial x^{b}} \bar{g}_{a c}-\frac{\partial f}{\partial x^{s}} \frac{\partial}{\partial x^{d}}\left(\bar{g}^{r s} \bar{g}_{a c}\right) \bar{g}_{b r}\right] \\
& =f \bar{\Phi}_{a b c d}+\frac{1}{4 f} \frac{\partial f}{\partial x^{r}} \frac{\partial f}{\partial x^{s}} \bar{g}^{r s}\left(\bar{g}_{a d} \bar{g}_{b c}-\bar{g}_{a c} \bar{g}_{b d}\right) \\
& +\frac{1}{4 f}\left(\frac{\partial f}{\partial x^{a}} \frac{\partial f}{\partial x^{d}} \bar{g}_{b c}+\frac{\partial f}{\partial x^{b}} \frac{\partial f}{\partial x^{c}} \bar{g}_{a d}-\frac{\partial f}{\partial x^{a}} \frac{\partial f}{\partial x^{c}} \bar{g}_{b d}-\frac{\partial f}{\partial x^{b}} \frac{\partial f}{\partial x^{d}} \bar{g}_{a c}\right) \\
& +\frac{1}{2}\left(\frac{\partial f}{\partial x^{b}} \bar{g}_{c r} \bar{\Gamma}_{a d}^{r}-\frac{\partial f}{\partial x^{r}} \bar{g}_{b c} \bar{\Gamma}_{a d}^{r}+\frac{\partial f}{\partial x^{t}} \bar{g}^{r t} \bar{g}_{a d} \bar{g}_{b s} \bar{\Gamma}_{c r}^{s}\right) \\
& -\frac{1}{2}\left(\frac{\partial f}{\partial x^{b}} \bar{g}_{d r} \bar{\Gamma}_{a c}^{r}-\frac{\partial f}{\partial x^{r}} \bar{g}_{b d} \bar{\Gamma}_{a c}^{r}+\frac{\partial f}{\partial x^{t}} \bar{g}^{r t} \bar{g}_{a c} \bar{g}_{b s} \bar{\Gamma}_{d r}^{s}\right) \\
& +\frac{1}{2}\left(\frac{\partial^{2} f}{\partial x^{c} \partial x^{a}} \bar{g}_{b d}-\frac{\partial^{2} f}{\partial x^{c} \partial x^{b}} \bar{g}_{a d}-\frac{\partial^{2} f}{\partial x^{d} \partial x^{a}} \bar{g}_{b c}+\frac{\partial^{2} f}{\partial x^{d} \partial x^{b}} \bar{g}_{a c}\right) \\
& +\frac{1}{2}\left[\frac{\partial f}{\partial x^{s}} \frac{\partial}{\partial x^{d}}\left(\bar{g}^{r s} \bar{g}_{a c}\right) \bar{g}_{b r}-\frac{\partial f}{\partial x^{s}} \frac{\partial}{\partial x^{c}}\left(\bar{g}^{r s} \bar{g}_{a d}\right) \bar{g}_{b r}\right] . \tag{3.16}
\end{align*}
$$

That prove the following.

Proposition 3.1. Let $\left(I \times_{f} \bar{M}, F\right)$ be an n-dimensional twisted product Berwald manifold with $I=(0, \infty)$. Then, in natural coordinates, the full curvature coefficients of $\left(I \times{ }_{f} \bar{M}, F\right)$ are given by

$$
\begin{align*}
\Phi_{a b c d}= & f \bar{\Phi}_{a b c d}+\frac{1}{4 f} \frac{\partial f}{\partial x^{r}} \frac{\partial f}{\partial x^{s}} \bar{g}^{r s}\left(\bar{g}_{a d} \bar{g}_{b c}-\bar{g}_{a c} \bar{g}_{b d}\right) \\
& +\frac{1}{4 f}\left(\frac{\partial f}{\partial x^{a}} \frac{\partial f}{\partial x^{d}} \bar{g}_{b c}+\frac{\partial f}{\partial x^{b}} \frac{\partial f}{\partial x^{c}} \bar{g}_{a d}-\frac{\partial f}{\partial x^{a}} \frac{\partial f}{\partial x^{c}} \bar{g}_{b d}-\frac{\partial f}{\partial x^{b}} \frac{\partial f}{\partial x^{d}} \bar{g}_{a c}\right) \\
& +\frac{1}{2}\left(\frac{\partial f}{\partial x^{b}} \bar{g}_{c r} \bar{\Gamma}_{a d}^{r}-\frac{\partial f}{\partial x^{r}} \bar{g}_{b c} \bar{\Gamma}_{a d}^{r}+\frac{\partial f}{\partial x^{t}} \bar{g}^{r t} \bar{g}_{a d} \bar{g}_{b s} \bar{\Gamma}_{c r}^{s}\right) \\
7) & -\frac{1}{2}\left(\frac{\partial f}{\partial x^{b}} \bar{g}_{d r} \bar{\Gamma}_{a c}^{r}-\frac{\partial f}{\partial x^{r}} \bar{g}_{b d} \bar{\Gamma}_{a c}^{r}+\frac{\partial f}{\partial x^{t}} \bar{g}^{r t} \bar{g}_{a c} \bar{g}_{b s} \bar{\Gamma}_{d r}^{s}\right) \tag{3.17}\\
& +\frac{1}{2}\left(\frac{\partial^{2} f}{\partial x^{c} \partial x^{a}} \bar{g}_{b d}-\frac{\partial^{2} f}{\partial x^{c} \partial x^{b}} \bar{g}_{a d}-\frac{\partial^{2} f}{\partial x^{d} \partial x^{a}} \bar{g}_{b c}+\frac{\partial^{2} f}{\partial x^{d} \partial x^{b}} \bar{g}_{a c}\right) \\
& +\frac{1}{2}\left[\frac{\partial f}{\partial x^{s}} \frac{\partial}{\partial x^{d}}\left(\bar{g}^{r s} \bar{g}_{a c}\right) \bar{g}_{b r}-\frac{\partial f}{\partial x^{s}} \frac{\partial}{\partial x^{c}}\left(\bar{g}^{r s} \bar{g}_{a d}\right) \bar{g}_{b r}\right], \\
\Phi_{1 b 1 c}= & \frac{1}{2}\left[\frac{\partial^{2} f}{\partial\left(x^{1}\right)^{2}}-\frac{3}{2 f}\left(\frac{\partial f}{\partial x^{1}}\right)^{2}\right] \bar{g}_{b c} a n d \Phi_{i 1 k l}=\Phi_{1 j 11}=0
\end{align*}
$$

for $a, b, c, d \in[2, n]$ and for $i, j, k, l \in[1, n]$.
Theorem 3.2. Let $\left(I \times{ }_{f} \bar{M}, F\right)$ be an n-dimensional twisted product Berwald manifold with $I=(0, \infty)$ and \bar{F} a local Minkowskian metric on \bar{M}. Then $\left(I \times_{f} \bar{M}, F\right)$ is locally Minkowskian manifold if and only if the twisted function f satisfies the following equations:

$$
\begin{align*}
& \frac{\partial f}{\partial x^{r}} \frac{\partial f}{\partial x^{s}} \bar{g}^{r s} \bar{g}_{a d} \bar{g}_{b c}+\frac{\partial f}{\partial x^{a}} \frac{\partial f}{\partial x^{d}} \bar{g}_{b c}+\frac{\partial f}{\partial x^{b}} \frac{\partial f}{\partial x^{c}} \bar{g}_{a d}+2 f \frac{\partial^{2} f}{\partial x^{c} \partial x^{a}} \bar{g}_{b d}+2 f \frac{\partial^{2} f}{\partial x^{d} \partial x^{b}} \bar{g}_{a c} \\
= & \frac{\partial f}{\partial x^{r}} \frac{\partial f}{\partial x^{s}} \bar{g}^{r s} \bar{g}_{a c} \bar{g}_{b d}+\frac{\partial f}{\partial x^{a}} \frac{\partial f}{\partial x^{c}} \bar{g}_{b d}+\frac{\partial f}{\partial x^{b}} \frac{\partial f}{\partial x^{d}} \bar{g}_{a c}+2 f \frac{\partial^{2} f}{\partial x^{c} \partial x^{b}} \bar{g}_{a d}+2 f \frac{\partial^{2} f}{\partial x^{d} \partial x^{a}} \bar{g}_{b c} \tag{3.18}
\end{align*}
$$

for $a, b, c, d \in[2, n]$ and

$$
\begin{equation*}
\frac{2 f}{3} \frac{\partial^{2} f}{\partial\left(x^{1}\right)^{2}}=\left(\frac{\partial f}{\partial x^{1}}\right)^{2} \tag{3.19}
\end{equation*}
$$

Theorem 3.3. Let $\left(\underline{I} \times_{f} \bar{M}, F\right)$ be an n-dimensional warped product Berwald manifold with $I=(0, \infty)$ and \bar{F} a Riemannian metric on \bar{M}. Then $\left(I \times{ }_{f} \bar{M}, F\right)$ is Riemannian manifold if and only if the warping function f and the full curvatures satisfy the following equations:

$$
\left\{\begin{array}{l}
\Phi_{a b c d}=f \bar{\Phi}_{a b c d}, \text { for } a, b, c, d \in[2, n] \tag{3.20}\\
\Phi_{1 b 1 c}=\frac{1}{2}\left[\frac{\partial^{2} f}{\partial\left(x^{1}\right)^{2}}-\frac{3}{2 f}\left(\frac{\partial f}{\partial x^{1}}\right)^{2}\right] \bar{g}_{b c}, \text { for } b, c \in\{2, \ldots, n\} \\
\Phi_{i 1 k l}=\Phi_{1 j 11}=0, \text { for } i, j, k \in[1, n] .
\end{array}\right.
$$

With respect to the Chern connection, we have the following.

Definition 3.3. (1) The Berwald Ricci tensor Ric of (M, F) is defined by

$$
\begin{equation*}
\boldsymbol{\operatorname { R i c }}(\xi, X):=\operatorname{trace}_{g}[\eta \longmapsto R(X, \mathbf{h}(\eta)+\mathbf{v}(\eta)) \xi] \tag{3.21}
\end{equation*}
$$

Locally, we have

$$
\begin{equation*}
\mathbf{R i c}\left(\partial_{i}, \hat{\partial}_{k}+\check{\partial}_{k}\right)=\frac{\partial \Gamma_{i l}^{l}}{\partial x^{k}}-\frac{\partial \Gamma_{i k}^{l}}{\partial x^{l}}+\Gamma_{i k}^{s} \Gamma_{l s}^{l}-\Gamma_{i l}^{s} \Gamma_{k s}^{l} \tag{3.22}
\end{equation*}
$$

(2) The Berwald scalar curvature Scal of (M, F) is defined by

$$
\begin{equation*}
\text { Scal }:=\text { trace }_{\underline{g}}(\mathbf{R i c}), \underline{g}:=\pi^{*} g \tag{3.23}
\end{equation*}
$$

Locally, we have

$$
\begin{equation*}
\text { Scal }=\left(\frac{\partial \Gamma_{i l}^{l}}{\partial x^{k}}-\frac{\partial \Gamma_{i k}^{l}}{\partial x^{l}}+\Gamma_{i k}^{s} \Gamma_{l s}^{l}-\Gamma_{i l}^{s} \Gamma_{k s}^{l}\right) g^{i k} \tag{3.24}
\end{equation*}
$$

Proposition 3.4. Let $\left(I \times_{f} \bar{M}, F\right)$ be an n-dimensional twisted Finslerian manifold with $I=(0, \infty)$ and \bar{F} a Finslerian metric on \bar{M}. Then $\left(I \times{ }_{f} \bar{M}, F\right)$ is a local Berwald manifold if and only if the twisted function f and the Ricci curvatures satisfy the following equations:

$$
\begin{align*}
\boldsymbol{R i c}_{a c}= & \overline{\operatorname{Ric}}_{a c}-\frac{n-2}{4 f^{2}}\left(\frac{\partial f}{\partial x^{a}} \frac{\partial f}{\partial x^{c}}+\frac{\partial f}{\partial x^{r}} \frac{\partial f}{\partial x^{s}} \bar{g}^{r s} \bar{g}_{a c}\right) \\
(3.25) & +\frac{1}{2 f}\left((n-3) \frac{\partial f}{\partial x^{s}} \bar{\Gamma}_{a c}^{s}+\frac{\partial f}{\partial x^{r}} \bar{g}^{r s} \bar{g}_{c t} \bar{\Gamma}_{a s}^{t}+\frac{\partial f}{\partial x^{t}} \bar{g}^{r t} \bar{g}_{a s} \bar{\Gamma}_{c r}^{s}-\frac{\partial f}{\partial x^{t}} \bar{g}^{r t} \bar{g}_{a c} \bar{\Gamma}_{r s}^{s}\right) \tag{3.25}\\
& +\frac{1}{2 f}\left[(n-3) \frac{\partial^{2} f}{\partial x^{a} \partial x^{c}}+\frac{\partial^{2} f}{\partial x^{r} \partial x^{s}} \bar{g}^{r s} \bar{g}_{a c}\right] \\
& +\frac{1}{2 f}\left[\frac{\partial f}{\partial x^{r}} \frac{\partial}{\partial x^{s}}\left(\bar{g}^{r s} \bar{g}_{a c}\right)-\frac{\partial f}{\partial x^{s}} \frac{\partial}{\partial x^{c}}\left(\bar{g}^{r s} \bar{g}_{a r}\right)\right]
\end{align*}
$$

for $a, b \in[2, n]$ and

$$
\begin{equation*}
\mathbf{R i c}_{11}=\frac{n-1}{2}\left[\frac{\partial^{2} f}{\partial\left(x^{1}\right)^{2}}-\frac{3}{2 f}\left(\frac{\partial f}{\partial x^{1}}\right)^{2}\right] \tag{3.26}
\end{equation*}
$$

Proposition 3.5. Let $\left(I \times_{f} \bar{M}, F\right)$ be an n-dimensional twisted Finslerian manifold with $I=(0, \infty)$ and \bar{F} a Finslerian metric on \bar{M}. Then $\left(I \times_{f} \bar{M}, F\right)$ is Berwald manifold if and only if the twisted function f and the scalar curvatures satisfy the following equations:

$$
\begin{align*}
\text { Scal }= & \frac{\overline{\text { Scal }}}{f}-\frac{1}{2 f}\left[\frac{1}{2 f}\left(\frac{\partial f}{\partial x^{1}}\right)^{2}-\frac{\partial^{2} f}{\partial\left(x^{1}\right)^{2}}\right]-\frac{n(n-2)}{4 f^{3}} \frac{\partial f}{\partial x^{r}} \frac{\partial f}{\partial x^{s}} \bar{g}^{r s} \\
3.27) & +\frac{n-3}{f^{2}} \frac{\partial^{2} f}{\partial x^{r} \partial x^{s}} \bar{g}^{r s}+\frac{(n-3)}{2 f^{2}}\left(\frac{\partial f}{\partial x^{r}} \bar{\Gamma}_{s t}^{r} \bar{g}^{s t}-\frac{\partial f}{\partial x^{r}} \bar{g}^{r s} \bar{\Gamma}_{s t}^{t}\right) \tag{3.27}\\
& +\frac{1}{2 f^{2}}\left[\frac{\partial f}{\partial x^{r}} \frac{\partial}{\partial x^{s}}\left(\bar{g}^{r s} \bar{g}_{a c}\right)-\frac{\partial f}{\partial x^{s}} \frac{\partial}{\partial x^{c}}\left(\bar{g}^{r s} \bar{g}_{a r}\right)\right] \bar{g}^{a c} \text { for } a, c, r, s \in[2, n] .
\end{align*}
$$

Proof. By the relations (3.7)-(3.10) in (3.24).
Corollary 3.6. Let $\left(I \times_{f} \bar{M}, F\right)$ be an n-dimensional twisted product Berwald manifold with $I=(0, \infty)$. If $f\left(x^{1}, x^{2}, \ldots, x^{n}\right)=f\left(x^{1}\right)$ then the scalar curvatures Scal of ($I \times_{f} \bar{M}, F$) and $\overline{\mathbf{S c a l}}$ of (\bar{M}, \bar{F}) are related by the followin equation

$$
\begin{equation*}
\mathbf{S c a l}=\frac{\overline{\mathbf{S c a l}}}{f}-\frac{1}{2 f}\left[\frac{1}{2 f}\left(\frac{\partial f}{\partial x^{1}}\right)^{2}-\frac{\partial^{2} f}{\partial\left(x^{1}\right)^{2}}\right] \tag{3.28}
\end{equation*}
$$

4 Example of a twisted product Berwald metric of polar type

Let $U=\left\{\bar{x}=\left(x^{2}, x^{3}\right) \in \mathbb{R}^{2}\right\}, \bar{y}=\left(y^{2}, y^{3}\right) \in T_{\bar{x}} U$ with $y^{2}, y^{3}>0$ and $f:(0, \infty) \times$ $U \longrightarrow(0, \infty)$ a C^{∞} positive function. Consider $p, q \in \mathbb{R} \backslash\{0\}$ such that $p+q=1$ and $p q<0$. Then the application $F: T((0, \infty) \times U) \longrightarrow \mathbb{R}$ defined by

$$
\begin{equation*}
F\left(x^{1}, x^{2}, x^{3} ; y^{1}, y^{2}, y^{3}\right)=\sqrt{\left(y^{1}\right)^{2}+f e^{\rho\left(x^{2}, x^{3}\right)}\left(y^{2}\right)^{2 p}\left(y^{3}\right)^{2 q}} \tag{4.1}
\end{equation*}
$$

where ρ is a C^{∞} function on U is a Berwald metric on $(0, \infty) \times U$.
By direct calculations, using the relation (2.1), (3.2) and (3.3), we obtain

$$
\left(g_{i j}(x, y)\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & p(2 p-1) f e^{\rho}\left(y^{2}\right)^{2 p-2}\left(y^{3}\right)^{2 q} & \left.2 p q f e^{\rho}\left(y^{2}\right)^{2 p-1}\left(y^{3}\right)^{2 q-1}\right) \\
0 & 2 p q f e^{\rho}\left(y^{2}\right)^{2 p-1}\left(y^{3}\right)^{2 q-1} & q(2 q-1) f e^{\rho}\left(y^{2}\right)^{2 p}\left(y^{3}\right)^{2 q-2}
\end{array}\right)
$$

and

$$
\left(g^{i j}(x, y)\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -\frac{2 q-1}{p} f^{-1} e^{-\rho}\left(y^{2}\right)^{-2 p+2}\left(y^{3}\right)^{-2 q} & 2 f^{-1} e^{-\rho}\left(y^{2}\right)^{-2 p+1}\left(y^{3}\right)^{-2 q+1} \\
0 & 2 f^{-1} e^{-\rho}\left(y^{2}\right)^{-2 p+1}\left(y^{3}\right)^{-2 q+1} & -\frac{2 p-1}{q} f^{-1} e^{-\rho}\left(y^{2}\right)^{-2 p}\left(y^{3}\right)^{-2 q+2}
\end{array}\right)
$$

Hence, since $g_{(x, y)}(v, v)=g_{i j}(x, y) v^{i} v^{j}>0$ for every $v \in T_{x} M \backslash\{0\}, F$ is a Finslerian metric on $(0, \infty) \times U$.

Further, the 27 functions $\Gamma_{i j}^{k}$ are independent of y and satisfy to the relations (3.7), (3.8), (3.9) and (3.10). Hence, F defined in (4.1), is a twisted Berwald metric of polar form.

References

[1] B. Y. Chen, Differential Geometry of Warped Product Manifolds and Submanifolds, World Scientific, 2017.
[2] D. Bao, S. S. Chern and Z. Shen, An Introduction to Riemann-Finsler Geometry, Springer-Verlag, 2000.
[3] R. L. Bishop and O'Neill, Manifolds of negative curvature, Trans. Amer. Math. Soc., 145 (1969), 1-49.
[4] S. S. Chern and Z. Shen, Riemann-Finsler Geometry, Nankai Tracts Math., 6 (2005), 31-63.
[5] L. Kozma, I. R. Peter and H. Shimada, On the twisted product of Finsler manifolds, Reports on Mathematical Physics, 57, 3 (2006), 375-383.
[6] W. Kühnel and H.-B. Rademacher, Conformal vector fields on pseudoRiemannian spaces, Diff. Geom. Appl. 7 (1997), 237-250.
[7] E. Peyghan, A. Tayebi, and L. Nourmohammadi Far, On twisted product Finsler manifolds, Hindawi Publishing Corporation ISRN Geometry, (2013), Article ID 732432, 12 pages.
[8] G. Nibaruta, S. Degla and L. Todjihounde, Prescribed Ricci tensor in Finslerian conformal class, Balkan J. Geom. Appl., 23, 2 (2018), 41-55.

Authors' addresses:
Gilbert Nibaruta
Section des Mathématiques, Ecole Normale Supérieure, Avenue Mwezi Gisabo, PO Box 6983 Bujumbura-Burundi.
E-mail: nibarutag@gmail.com
Menedore Karimumuryango
Institut des Statistique Appliquées, Université du Burundi,
PO Box 5158 Bujumbura-Burundi.
E-mail: kmenedore@gmail.com
Aboubacar Nibirantiza
Département des Mathématiques, Institut de Pédagogie Appliquée, Université du Burundi,
PO Box 2523 Bujumbura-Burundi.
E-mail: aboubacar.nibirantiza@ub.edu.bi

Domitien Ndayirukiye
Section des Mathématiques, Ecole Normale Supérieure, Avenue Mwezi Gisabo, PO Box 6983 Bujumbura-Burundi.
E-mail: domitienndayi@yahoo.fr

[^0]: Differential Geometry - Dynamical Systems, Vol.22, 2020, pp. 183-193.
 (C) Balkan Society of Geometers, Geometry Balkan Press 2020.

