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Abstract. For the studied cases in [11], the author showed that hav-
ing the f-curvature-base Ry, is equal to requiring a flat metric on the
base-manifold. In [12] the authors introduced a new kind of Einstein
warped product manifold, composed by positive-dimensional manifold and
negative-dimensional manifold, the so called PNDP-manifolds. The aim of
this paper is to extend the work done in [11] to m-dimensional fiber show-
ing if the value of m can influence the result, i.e., finding base-manifolds
with non-flat metric for dim F' # 2, and doing some considerations of the
(2, m)-PNDP manifolds with Ry, . As aresult, we find out that the dimen-
sion of fiber-manifold does not change the result of [11]. Finally, we add
a special remark about the possible use of the (n, —n)-PNDPs, a special
kind of Einstein warped product manifold, in superconductor Graphene
theory.
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1 Introduction

In recent years the study of warped product manifolds (WPM) is of great interest
both for the mathematicians and physicists. Many works have been published that
have studied and introduced new types of WPM, (to name a few reference see [7],
[14], [5] and [4]). Aytimur and Zgr in [2] proved some results concerning the Einstein
statistical WPM, and in [12] Pigazzini et al. introduced a new type of WPM so called
PNDP-manifolds, where the fiber is a manifold with negative dimension.

In [11] Pigazzini introduced a simple constraint on the base-manifold called f-
curvature-base (Ry,) and proposed to use it in order to simplify the equations, trying
to constructing a nonRicci-flat metric with non-constant Ricci curvature, on the base-
manifold obtaining, as a result for the cases examined, that this is equivalent to
the request for a flat metric. This paper is an extension of the works done in [11]
and moreover we make also a consideration about [12]. In the third part of the
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paper we reconsider the (n, —n)-PNDP-manifolds and we suggest a possible use in
the superconductor Graphene theory.

2 Main section

Definition 2.1. A metric which satisfies the condition Ric = Ag for some constant
A, is said to be an Einstein metric. A manifold which admits an Einstein metric is
called an Einstein manifold. (See [13]).

Definition 2.2. A warped product manifold is Einstein (see [11], also [9], [3]) if and
only if

Ric — %sz =g
(2.1) Ric = \g <= { Ric = uj

FAf+(m =1V + A2 =p,

where A and y are constants, m is the dimension of F, V2f, Af and Vf are, respec-
tively, the Hessian, the Laplacian and the gradient of f for g, with f : (B) — (0, 00)
a smooth positive function. Contracting the first equation of (2.1) we get:

(2.2) Rpf? —mfAf =nf?),

where n and Rp is the dimension and the scalar curvature of B respectively. By the
third equation, considering m # 0 and m # 1, we have:

(2.3) mfAf +m(m —1)|Vf|? +mAf2 = mp.
Now from (2.2) and (2.3) we obtain:

(2.4) IVF+ [A(m””RB] =t

m(m —1) (m—1)

Definition 2.3. Let (M, g) = (B, g) x ¢ (F, §) be an Finstein warped-product manifold
with § = g + f?§. We define the scalar curvature of the base-manifold (B, g) as f-
curvature-base (Ry,), if it is a multiple of the warping function f, i.e., Ry, = cf for
¢ an arbitrary constant belonging to R (see [11] as reference).

Remark 2.4. Since a warped product manifold (WPM) implies a non-constant warp-
ing function f (otherwise it would be a simply Riemannian product-manifold (for more
details see [8] and [10]), the results analyzed from now on will be considered from this
point of view.

2.1 Case 1. Ricci-flat EWP (A =0)
We further consider an non-Ricci-flat fiber-manifold (u # 0).

Theorem 2.1. Let (M?>™™, g) = (B?,g) x; (F™,§), be an Einstein warped-product
manifold Ricci-flat (i.e., Ric = \g with A\ = 0), where (B2, g) is a smooth surface
with non-zero Ry, and (F™,§) is a smooth Binstein-surface (i.e., Ric = pg). Then
such a structure (M?T™,G), cannot erist.
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Proof. In our case, we have n = 2, A = 0 and Rp = Ry, (see [11]). Then (2.2) and
(2.3) become:

(2.5) Af —hf?=0,

with h = ¢/m, and

(2.6) FAf+(m = DIVFP+ = p

Then (2.4) becomes:

(2.7) (m — D)V +hf* = p.

Now, by the initial hypothesis (non-zero Ry, ), we assume that h # 0 with f non-
constant, and set p = (m — 1) and u = —hf for an open set, where u is nonzero.
Thus:

(2.8) Au+u? =0,

(2.9) ulu + p|Vul? —u® — h?u =0,

(2.10) p|Vul? —u® — h?p = 0.

For the sake of simplicity, we replace the constant h?y with the constant A.

Let g be the metric on B and assume that u is a nonzero (hence necessarily positive)
solution, for the above system on a simply-connected open subset B’ € B. The
equation (2.10) implies that w; = (u? + A)~2p2 du, hence we have to assume (u®+ A)
nonzero; wi is a 1-form with g-norm 1 on B’ and hence g can be written as g =
w? + w3 for some wy, which is also a unit 1-form. We further fix an orientation by
considering wy Aws as the g-area form on B’. Then *du = (u® + A)%p_%wz7 and since
d(*du) = Au w1 A we, it follows that:

pt
=d[(u+ A)

(U + A)"2udu A ws + p~ 2 (ud + A)2 dw,

V= Njw

p_%wg] = —ulwy Awy = —u?(u® + A)_%p%du A wo

= 3(uP + A)"2uldu A wo + pu (uP + A)"Fdu Awy = —(u® + A)2dws.

Then (-3 — P)(31132+ A)"u2du A ws = dws and we have d[(ud + A) "5 ws] = 0, i.e.,
wo = (ud + A) "5 “dv, so the metric g = p(u® + A)"*du? + (ud + A)~173Pdv? has a
singularity in u® = —A. |

Remark 2.5. The analysis of the singularity is substantially the same as in [11].

Consider an open set for which (u3 + A) is nonzero. The Gaussian curvature is
given by: K = —5(u®+ A)Tutp — 3 (v + A)“tutp? — (v + A)"tutp® + 2up? + 3up?.
In this case, it is easy to verify that for the initial hypothesis, where we have set
Rp = Ry, (ie., K = —u'3}), and we observe that K is incompatible with our analysis.
In fact we have:

9 9
(2.11) —u% = —§(u3+A)_1u4p—§(u3+A)_1u4p2—(u3+A)_1u4p3+2up3+3up2,
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or m = (u® + A)~1u3(9p + 9p? + 2p?) — 6p? — 4p®. Now remembering that m = p+1,
we have:
p+ 14 6p? +4p® = (u® + A)~1u3(9p + 9p? + 2p?)

& (p+1+6p7 +4p°) (v’ + A) = u?(9p + 9p? + 2p%)

& (p+ 1+ 6p% +4p3)ud + Ap + A+ A6p? + Adp3 = (9p + 9p? + 2p3)u?

& Ap+ A+ A6p* + Adp® = (—2p° + 3p® + 8p — 1)u’.
Since u must be non-constant, this implies:
(a) 4p® 4+ 6p> +p+1 =0 and
(b) —2p® +3p* +8p—1=0.
But the polynomials (a) and (b) have different solutions, so (2.11) is satisfied only for

the constant u (i.e., f = constant), which is not admitted in our initial assumptions,
and therefore such (M?*™ g) cannot exist.

2.2 Case 2. Non Ricci-flat EWP (A #0)

We assume the case of a Ricci-flat fiber-manifold (1 = 0). The following result holds:

Theorem 2.2. Let (M?*t™ g) = (B?,g) x; (F™,§) be an PEinstein warped-product
manifold, where (B%,g) is a smooth surface with non-zero Ry, , and let (F™,§) be a
smooth Ricci-flat surface (i.e., Ric = pg, with u =0). Then (M?T™ g), cannot exist.

Proof. The analysis is essentially the same as seen so far, so we assume h # 0 and set
u= —hf, where f is not constant. The equations (2.2) and (2.4) become:

(2.12) hf? — Af —INf =0,
A I h
(2.13) VIP+=f ==+ =0,
p b p
where h = =~ | = % and p = (m — 1). Setting u = —hf, we obtain:
(2.14) u? + Au+ Qu =0,
(2.15) |Vul|? — Su? + Tu? — Du® =0,

with Q = Al, S = %, T = % and D = %7 where it is easy to see that D # 0, T # 0,
S#0and S—T # 0, for m # 2.
By the same token as in case (1b), we obtain from (2.15) that du = (u3D + Su? —
Tu?)'/2w,. This implies that we have to assume (u®D + Su? — Tw?) to be nonzero.
Then w; = (u®D + Su? — Tu?)~Y2du, so xdu = (u*D + Su?® — Tu?)'/2w,. Since
d(*du) = Au wy A we, we obtain

(2.16)  dwe = (_23u2D — Su+Tu —u* — Qu) (D + Su? — Tu?)"tdu A wy.

Thus we can write wy = u~4(Du + S — T)~Bdv for some constant A and B and

for some function v. Since for u = % we have a singularity and we have assumed

(u®D + Su? — Tu?) to be nonzero, then we must consider u # TTES.
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Remark 2.6. Even here, the analysis of the singularity is substantially the same
as in the previous case (i.e., (1b), it is sufficient to consider T=5 = A), so both are

D
equivalent to the studied case in [11].

Continuing with the calculations, we have: F = (u3D + Su? — Tw?)™! and G =
u=?4(Du+S—T)"2B. So, by Brioschi’s formula, we have that the Gaussian curvature
is:

K= (242+ A)(Du+ S — T)3u4+6A+4B) L AD(Duy + § — T)2u(64+45+5)
+(2ABD + ABD)uA+4B+7)(Dy 4 § — T)(2B+3)
+(2B%D? + BD?)uAT4B48) (Dy, + § — T)(2B+2),

Also in this case, for the initial hypothesis 2K = Ry, = cf, we must have K = —ug,
which means:

—1 = (247 + A)(Du+ S — T)3uBT6AH4E) L AD(Du + S — T)?u6AT45+
(2.17) H(2ABD + 4BD)u(6A+4B+6) (Dy 4 § — T)(2B+9)
+(232D2 + BDz)u(6A+4B+7)(Du +S— T)(ZB+2),

Now putting in relation the equation (2.16) with ws, we obtain:

—3u’D—Su+Tu—u?>—Qu —ADu— AS+ AT — BDu

u3D 4 Su2 — Tu? B Du?2 4 Su—Tu ’

and solving the partial fractions, we have:

_Q_ ,__m
(2.18) A=Z4l=g0o.

and then m # 2 (and m # 0, m # 1 from Definition 2). As well, we similarly infer

_3D—|—2 m — 2m?2 + 2

2.1 B - A=——
(2.19) 2D 4—-2m

and then m # 2 (and m # 0, m # 1 from Definition 2), where Z =S —T.

If (2.17) has a solution, then certainly the coefficients of u with highest degree must
vanish. Hence we can consider the right side of (2.17) composed of:

o Pi(u) = (242 + A)(Du + S — T)3uB+64+45) ' highest degree 6A + 4B + 6;

e Py(u) = AD(Du + S — T)?u(64+45+4) highest degree: 6A + 4B + 6;

e Py(u) = (2ABD+4BD)u6A+4B+6) (Dy 4§ —T)(2B+3) highest degree: 6A+6B+9;
e Py(u) = (2B>D?+ BD?)u(6A+4B+7) (Dy+ S —T)2B+2) highest degree: 6A+6B+9.

It is worth noticing that the highest degree of P (u) is equal to that of Py(u), and the
highest degree of Ps(u) is equal to that of Py(u). But since the constants A and B
can be non-integer and negative, we cannot know in advance which of the two degrees
is the highest. We have 3 cases:

I) 6A 4 6B + 9 is the highest degree;
IT) 6A + 4B + 6 is the highest degree;
) 6A+6B+9=6A+4B +6.
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Case I. From the coefficients of P3(u) and Py(u) if (2.17) is satisfied, we get: 24 +
2B + 5 =0, and considering (2.18) and (2.19) we have:

(2.20) —4m? —4m + 24 = 0,

i.e., m = 2, which is not possible for (2.18) and (2.19), and m = —3.

Now in the Case I - the highest degree vanish for m = —3, we consider the other
degrees and they also must vanish for m = —3, and hence we proceed to consider the
degree of Case II.

Case II. If (2.17) is satisfied, by considering coefficients of P;(u) and Pe(u), we get
(242 + A)D3 + AD? = 0, and since D is nonzero, we can divide for D3; then:

(2.21) A=—1.

Considering (2.18), we get —2 = 0 which is not possible, regardless of the value of m.

Case III. The equality in Case III implies B = —%, and for (2.19) this means:
(2.22) —2m? —2m + 8 =0,

which has no solution for the integer values of m.

We showed that (2.17) can be satisfied only for some constant value of the function
u (i.e., for f constant), which is not admitted in our initial assumptions. Then, also
in this case, (M?T™, g) cannot exist. O

2.3 Case 3. (2,m)-PNDP-manifolds with Ry,
Remark 2.7. The (2, m)-PNDP manifolds with Ry, do not exist.

From the PNDP-manifold definition (see [12]), for the (2, m) case, we know that
dimB = dimB' = 1, hence it immediately follows that such 1-dimensional manifolds
are Ricci-flat. From [3], we know that for 1-dimensional base with Ricci-flat fiber (i.e.,
for = 0), there exists an Einstein warped product manifold with A = m and f = .

Now if we consider Rg = Ry,, we should have Rp = cet, but also being well
known that for a product manifold the Ricci curvature of the product equals the sum
of the Ricci curvatures of each manifolds of the product (see [1]), we obtain that such
(2,m)-PNDP manifolds are Ricci-flat, so the scalar curvature of the base-manifold
cannot be cel.

As known, the PNDP-manifolds are born from the study of the Einstein-warped
product manifolds, and for this reason the following section will illustrate an important
application of the latter.

3 Special remarks about (n, —n)-PNDP manifolds in
superconductors Graphene mode
First of all we recall and highlight that the purpose of the PNDP-manifolds is precisely

to present the point-like manifolds from a mathematical point of view, and introduce
a type of manifold with a new kind of hidden dimensions.
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In [6], Capozziello et al. introduced the concept of the ”point-like manifold” build-
ing superconductors with graphen. In particular, they argue that the superconductor
Graphene can be produced by molecules organized in point-like structures where
sheets are constituted by (N + 1)-dimensional manifolds. Particles like electrons,
photons and "effective gravitons” are string modes moving on this manifold. In fact,
according to string theory, bosonic and fermionic fields like electrons, photons and
gravitons are particular ”states” or “modes” of strings. In their important work, they
show that at the beginning, there are point-like polygonal manifolds (with zero spa-
tial dimension) in space with strings attaching them, where all interactions between
strings on one manifold are the same, and are concentrated at one point where the
manifold is located. They also to show that by joining these manifolds, 1-dimensional
polygonal manifolds emerge such that gauge fields and gravitons live, and hence these
manifolds are glued to each other to build higher dimensional polygonal manifolds
with various orders of gauge fields and curvatures.

In this context, that the (n, —n)-PNDP manifolds play an important role. In fact
(n,—n)-PNDP appears as a point (point-like), because in general, from our inter-
pretation (see [12]), it is a point (positive and negative dimensions hide each other
out and and the total dimension equals zero), but in special it is composed of two
manifolds, B and F' with nonzero dimensions. So for the first time we have an object
that looks like a point (is point-like), but has a geometric structure which allows to
make calculations.

Coming back to the Graphene superconductors model, our (n, —n)-PNDP man-
ifold consists of two manifolds with nonzero dimensions (one with n-dimension and
one with —n-dimension), where these two manifolds can be thought as a result of
intersection of other manifolds. Then we can consider these two manifolds as con-
tained in a ”p-dimensional BULK”, but their warped product (which generates the
(n, —n)-PNDP) creates the point-like polygonal manifold, a point-like space-time as
supposed in [6].

The (n,—n)-PNDPs can be considered hence as possible mathematical interpre-
tation of point-like manifolds, because they render, for the first time, this abstract
concept as a coherent mathematical object.

4 Conclusions

We have observed that the dimension of fiber-manifolds does not influence the results
obtained in [11]. Not even the construction of a PNDP-manifold is made possible for
a 2-dimensional base-manifold case with Ry, . In conclusion, we point out a possible
important application for (n; —n)-PNDP manifolds, in the context of superconductor
Graphene theory.

References

[1] M. Atceken, S. Keles, On the product Riemannian manifolds, Differential Geom-
etry - Dynamical Systems, 5, 1 (2003), 1-8.

[2] H. Aytimur and C. Ozgur, Einstein Statistical Warped Product Manifolds, Filo-
mat 32, 11 (2018), 3891-3897.



Curvature constrained on the base-manifold 201

[3] A. L. Besse, Finstein Manifolds, Springer-Verlag 1987.

[4] A. M. Blaga, C. E. Hretcanu, Remarks on metallic warped product manifolds,
Facta Universitatis, Series: Mathematics and Informatics 33, 2 (2018), 269-277.

[6] U.C.De, S. Shenawy, B. Unal, Sequential warped products: curvature and Killing
vector fields, arXiv/1506.06056.

[6] S. Capozziello, R. Pincak, E. N. Saridakis, Constructing superconductors by
Graphene Chern-Simons wormholes, Ann. Phys. 390 (2018), 303-333.

[7] F. Feitosa, A. A. Freitas Filho, J. N. Vieira Gomesand R. Pina, On the con-
struction of gradient almost Ricci soliton warped product, Nonlinear Analysis
161 (2017), 30-43.

[8] A. Gebarowski, On Finstein warped products, Tensor N.S., 52 (1993), 204-207.

[9] B. Leandro, M. Lemes de Sousa, R. Pina, On the structure of Einstein warped
product semi-Riemannian manifolds, Journal of Integrable Systems 3 (2018), 1-
11.

[10] B. O’Neill, Semi-Riemannian Geometry with Applications to Relativity, Aca-
demic Press, New York, 1983.

[11] A. Pigazzini, On the (2+2)-FEinstein Warped Product Manifolds with f-curvature-
Base, Italian J. Pure Appl. Math. 44 (2020), to appear.

[12] A. Pigazzini, C. Ozel, P. Linker, S. Jafari, On PNDP-manifolds,
https://www.researchgate.net /publication/341326043_On_PNDP-manifolds,
doi:10.13140/RG.2.2.23516.82568 /14.

[13] A. Sambusetti, Einstein manifolds and obstructions to the existence of Einstein
metrics, Rendiconti di Matematica, Serie VII, 18 (1998), 131-149.

[14] W.I. Tokura, L. Adriano, R. Pina and M. Barboza, Gradient estimates on warped
product gradient almost Ricci solitons, arXiv/1905.00068.

Authors’ addresses:

Alexander Pigazzini
IT-Impresa SRL, 20900 Monza, Italy.
E-Mail: pigazzinialexander18@gmail.com

Cenap Ozel
King Abdulaziz University, Department of Mathematics, 21589 Jeddah KSA.
E-Mail: cenap.ozel@gmail.com

Saeid Jafari
College of Vestsjaelland South, Herrestraede 11, 4200 Slagelse, Denmark.
E-mail: jafaripersia@gmail.com



