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Abstract. In this paper the relationships between W2, P and other re-
lated tensors have been obtained and corresponding propositions are made.
Further, the condition for P -curvature tensor to satisfy the Bianchi differ-
ential identity has been established.
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1 Introduction

The W2 curvature tensor defined by [4] has been widely studied in differential geome-
try as well as in the space time of general relativity. [3] have studied it in P -Sasakian
manifold; [5] studied it for Sasakian manifold. [7] have introduced the notion of weekly
W2-symmetric manifolds and studied their properties. [10] have studied this tensor
in Kernmotsu manifolds, while [8] considered N(k)−quasi Einstein manifolds satisfy-
ing the conditionsR(ξ,X).W2 =0. Further [9] have studied Lorentzian Para-Sasakian
manifold satisfying some conditions on W2-curvature tensor. [1] have studied space
times satisfying Einstein field equations with vanishing of W2-curvature as well as
existence of killing and conformal killing vector fields. Further, the vanishing and
divergence of W2-tensor have also been studied in perfect fluid space-times. The
P -curvature tensor has been defined by breaking the W2-curvature tensor in skew
-symmetric part and some of its properties have been studied [4]. Further, W2-
curvature tensor was shown to extend Pirani formulation of gravitational waves to
Einstein space ([6]). Consider an n-dimensional space Vn in which the tensors:

(1.1) C(X,Y, Z, T ) = R(X,Y, Z, T )− (R/n(n−1))[g(X,T )g(Y,Z)−g(Y, T )g(X,Z)]

L(X,Y, Z, T ) =R(X,Y, Z, T )− (1/n− 2)[g(Y, Z)Ric(X,T )− g(X,Z)Ric(Y, T )+

g(X,T )Ric(Y, Z)− g(Y, T )Ric(X,Z)]
(1.2)

V (X,Y, Z, T ) =R(X,Y, Z, T )− (1/n− 2)[g(X,T )Ric(Y,Z)− g(Y, T )Ric(X,Z)+

g(Y, Z)Ric(X,T )− g(X,Z)Ric(Y, T )]

+R/(n− 1)(n− 2)[g(X,T )g(Y,Z)− g(Y, T )g(X,Z)]

(1.3)
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are known as concircular curvature tensor, conharmonic curvature tensor and con-
formal curvature tensor respectively. These tensors satisfy the symmetric and skew-
symmetric as well as the cyclic properties possessed by the Riemann curvature tensor
R(X,Y, Z, T ). The projective curvature tensor is given by:

(1.4) W (X,Y, Z, T ) = R(X,Y, Z, T )− (1/n− 1)[g(X,T )Ric(Y, Z)− g(X,Z)Ric(Y, T )].

It is seen that W (X,Y, Z, T ) = −W (X,Y, T, Z)butW (X,Y, Z, T ) ̸= −W (Y,X,Z, T ).
Further the tensor W (X,Y, Z, T ) satisfies only the following cyclic property:

(1.5) W (X,Y, Z, T ) +W (X,Z, T, Y ) +W (X,T, Y, Z) = 0.

The W2 - curvature tensor is defined as [4]:

(1.6) W2(X,Y, Z, T ) = R(X,Y, Z, T )− (1/n− 1)[g(Y,Z)Ric(X,T )− g(X,Z)Ric(Y, T )].

It is seen thatW2(X,Y, Z, T ) = −W2(Y,X,Z, T ) butW2(X,Y, Z, T ) ̸= W2(X,Y, T, Z).
Further the tensor W2(X,Y, Z, T ) satisfies only the following cyclic property:

(1.7) W2(X,Y, Z, T ) +W2(Y,Z,X, T ) +W2(Z,X, Y, T ) = 0.

The tensor W7(X,Y, Z, T ) is defined as [6]:
(1.8)
W7(X,Y, Z, T ) = R(X,Y, Z, T )− (1/n− 1)[g(X,T )Ric(Y, Z)− g(Y,Z)Ric(X,T )].

It is seen thatW7(X,Y, Z, T ) ̸= −W7(Y,X,Z, T )andW7(X,Y, Z, T ) ̸= W7(X,Y, T, Z).
Further none of the cyclic property is satisfied.

W7(X,Y, Z, T ) +W7(X,Z, T, Y ) +W7(X,T, Y, Z) ̸= 0

and

W7(X,Y, Z, T ) +W7(Y,Z,X, T ) +W7(Z,X, Y, T ) ̸= 0.

From equations (1.1) to (1.8) it is seen that for an empty gravitational field charac-
terized by Ric(X,Y ) = 0, these six fourth rank tensors are identical. In the space Vn

following relationships exist between these tensors.

(1.9a) V (X,Y, Z, T )− L(X.Y.Z.T ) = (n/n− 2)[R(X,Y, Z, T )− C(X,Y, Z, T )],

which in V4 reduces to:

(1.9b) V (X,Y, Z, T )− L(X.Y.Z.T ) = 2[R(X,Y, Z, T )− C(X,Y, Z, T )].

(1.10) W2(X,Y, Z, T ) +W7(X,Y, Z, T )−W (X,Y, Z, T ) = R(X,Y, Z, T ).

From the properties of these tensors, we have the following proposition.

Proposition 1.1. Curvature tensors having (skew) symmetric properties are the only
ones that satisfy the cyclic properties.
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2 The W2-curvature tensor

The Bianchi differential identity is given by:

(2.1) (∇uR)(X,Y, Z, T ) + (∇ZR)(X,Y, T, U) + (∇TR)(X,Y, U, Z) = 0.

If Ricci tensore R(X,Y) is of Codazzi type, then by [2]

(2.2) (∇xRic)(Y,Z) = (∇yRic)(X,Z) = (∇zRic)(X,Y ).

Using (2.2) for W2-curvature tensor in V4, it was found [1]

(∇xW2)(Y, Z, T, U)+(∇yW2)(Z,X, T, U) + (∇zW2)(X,Y, T, U) =

(1/3)[g(Y, T )(∇xRic)(Y, Z)− g(Z, T )(∇xRic)(Y, U)+

g(Z, T )(∇yRic)(X,U)− g(X,T )(∇yRic)(Z,U)+

g(X,T )(∇zRic)(Y, U)− g(Y, T )(∇zRic)(X,U)] = 0.

(2.3)

Hence, W2-curvature tensor satisfies Bianchi type differential identity. Conversely,
starting with equation (2.3) they found equation (2.2). Contracting W2(X,Y, Z, T ),
it was found that ([4]):

(2.4) W2(X,Y ) = (n/n− 1)[Ric(X,Y )− (R/n)g(X,Y )],

which vanishes in the Einstein space. Further, the scalar in variant W2 was found to
be identically equal to zero. Thus, we have the following proposition.

Proposition 2.1. W2-curvature tensor satisfies Bianchi differential identity if and
only if Ricci tensor is of Codazzi type and on contraction W2-curvature tensor vanishes
in an Einstein space with scalar invariant W2 being identically equal to zero.

Note: The W7(X,Y, Z, T ) curvature tensor in V4 on contraction gives:

W7(X,Y ) = (2/3)[Ric(X,Y ) + (R/2)g(X,Y )].

Hence W7(X,Y ) does not vanish in the Einstein space.

3 The P -curvature tensor

BreakingW2- curvature tensor in skew-symmetric parts in Z,T, the P -curvature tensor
has been defined [4] as :

P (X,Y, Z, T ) =(1/2)[W2(X,Y, Z, T )W2(X,Y, T, Z)] = R(X,Y, Z, T )−
1/2(n− 1)[g(Y, Z)Ric(X,T )− g(X,Z)Ric(Y, T )+

g(X,T )Ric(Y, Z)− g(Y, T )Ric(X,Z)].

(3.1)

Using (1.3) and (3.1), we get

P (X,Y, Z, T ) =n/2(n− 1)R(X,Y, Z, T ) + (n− 2)/2(n− 1)V (X,Y, Z, T )−
R/(n− 1)[g(X,T )g(Y, Z)− (Y, T )g(X,Z)].

(3.2)
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Using (1.2) and (3.1), we get

(3.3) P (X,Y, Z, T ) = n/(2(n− 1)R(X,Y, Z, T ) + (n− 2)/2(n− 1)L(X,Y, Z, T ).

For an electromagnetic field (or more generally in the case of space with vanishing
scalar curvature in V4 the equations (3.2) and (3.3) respectively become:

3P (X,Y,X, T ) = 2R(X,Y, Z, T ) + V (X,Y, Z, T ),

3P (X,Y, Z, T ) = 2R(X,Y, Z, T ) + L(X,Y, Z, T );

P (X,Y, Z, T ) = −P (Y,X,Z, T ),
P (X,Y, Z, T ) = −P (X,Y, T, Z),
P (X,Y, Z, T ) = P (Z, T,X, Y ).

Further, both the cyclic properties are satisfied:

(3.7a) P (X,Y, Z, T ) + P (Y, Z,X, T ) + P (Z,X, Y, T ) = 0

and

(3.7b) P (X,Y, Z, T ) + P (X,Z, T, Y ) + P (X,T, Y, Z) = 0.

Thus, it is observed that P (X,Y, Z, T )possesses all skew-symmetric and symmetric
properties as well as both cyclic properties of R(X,Y, Z, T ).

3.1 Bianchi identity for the P(X,Y,Z,T) tensor

The Bianchi differential identity is given by (2.1). Consider V4 to be the 4-dimensional
space time of general relativity, then the equation (3.1)becomes:

(3.8)
P (X,Y, Z, T ) = R(X.Y.Z, T )− (1/6)[g(Y, Z)Ric(X,T )− g(X,Z)Ric(Y, T )

+g(X,T )Ric(Y,Z)− g(Y, T )Ric(X,Z)].

In order to check if P -curvature tensor satisfies Bianchi differential identity, we com-
pute:

∇xP (Y, Z, T, U) +∇yP (Z,X, T, U) +∇zP (X,Y, T, U) = (∇xR)(Y, Z, T, U)−
(1/6)[g(Z, T )(∇xRic)(Y, U)− g(Y, T )(∇xRic)(Z,U) + g(Y,U)(∇xRic)(Z, T )−
g(Z,U)(∇xRic)(Y, T )] + (∇yR)(Z,X, T, U)− (1/6)[g(X,T )(∇yRic)(Z,U)−
g(Z, T )(∇yRic)(X,U) + g(Z,U)(∇yRic)(X,T )− g(X,U)(∇yRic)(Z, T )]+

(∇zR)(X,Y, T, U)− 1/6)[g(Y, T )(∇zRic)(X,U)− g(X,T )(∇zRic)(Y,U)+

g(X,U)(∇zRic)(Y, T )− g(Y, U)(∇zRic)(X,T )].

(3.9)

Using the equation (2.1), the equation (3.9) reduces to:

∇xP (Y,Z, T, U) +∇yP (Z,X, T, U) +∇zP (X,Y, T, U) = −(1/6)[g(X,T ){(∇yRic)(Z,U)−
(∇zRic)(Y,Z)}+ g(Y, T ){(∇zRic)(X,U)− (∇xRic)(Z,U)}+ g(Z, T ){(∇xRic)(Y, U)−
(∇yRic)(X,U)}+ g(Y,U){∇xRic)(Z, T )− (∇zRic)(X,T )}+ g(Z,U){(∇yRic)(X,T )−
(∇xRic)(Y, T )}+ g(X,U){(∇zRic)(Y, T )− (∇yRic)(Z, T )}].

(3.10)
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If the Ricci tensor is of Coddazi type, then using (2.2) the right hand side of equation
(3.10) becomes zero and we have:

(3.11) ∇xP (Y,Z, T, U) +∇yP (Z,X, T, U) +∇zP (X,Y, T, U) = 0.

Hence, P (X,Y, Z, T )satisfies Bianchi differential identity. Conversely, if P -curvature
tensor satisfied Bianchi differential identity, then by (3.9) and (2.1), we have:

g(X,T ){(∇yRic)(Z,U)− (∇zRic)(Y,Z)}+ g(Y, T ){(∇zRic)(X,U)−
(∇xRic)(Z,U)}+ g(Z, T ){(∇xRic)(Y,U)− (∇yRic)(X,U)}+
g(Y,U){∇xRic)(Z, T )− (∇zRic)(X,T )}+ g(Z,U){(∇yRic)(X,T )−
(∇xRic)(Y, T )}+ g(X,U){(∇zRic)(Y, T )− (∇yRic)(Z, T )} = 0.

(3.12)

For equation (3.12) to hold, equation (2.2) must be satisfied. Thus, we have the
following theorem.

Theorem 3.1. In V4 the P -curvature tensor satisfies Bianchi Differential identity if
and only if the Ricci tensor is of Codazzi type.

4 Conclusions

The geometrical and physical properties of W2-curvature tensor have been fairly
widely studied. The P -curvature tensor has been defined by breaking W2-curvature
tensor in skew- symmetric part in Z, T. Further, the P -curvature tensor satisfies
the skew-symmetric and symmetric, as well as cyclic properties that are satisfied by
the Riemann curvature tensor. Therefore, the tensor P (X,Y, Z, T ) can be useful for
studying the cosmological models. Also, by checking the consequences of the diver-
gence of the contracted part P (X,Y ), the possible applications in the Einstein field
equations as well as in perfect fluid space-time can be explored.
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