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Abstract. In this paper, we discuss a class of locally dually flat (α, β)-
metrics which are defined as L = κα+ ϵβ (κ and ϵ are constants), where
α is Riemannian metric and β is 1-form. We classify those with almost
isotropic flag curvature.
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1 Introduction

M. Matsumoto [9] introduced the concept of (α, β)-metric on a differentiable manifold
Mn, where α2 = aij(x)y

iyj is a Riemannian metric and β = bi(x)y
i is a 1-form. The

Matsumoto metric is an interesting (α, β)-metric introduced by using gradient of
slope, speed and gravity [8]. This metric formulates the model of a Finsler space.
Many authors [8, 1, 11] studied this metric by different perspectives. The notion of
dually flat metrics was first introduced by S. I. Amari and H. Nagaoka [2]. Later
on, Zhongmin Shen [14] extends the notion of dually flatness to Finsler metrics. In
particular, Zhongmin Shen [15] has classified projectively flat Randers metrics with
constant flag curvature. In 2009, X. Cheng, Z. Shen and Y. Zhou [4] classified the
locally dual flat Randers metrics with almost isotropic flag curvature.

Recently, Q. Xia worked on the dual flatness of Finsler metrics of isotropic flag cur-
vature as well as scalar flag curvature [16]. Further in 2014, S. K. Narasimhamurthy,
A. R. kavyashree and Y. K. Mallikarjun [10] discuss characterization of locally dually
flat first approximate Matsumoto metric. Locally dually flat Finsler metrics come
from information Geometry. Such metrics have very important geometric properties
and can play vital role in Finsler Geometry. In this paper, we discussed a class of
locally dually flat (α, β)-metrics which are defined as L = κα+ ϵβ (κ and ϵ are con-
stants), where α is Riemannian metric and β is 1-form. We classify those with almost
isotropic flag curvature.
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2 Preliminaries

For a Finsler Metric F = F (x, y) on a manifold M , the geodesics c = c(t) of F in the
local coordinates (xi) are defined by

d2xi

dt2
+ 2Gi

(
x,
dx

dt

)
= 0,

where (xi(t)) are the coordinates of c(t) and Gi = Gi(x, y) are defined by

Gi =
gil

4
{[F 2]xkylyk − [F 2]xl},

where gij =
1
2 [F

2]yiyj and (gij) = (gij)
−1. The local functions Gi = Gi(x, y) define a

global vector field G = yi ∂
∂xi − 2Gi(x, y) ∂

∂yi on TM . G is called spray of F and Gi

are called the spray coefficients.

Definition 2.1. A Finsler metric F = F (x, y) on a manifold is locally dually flat if
at every point there is a coordinate system (xi) in which the spray coefficients are in
the following form

(2.1) Gi = − 1

2
gijHyj ,

where H = H(x, y) is a local scalar function. Such a coordinate system is called an
adapted coordinate system.

It is known that a Riemannian metric F =
√
gij(x)yiyj is locally dually flat if

and only if in an adapted coordinate system, we have

gij(x) =
∂2ψ

∂xi∂xj
(x),

where ψ = ψ(x) is a C∞ function [3, 2].
The First example of non-Riemannian dually flat metric is given in [14] as follows

(2.2) F =

√
|y|2 − (|x|2|y|2 − ⟨x, y⟩2)

1− |x|2
± ⟨x, y⟩

1− |x|2
.

This metric is defined on the unit ball Bn ⊂ Rn.
First, let us introduce our notations. Let F = α+ β(n+1)

αn be a Finsler metric on a
manifold M .Define bi|j by

bi|jθ
j = dbi − bjθ

j
i ,

where θi = dxi and θji = Γ
j

ikdx
k denote the Levi-Civita connection forms of α.

Let

rij =
1

2
(bi|j + bj|i), sij =

1

2
(bi|j − bj|i).

Clearly, β is closed if and only if sij = 0. We denote r00 = rijy
iyj and sk0 = skmy

m.
The flag curvature in Finsler geometry is the analogue of the sectional curvature

in Riemannian geometry. A Finsler metric F on a manifold M is said to be of scalar
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flag curvature if the flag curvature K(P, y) = K(x, y) is a scalar function on TM − 0.
It is said to be of almost isotropic flag curvature if K(P, y) = 3cxmym/F + σ, where
c = c(x) and σ = σ(x) are scalar functions on M . If c = 0 and σ = constant, then F
is said to be of constant flag curvature [5, 6, 12].

For a given constant C ̸= 0, there might be many forms for α satisfying Hamel’s
projective flatness equation with constant sectional curvature kα = −C2 and β =
αxmym

2Cα . Note that if we take C = ±1 with

α =

√
|y|2 − (|x|2|y|2 − ⟨x, y⟩2)

1− |x|2

and

β = ± ⟨x, y⟩
1 + |x|2

,

in this case, F is the Funk metric on the unit ball Bn ⊂ Rn given in (2.2).

Definition 2.2. A Finsler Metric on a manifoldM is a C∞ function F : TM−{0} →
[0,∞) satisfying the following conditions

• Regularity: F is C∞ on TM − {0}.

• Positive homogeneity: F (x, λy) = λF (x, y), λ > 0.

• Strong convexity: the fundamental tensor gij(x, y) is positive definite for all
(x, y) ∈ TM − {0}, where gij(x, y) = 1

2 [F
2]yiyj (x, y).

By the homogeneity of F , we have F (x, y) =
√
gij(x, y)yiyj . An important class

of Finsler metrics is a class of Riemannian metrics, which are in the form of F (x, y) =√
gij(x)yiyj . Another important class of Finsler metrics is a class of Minkowski

metrics, which are in the form of F (x, y) =
√
gij(y)yiyj .

Dually flat Finsler metrics on an open subset in Rn can be characterized by a
simple PDE.

Lemma 2.1. [14] A Finsler metric F = F (x, y) on an open subset U ⊂ Rn is dually
flat if and only if it satisfies the following equations

(2.3) [F 2]xkylyk − 2[F 2]xl = 0.

In this case, H = H(x, y) in (2.1) is given by H = 1
6 [F

2]xmym.

Definition 2.3. A Finsler metric F = F (x, y) is locally projectively flat if at every
point there is a coordinate system (xi) in which all geodesics are straight line, or
equivalently, the spray coefficients are in the following form

(2.4) Gi = Pyi,

where P = P (x, y) is a local scalar function satisfying P (x, λy) = λP (x, y) for all
λ > 0.

Projectively flat metrics on an open subset in Rn can be characterized by a simple
PDE.
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Lemma 2.2. [7] A Finsler metric F = F (x, y) on an open subset U ⊂ Rn is projec-
tively flat if and only if it satisfies the following equations

(2.5) Fxkylyk − Fxl = 0.

In this case, local function P = P (x, y) is given by P = Fxmym/2F .

It is easy to show that any locally projectively flat Finsler metric F = F (x, y) is
of scalar flag curvature. Moreover, if Gi = Pyi in a local coordinate system, then the
flag curvature is given by

(2.6) K =
P 2 − Pxmym

F 2
.

Particularly, Beltrami’s theorem says that a Riemannian metric is locally projectively
flat if and only if it is of constant sectional curvature.

We have the following

Theorem 2.3. [15] Let F = α+ β be a locally projectively flat Randers metric on a
manifold. If it is of constant flag curvature, then one of the following holds

• F is locally isometric to the Randers metric F = |y| + by1 on Rn, where 0 ≤
b < 1 is a constant.

• After normalization, F is locally isometric to the following Randers metric on
a unit ball Bn ⊂ Rn

(2.7) F =

√
|y2| − (|x|2|y|2 − ⟨x, y⟩2)

1− |x|2
± ⟨x, y⟩

1− |x|2
± ⟨a, y⟩

1 + ⟨a, x⟩
,

where a ∈ Rn is a constant vector with |a| < 1.

A Finsler metric is said to be dually flat and projectively flat on an open subset
U ⊂ Rn if the spray coefficients Gi follow (2.1) and (2.4) in U . There are Finsler
metrics on an open subset in Rn which are dually flat and projectively flat.
Example: Let U ⊂ Rn be a strongly convex domain and there is a Minkowski norm
ϕ(y) on Rn such that

U = {y ∈ Rn|ϕ(y) < 1}.

Define F = F (x, y) > 0, y ̸= 0 by

x+
y

F
∈ ∂U, y ∈ TxU = Rn.

It is easy to show that F is a Finsler metric satisfying

(2.8) Fxk = FFyk .

Using (2.8), one can easily verify that F = F (x, y) satisfies (2.3) and (2.5). Thus it
is dually flat and projectively flat on U . F is called the Funk metric on U .

In fact, every dually flat and projectively flat metric on an open subset in Rn must
be either a Minkowski metric or a Funk metric satisfying (8) after normalization.
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3 Locally dually flat (α, β)-metrics

Assume that F = κα + ϵβ is dually flat on an open subset U ⊂ Rn. Now we prove
the following theorem

Theorem 3.1. If F = κα + ϵβ be a (α, β)-metric on a manifold M . F is a locally
dually flat if and only if in an adapted coordinate system, β and α satisfy

(3.1) r00 =
1

3
(6− 4κ2)βθ − 1

3
(2ϵ2 + 3)τβ2 + [κ2τ +

2

3
κ2(ϵ2τb2 − bmθ

m)]α2,

(3.2) sk0 = −θbk − βθk
3

,

(3.3) Gm
α =

1

3
κ2(2θ + ϵ2τβ)ym − 1

3
κ2(ϵ2τbm − θm)α2,

where τ = τ(x) is a scalar function and θ = θky
kis a 1-form on M and θm = aimθi.

Proof. It is straight forward to verify the sufficient condition. Thus we shall only
prove necessary condition. Assume that F = κα+ ϵβ is dually flat on an open subset
U ⊂ Rn. First we have the following identities

(3.4) αxk =
ym∂G

m
α

α∂yk
, βxk = bm|ky

m + bm
∂Gm

α

∂yk
, syk =

αbk − syk
α2

,

where s = β
α and yk = ajky

j .
In view of equation (3.4), we have

(3.5) [F 2]xk = 2(κ+ s ϵ)
[
(κym + αϵbm)

∂Gm
α

∂yk
+ αϵbm|ky

m
]
,

[F 2]xlykyl = 2ϵ
(αbksyk)

α2

[
2(κym + αϵbm)Gm

α + αϵr00
]

+ 2(κ+ s ϵ)
[
2(κamk +

yk
α
ϵbm)Gm

α

+ (κym + αϵbm)
∂Gm

α

∂yk
+
r00
α
ϵyk + αϵbk|0

](3.6)

Using (2.3) and (3.5) in (3.6), we get

ϵ(α2bk − βyk)
[
2(κym + αϵbm)Gm

α + αϵr00
]
+ (ακ+ βϵ)α

×
[
2(καamk + ykϵbm)Gm

α − (καym + α2ϵbm)
∂Gm

α

∂yk

+ r00ϵyk + α2ϵ(3sk0 − rk0)
]
= 0.

(3.7)

Rewriting (3.7) as a polynomial in α, we have[
− ϵbm

∂Gm
α

∂yk
+ κϵ(3sk0 − rk0)

]
α4 +

[
2ϵ2bkbmG

m
α + ϵ2bkr00

+ 2κ2amkG
m
α − κ2ym

∂Gm
α

∂yk
− ϵ2βbm

∂Gm
α

∂yk
+ βϵ2(3sk0 − rk0)

]
α3

+ κϵ(2bkymG
m
α + 2bmykG

m
α + r00yk + 2βamkG

m
α − βym

∂Gm
α

∂yk
)α2

− 2κϵβykymG
m
α = 0.

(3.8)
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From (3.8) we know that the coefficient of α is zero. Hence the coefficients of α3 must
be zero. Thus we have

2ϵ2bkbmG
m
α + ϵ2bkr00 + 2κ2amκG

m
α − κ2ym

∂Gm
α

∂yk

− ϵ2βbm
∂Gm

α

∂yk
+ βϵ2(3sk0 − rk0) = 0′

(3.9)

(−bm
∂Gm

α

∂yk
+ 3sk0 − rk0)α

4 + (2bkymG
m
α + 2bmykG

m
α

+ r00yk + 2βamkG
m
α − βym

∂Gm
α

∂yk
)α2 − 2βykymG

m
α = 0.

(3.10)

The sufficiency is clear because of (3.9) and (3.10). We just prove the necessity
Note that

(3.11) ym
∂Gm

α

∂yk
=
∂(ymG

m
α )

∂yκ
− amkG

m
α ,

(3.12) bm
∂Gm

α

∂yk
=
∂(bmG

m
α )

∂yk
.

Contracting (3.9) and (3.10) with bk and using (3.11), (3.12), we get

κ2
∂(ymG

m
α )

∂yk
bk + ϵ2β

∂(bmG
m
α )

∂yk
bk

= (2ϵ2b2 + 3κ2)bmG
m
α + ϵ2b2r00 + βϵ2(3s0 − r0)

(3.13)

α4 ∂(bmG
m
α )

∂yk
bk + βα2 ∂(ymG

m
α )

∂yk
bk = (3s0 − r0)α

4

+ (2b2ymG
m
α + 5βbmG

m
α + βr00)α

2 − 2β2ymG
m
α .

(3.14)

Using (3.13)× α4-(3.14)× β yield[
∂(ymG

m
α )

∂yk
bk − 3bmG

m
α

]
α2(κ2α2 − β2) = (2bmα

2Gm
α + r00α

2 − 2βymG
m
α )

× (b2ϵ2α2 − β2).

(3.15)

Because (b2ϵ2α2 − β2) and (κ2α2 − β2) and α2 are all irreducible polynomial of (yi),
and (κ2α2 − β2) and α2 are relatively prime polynomial of (yi), we know that there
is a function τ = τ(x) on M such that

(3.16) 2bmα
2Gm

α + r00α
2 − 2βymG

m
α = τα2(κ2α2 − β2),

(3.17)
∂(ymG

m
α )

∂yk
bk − 3bmG

m
α = τ(b2ϵ2α2 − β2).

Equation (3.16) can be written as

(3.18) 2βymG
m
α = (2bmG

m
α + r00 − τκ2α2 + τβ2)α2.
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Since α2 does not contain the factor β, we have

(3.19) ymG
m
α = θα2,

(3.20) bmG
m
α = βθ − 1

2
r00 +

τ

2
κ2α2 − τ

2
β2,

where θ = θky
k is a 1-form on M . then we obtain the following

(3.21)
∂(ymG

m
α )

∂yk
= θkα

2 + 2θyk,

(3.22)
∂(bmG

m
α )

∂yk
= βθk + θbk − rk0 + τκ2yk − τβbk.

In View of equations (3.19), (3.20), (3.21) and (3.22), equations (3.9) and (3.10)
become

βϵ2(3sk0 + θbk − βθk) + κ2α2(τbkϵ
2 − θk) + 3κ2amκG

m
α

− κ2(2θ + τβϵ2)yk = 0,
(3.23)

[
(3sk0 + θbk − βθk) + (τbk − θk)β

]
α2

− (2θ + τβ)βyk + 3βamkG
m
α = 0.

(3.24)

Using (3.23)× β-(3.24)× κ2, we get

(3.25) 3sk0 + bkθ − θkβ = 0,

Equation (3.25), gives

(3.26) sk0 = −θbk − βθk
3

.

Contracting (3.26) with alk, we get

(3.27) 3sl0 + θbl − βθl = 0.

Contracting (3.23) with alk and using (3.27), we get

(3.28) Gm
α =

1

3
κ2(2θ + τβϵ2)ym − 1

3
κ2(τϵ2bm − θm)α2.

Using (3.28) in (3.20), we get

(3.29) r00 =
1

3
(6− 4κ2)βθ − 1

3
(2ϵ2 + 3)τβ2 + κ2

[
τ +

2

3
(τb2ϵ2 − bmθ

m)
]
α2

�
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4 Dually flat and projectively flat metrics

In this section, we are going to prove the Lemma for dually flat and projectively flat
metrics

Lemma 4.1. Let F = κα+ ϵβ be a locally dually flat Randers metric on a manifold
M . Suppose that β satisfies the following equation:

(4.1) r00 = c(α2 − β2)− 2βs0,

where c = c(x) is a scalar function onM . Then F is locally projectively flat in adapted
coordinate systems with Gi = (κ2ϵ2τβ + r00+2βs0

2F )yi.

Proof. The formula for the spray coefficient Gi of F ,

(4.2) Gi = Gi
α +

r00 + 2βs0
2F

yi − s0y
i + αsi0,

where Gi
α denote the spray coefficients of α. We shall prove that α is projectively flat

in the adopted coordinate system, i.e., Gi
α = Pαy

i and β is closed, i.e., sij = 0. By
(3.29) and (4.1), we have[

c− τκ2 − 2

3
κ2(τb2ϵ2 − bmθ

m)

]
α2

=

[
2s0 +

1

3
(6− 4κ2)θ + (c− 1

3
(2ϵ2 + 3)τ)β

]
β.

(4.3)

Since α2 is irreducible polynomial of yi, we conclude that

(4.4) c− τκ2 − 2

3
κ2(τb2ϵ2 − bmθ

m) = 0,

(4.5) s0 =
1

2

[
(
1

3
(2ϵ2 + 3)τ − c)β

]
− 1

6
(6− 4κ2)θ.

From (3.27), we have

(4.6) s0 = −1

3
(θb2 − βbmθ

m).

From (4.5) and (4.6), we get

2

3

[
1

2
(6− 4κ2)− b2

]
θ =

2

3

[
1

2
(6− 4κ2)− b2

]
τβϵ2

+

[
τκ2 − c+

2

3
κ2(τb2ϵ2 − bmθ

m)

]
β.

(4.7)

In view of (4.4) and (4.7), we have

θ = τβϵ2.
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By (4.4) we see that c = τκ2. From (3.26) and θ = τβϵ2, we get sij = 0. Thus β is
closed. Then

r00 = c(α2 − β2).

Plugging θ = τβϵ2 into (3.28), we get

Gi
α = κ2ϵ2τβyi.

Thus α is projectively flat in the adopted coordinate system. By (4.2), we get

(4.8) Gi = (κ2ϵ2τβ +
r00 + 2βs0

2F
)yi.

Therefore F = κα+ ϵβ is projectively flat in adopted coordinate systems. �

Remark 4.1. The S curvature is an important non-Riemannian quantity in Finsler
geometry ([5, 4, 12]). A Finsler metric is said to be of isotropic S-curvature if S =
(n + 1)c(x)F . It is shown that metric F = κα + ϵβ is of isotropic S-curvature
S = (n+ 1)c(x)F if and only if it satisfies (4.1).

Lemma 4.2. Let F = κα+ϵβ be a locally dually flat Rander metric on a manifoldM .

If it is of almost isotropic flag curvature, K = 3c̃xm (x)ym

F+σ(x) , then it is locally projectively

flat in adopted coordinate system with Gi = (κ2ϵ2τβ + r00+2βs0
2F )yi, where c = c(x) is

a scalar function such that c(x)− c̃(x) = constant.

Proof. Assume that F = κα+ ϵβ is of almost isotropic flag curvature K = 3c̃xm (x)ym

F+σ(x) .

According to Theorem (1.2) in [13], F Must be of isotropic S-curvature, i.e., β satisfies
(4.1) for a scalar function c = c(x) such that c(x) − c̃(x) = constant. Further,
because F is locally dually flat, by Lemma 4.1, F is locally projectively flat in adopted
coordinate systems with spray coefficients given by (4.8) �
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