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Abstract. The object of the present paper is to study a type of Rie-
mannian manifold, namely, an almost pseudo semiconformally symmetric
manifold which is denoted by A(PSCS)n. Several geometric properties of
such a manifold are studied under certain curvature conditions. Some re-
sults on Ricci symmetric A(PSCS)n and Ricci-recurrent A(PSCS)n are
obtained. Next, we consider the decomposability of A(PSCS)n. Finally,
two non-trivial examples of A(PSCS)n are constructed.
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1 Introduction

Riemannian symmetric spaces have an important role in differential geometry. They
were first classified by Cartan [4] in the late twenties and he also gave a classification
of Riemannian symmetric spaces. In 1926, Cartan [4] studied the certain class of
Riemannian spaces and introduced the notation of a symmetric space. According to
him, an n-dimensional Riemannian manifold M is said to be locally symmetric if its
curvature tensor R satisfies Rhijk,l = 0, where “,” represent the covariant differentia-
tion with respect to the metric tensor and Rhijk are the components of the curvature
tensor of the manifold M. This condition of locally symmetry is equivalent to the fact
that the local geodesic symmetry F (P ) is an isometry [20] at every point P ∈ M .

After Cartan, the notation of locally symmetric manifolds has been reduced by
many authors in several ways to a different extent such as pseudo symmetric manifolds
introduced by Chaki [6], recurrent manifolds introduced by Walker [27], conformally
symmetric manifolds introduced by Chaki and Gupta [5], conformally recurrent man-
ifolds introduced by Adati and Miyazawa [2], weakly symmetric manifolds introduced
by Tamássy and Binh [26], etc.

In 1967, Sen and Chaki [24] obtained an expression for the covariant derivative of
the curvature tensor while studying conformally flat space of class one with certain
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curvature restrictions on the curvature tensor, which is as follows:

(1.1) Rh
ijk,l = 2λlR

h
ijk + λiR

h
ljk + λjR

h
ilk + λkR

h
ijl + λhRl

ijk ,

where Rh
ijk are the components of the curvature tensor R, Rlijk = ghlR

h
ijk, λi is

a non-zero covariant vector. Later in 1987, Chaki [6] introduced a manifold whose
curvature tensor satisfies (1.1) and called it a pseudo symmetric manifold. In the
index-free notation this can be defined as:

(∇ER)(X,Y )W = 2A(E)R(X,Y )W +A(X)R(E, Y )W

+ A(Y )R(X,E)W +A(W )R(X,Y )E

+ g(R(X,Y )W,E)ρ,(1.2)

where A is a non-zero 1-form called the associate 1-form of the manifold. Here, ρ is
a vector field corresponding to 1-form A and is defined by

(1.3) g(E, ρ) = A(E),

for all vector field E, and ∇ represents the operator of covariant differentiation with
respect to the metric tensor g. Taking A = 0 in (1.2) the manifold reduces to a
symmetric manifold in the sense of Cartan. An n-dimensional pseudo symmetric
manifold is denoted by (PS)n. It should be taken into account that the notation of
pseudo symmetric manifold studied in particular by Deszez([3],[8],[9],[10]) differ from
that of Chaki [6].

In 2008, De and Gazi [11] introduced a type of Riemannian manifold which is
a generalization of pseudo symmetric manifolds. Such manifold is called an almost
pseudo symmetric manifold and is denoted by (APS)n. A Riemannian manifold
(Mn, g), (n > 2) is said to be an almost pseudo symmetric [11] if its curvature tensor
R of type (0, 4) satisfies the following relation:

(∇ER)(X,Y,W, V ) = [A(E) +B(E)]R(X,Y,W, V ) +A(X)R(E, Y,W, V )

+ A(Y )R(X,E,W, V ) +A(W )R(X,Y,E, V )

+ A(V )R(X,Y,W,X),(1.4)

where A,B are non-zero 1-forms given by

(1.5) g(E, ρ) = A(E), g(E, σ) = B(E),

for all vector fields E. In the paper ([12],[13]) it has been mentioned that (PS)n is a
particular case of an (AP )n.

Gray[16] introduced two groups of Riemannian manifolds based on the covariant
differentiation of the Ricci tensor. The first group contains all Riemannian manifolds
whose Ricci tensor S is a Codazzi tensor, that is,

(1.6) (∇ES)(X,Y ) = (∇XS)(E, Y ).

The second group contains all Riemannian manifolds whose Ricci tensor S is cyclic
parallel, that is,

(1.7) (∇ES)(X,Y ) + (∇XS)(E, Y ) + (∇Y S)(E,X) = 0.
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In 1952, Patterson [22] introduced the notion of Ricci-recurrent manifolds. A non-
flat Riemannian manifold (M, g), (n > 2) is said to be a Ricci-recurrent manifold [22]
if its non-zero Ricci tensor S of type (0,2) satisfies the following condition

(∇ES)(X,Y ) = H̃(E)S(X,Y ),(1.8)

where H̃ is non-zero 1-form called 1-form of recurrence, which is defined by

(1.9) g(E, µ) = H̃(E).

In 2016, Kim [18] introduced a type of curvature tensor which is a combination of
conformal and conharmonic curvature tensor, called semiconformal curvature tensor.
The semiconformal curvature tensor of type (1, 3) remains invariant under conhar-
monic transformation [1]. More precisely, the semiconformal curvature tensor P̃ of
type (1, 3) on a Riemannian manifold (Mn, g) is defined as follows:

(1.10) P̃ (X,Y )W = −(n− 2)bC(X,Y )W + [a+ (n− 2)b]H(X,Y )W,

where a, b are constants not simultaneously zero, C(X,Y )W denotes the conformal
curvature tensor of type (1, 3), and H(X,Y )W denotes the conharmonic curvature
tensor of type (1, 3). The conformal curvature tensor and the conharmonic curvature
tensor[25] are given as follows:

C(X,Y )W = R(X,Y )W − 1

(n− 2)

[
S(Y,W )X − S(X,W )Y + g(Y,W )LX

− g(X,W )LY
]
+

r

(n− 1)(n− 2)

[
g(Y,W )X − g(X,W )Y

]
,(1.11)

and,

H(X,Y )W = R(X,Y )W − 1

(n− 2)

[
S(Y,W )X − S(X,W )Y + g(Y,W )LX

− g(X,W )LY
]
,(1.12)

where L is the symmetric endomorphism of the tangent space at each point corre-
sponding to the Ricci tensor S, that is, g(LE,X) = S(E,X) and r is the scalar
curvature of the manifold. From equations (1.10),(1.11) and (1.12) we obtain an
expression for semiconformal curvature tensor P (X,Y,W, V ) of type (0,4) as follows:

P (X,Y,W, V ) = aR(X,Y,W, V )− a

(n− 2)

[
S(Y,W )g(X,V )

− S(X,W )g(Y, V ) + S(X,V )g(Y,W )− S(Y, V )g(X,W )
]

− br

(n− 1)

[
g(Y,W )g(X,V )− g(X,W )g(Y, V )

]
,(1.13)

where P (X,Y,W, V ) = g(P̃ (X,Y )W,V ).

For a = 1 and b = − 1

(n− 2)
, the semiconformal curvature becomes conformal

curvature tensor and for a = 1 and b = 0, such a tensor reduces to conharmonic
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curvature tensor. A Riemannian manifold (Mn, g) of dimension n ≥ 4 is said to be
pseudo semiconformally symmetric [17] if its semiconformal curvature tensor P of
type (0, 4) satisfies the relation

(∇EP )(X,Y,W, V ) = 2A(E)P (X,Y,W, V ) +A(X)P (E, Y,W, V )

+ A(Y )P (X,E,W, V ) +A(W )P (X,Y,E, V )

+ A(V )P (X,Y,W,E).(1.14)

The semiconformal curvature tensor is further studied in the recent paper by De
and Suh [14]. An almost pseudo symmetric manifold introduced by De and Gazi
[11] is an important generalization of symmetric space which is studied by several
geometers ([15],[7],[21],[19]), and many others. Motivated by there studies in an
almost pseudo symmetric manifold and semiconformal curvature tensor, in the present
paper, we introduced a type of non-flat Riemannian manifold (Mn, g), (n ≥ 4) whose
semiconformal curvature tensor P of type (0, 4) satisfies the condition

(∇EP )(X,Y,W, V ) = [A(E) +B(E)]P (X,Y,W, V ) +A(X)P (E, Y,W, V )

+ A(Y )P (X,E,W, V ) +A(W )P (X,Y,E, V )

+ A(V )R(X,Y,W,E),(1.15)

where A and B are non-zero 1-forms and are called the associated 1-forms, defined
as in (1.5), and ∇ has the meaning previously introduced. The vector fields ρ and σ
corresponding to the associated 1-forms A and B respectively shall be called the basic
vector fields of the manifold. We shall be calling such a manifold as an almost pseudo
semiconformally symmetric manifold and an n-dimensional manifold of this kind shall
be denoted by A(PSCS)n. If in (1.15) A = B, then the manifold becomes a pseudo
semiconformally symmetric manifold defined by (1.14). The manifold A(PSCS)n
includes an almost pseudo conformally symmetric manifold [13] and an almost pseudo
conharmonically symmetric manifold [21].

The present paper is organized as follows: After preliminaries, in section 3 we in-
vestigated some geometric properties of A(PSCS)n with non-zero constant scalar cur-
vature and Codazzi type of Ricci tensor. In section 4, Ricci symmetric A(PSCS)n and
Ricci recurrent A(PSCS)n are studied. Section 5 deals with an Einstein A(PSCS)n.
In section 6, it is concerned with the decomposition of A(PSCS)n and exactly defined
each product manifolds of an A(PSCS)n. Finally, we constructed two non-trivial ex-
amples of A(PSCS)n.

2 Preliminaries

Let r and S denote the scalar curvature and the Ricci tensor of type (0,2) respectively
and L has the meaning already mentioned, that is,

(2.1) g(LE,X) = S(E,X).

In this section, we will derive some formulas, which we will be using in the study of
A(PSCS)n throughout this paper. Let {ei} be an orthonormal basis of the tangent
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space at each point of the manifold where 1 ≤ i ≤ n.
Now from equation (1.13), we have

(2.2)

n∑
i=1

P (X,Y, ei, ei) = 0 =

n∑
i=1

P (ei, ei, X, Y ),

and,

(2.3)

n∑
i=1

P (ei, Y,W, ei) =

n∑
i=1

P (Y, ei, ei,W ) = −{a+ (n− 2)b}r
(n− 2)

g(Y,W ),

where, r =
∑n

i=1 S(ei, ei) is the scalar curvature.

Making use of equation (1.13) we obtain the following relations:

(i) P (X,Y,W, V ) = −P (Y,X,W, V ),

(ii) P (X,Y,W, V ) = −P (X,Y, V,W ),

(iii) P (X,Y,W, V ) = P (W,V,X, Y ),

(iv) P (X,Y,W, V ) + P (Y,W,X, V ) + P (W,X, Y, V ) = 0.(2.4)

3 An A(PSCS)n, (n ≥ 4) with non-zero constant scalar
curvature and Codazzi type of Ricci tensor.

Theorem 3.1. In A(PSCS)n, (n ≥ 4) the scalar curvature is a non-zero constant if
and only if (4 + n)A(E) + nB(E) = 0, provided [a+ (n− 2)b] ̸= 0.

Proof. Taking covariant derivative of equation (1.13) with respect to E we get,

a(∇ER)(X,Y,W, V ) = (∇EP )(X,Y,W, V ) +
a

(n− 2)

{
(∇ES)(Y,W )g(X,V )

− (∇ES)(X,W )g(Y, V ) + (∇ES)(X,V )g(Y,W )

− (∇ES)(Y, V )g(X,W )

}
+

b dr(E)

(n− 1)

{
g(Y,W )g(X,V )

− g(X,W )g(Y, V )

}
.(3.1)

Inserting equation (1.15) in equation (3.1) we obtain,

a(∇ER)(X,Y,W, V ) = [A(E) +B(E)]P (X,Y,W, V ) +A(X)P (E, Y,W, V )

+ A(Y )P (X,E,W, V ) +A(W )P (X,Y,E, V )

+ A(V )R(X,Y,W,E) +
a

(n− 2)

{
(∇ES)(Y,W )g(X,V )

− (∇ES)(X,W )g(Y, V ) + (∇ES)(X,V )g(Y,W )

− (∇ES)(Y, V )g(X,W )

}
+
b dr(E)

(n− 1)

{
g(Y,W )g(X,V )

− g(X,W )g(Y, V )

}
.(3.2)
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Putting X = V = ei, (i = 1, 2, ..., n) and λ =
{a+ (n− 2)b}r

(n− 2)
in equation (3.2), we

obtain

a(∇ES)(Y,W ) = [A(E) +B(E)]
[
−λrg(Y,W )

]
+A(P̃ (E, Y )W )

+ A(Y )
[
−λrg(E,W )

]
+A(W )

[
−λrg(Y,E)

]
−A(P̃ (W,E)Y )

+
a

(n− 2)

[
n(∇ES)(Y,W )− (∇ES)(W,Y ) + dr(E)g(Y,W )

− (∇ES)(Y,W )
]
+ b dr(E)g(Y,W ).(3.3)

Contracting over Y and W in equation (3.3), the above equation reduces to

n[a+ (n− 2)b] dr(E) = [a+ (n− 2)b]r[(4 + n)A(E) + nB(E)].(3.4)

Assuming [a+ (n− 2)b] ̸= 0, then equation (3.4) reduces to

(3.5) ndr(E) = r[(4 + n)A(E) + nB(E)].

Clearly if [(4 + n)A(E) + nB(E)] = 0 then r is a non-zero constant.
Conversely, if r is a non-zero constant then [(4 + n)A(E) + nB(E)] = 0.
This completes the proof. �

Theorem 3.2. If Ricci tensor in A(PSCS)n is of Codazzi type then the semiconfor-
mal curvature tensor P satisfies Bianchi’s second identity.

Proof. Making use of equation (1.13) we can obtain

(∇EP )(X,Y,W, V ) + (∇XP )(Y,E,W, V ) + (∇Y P )(E,X,W, V )

= a
[
(∇ER)(X,Y,W, V ) + (∇XR)(Y,E,W, V )

+ (∇Y R)(E,X,W, V )
]
− a

(n− 2)

[
(∇ES)(Y,W )g(X,V )

− (∇ES)(X,W )g(Y, V ) + (∇ES)(X,V )g(Y,W )

− (∇ES)(Y, V )g(X,W ) + (∇XS)(E,W )g(Y, V )

− (∇XS)(Y,W )g(E, V ) + (∇XS)(Y, V )g(E,W )

− (∇XS)(E, V )g(Y,W ) + (∇Y S)(X,W )g(E, V )

− (∇Y S)(E,W )g(X,V )− (∇Y S)(X,V )g(E,W )

+ (∇Y S)(E, V )g(X,W )
]
− b

(n− 1)

[
dr(E){g(Y,W )g(X,V )

− g(X,W )g(Y, V )}+ dr(X){g(E,W )g(Y, V )

− g(Y,W )g(E, V )}+ dr(Y ){g(X,W )g(E, V )

− g(E,W )g(X,V )}
]
.(3.6)

Since the Ricci tensor is of Codazzi type, S satisfies the relation:

(3.7) (∇ES)(X,Y ) = (∇XS)(E, Y ),
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implies r = constant.
Moreover, inserting equation (3.7) in equation (3.6), we have

(3.8) (∇EP )(X,Y,W, V ) + (∇XP )(Y,E,W, V ) + (∇Y P )(E,X,W, V ) = 0.

Hence, the theorem is proved. �

Theorem 3.3. In A(PSCS)n, if the semiconformal curvature tensor P satisfies
Bianchi’s second identity then A(PSCS)n reduces to a pseudo semiconformally sym-
metric manifold, provided [a+ (n− 2)b] ̸= 0 and r ̸= 0.

Proof. Suppose that the semiconformal tensor P in A(PSCS)n satisfies Bianchi’s
second identity. Then making use equation (1.15), we get

[B(E)−A(E)]P (X,Y,W, V ) + [B(X)−A(X)]P (Y,E,W, V )

+[B(Y )−A(Y )]P (E,X,W, V ) = 0.(3.9)

Let Q(E) = B(E)−A(E) and ρ1 be a basic vector such that

(3.10) g(E, ρ1) = Q(E),

for all E. Equation (3.9) with the help of equation (3.10) may be written as

(3.11) Q(E)P (X,Y,W, V ) +Q(X)P (Y,E,W, V ) +Q(Y )P (E,X,W, V ) = 0.

Putting X = V = ei in equation (3.11), the above equation reduces to

Q(E)

{
− [a+ (n− 2)b]r

(n− 2)
g(Y,W )

}
+Q(P̃ (Y,E)W )

−Q(Y )

{
− [a+ (n− 2)b]r

(n− 2)
g(E,W )

}
= 0,(3.12)

and contracting over Y and W , we infer

(3.13) [a+ (n− 2)b]rQ(E) = 0.

Suppose r ̸= 0 and [a+ (n− 2)b] ̸= 0 in above equation implies Q(E) = 0.
This completes the proof. �

Theorem 3.4. If A(PSCS)n satisfies Bianchi’s second identity then the scalar cur-
vature is constant provided [a+ (n− 2)b] ̸= 0.

Proof. Suppose A(PSCS)n satisfies Bianchi’s second identity. Then, from equation
(1.13), we obtain

a

(n− 2)

{
(∇ES)(Y,W )g(X,V )− (∇ES)(X,W )g(Y, V ) + (∇ES)(X,V )g(Y,W )

−(∇ES)(Y, V )g(X,W ) + (∇XS)(E,W )g(Y, V )− (∇XS)(Y,W )g(E, V )

+(∇XS)(Y, V )g(E,W )− (∇XS)(E, V )g(Y,W ) + (∇Y S)(X,W )g(E, V )

−(∇Y S)(E,W )g(X,V )− (∇Y S)(X,V )g(E,W ) + (∇Y S)(E, V )g(X,W )

}
+

b

(n− 1)

{
dr(E){g(Y,W )g(X,V )− g(X,W )g(Y, V )}+ dr(X){g(E,W )g(Y, V )

−g(Y,W )g(E, V )}+ dr(Y ){g(X,W )g(E, V )− g(E,W )g(X,V )}
}

= 0.(3.14)
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Contracting equation (3.14) over Y and W , the equation reduces to

a

(n− 2)

[
1

2
dr(E)g(X,V ) + (n− 2)(∇ES)(X,V ) + (2− n)(∇XS)(E, V )

−1

2
dr(X)g(E, V )− (∇ES)(X,V ) + (∇XS)(E, V )

]
+ bg(X,V )dr(E)

−bg(E, V )dr(X) +
b

(n− 1)

[
dr(X)g(E, V )− dr(E)g(X,V )

]
= 0.(3.15)

Substituting X = V = ei in equation (3.15) yields

(3.16) [a+ (n− 2)b] dr(E) = 0.

This completes the proof. �

4 Ricci Symmetric A(PSCS)n, (n ≥ 4) and Ricci-recurrent
A(PSCS)n, (n ≥ 4).

Theorem 4.1. In a Ricci symmetric A(PSCS)n, (n ≥ 4), the Bianchi’s second iden-
tity holds for semiconformal curvature tensor.

Proof. Since A(PSCS)n is Ricci symmetric, the Ricci tensor S satisfies the condition

∇S = 0

and dr = 0.
Using this, we have

(∇EP )(X,Y,W, V ) = a(∇ER)(X,Y,W, V ).

Hence,

(∇EP )(X,Y,W, V ) + (∇XP )(Y,E,W, V ) + (∇Y P )(E,X,W, V ) =

a[(∇ER)(X,Y,W, V ) + (∇XR)(Y,E,W, V ) + (∇Y R)(E,X,W, V )],(4.1)

implies,

(4.2) (∇EP )(X,Y,W, V ) + (∇XP )(Y,E,W, V ) + (∇Y P )(E,X,W, V ) = 0.

Hence, the theorem is proved. �

Theorem 4.2. In a Ricci symmetric A(PSCS)n, (n ≥ 4) the vector fields corre-
sponding to the 1-forms A and B are in opposite direction, provided r ̸= 0 and
[a+ (n− 2)b] ̸= 0.

Proof. Contracting equation (1.15) over E, we get

(divP̃ )(X,Y )W = A(P̃ (X,Y )W ) +B(P̃ (X,Y )W )−A(X)

{
[a+ (n− 2)b]r

(n− 2)

}
g(Y,W ) +A(Y )

{
[a+ (n− 2)b]r

(n− 2)

}
g(X,W ) +A(P̃ (X,Y )W ).(4.3)



On almost pseudo semiconformally symmetric manifolds 241

Moreover we have,

(divP̃ )(X,Y )W =
a(n− 3)

(n− 2)

{
(∇XS)(Y,W )− (∇Y S)(X,W )

}
−
{
[a(n− 1) + b(n− 2)]

2(n− 1)(n− 2)

}{
dr(X)g(Y,W )− dr(Y )g(X,W )

}
.(4.4)

Combining equations (4.3) and (4.4), the above equations reduces to

A(P̃ (X,Y )W ) +B(P̃ (X,Y )W )−A(X)

{
[a+ (n− 2)b]r

(n− 2)

}
g(Y,W ) +A(Y )

{
[a+ (n− 2)b]r

(n− 2)

}
g(X,W ) +A(P̃ (X,Y )W )

=
a(n− 3)

(n− 2)

{
(∇XS)(Y,W )− (∇Y S)(X,W )

}
−
{
[a(n− 1) + b(n− 2)]

2(n− 1)(n− 2)

}{
dr(X)g(Y,W )− dr(Y )g(X,W )

}
.(4.5)

Suppose the manifold is Ricci symmetric, then equation (4.5) becomes

2A(P̃ (X,Y )W ) +B(P̃ (X,Y )W )−A(X)

{
[a+ (n− 2)b]r

(n− 2)

}
g(Y,W )

+A(Y )

{
[a+ (n− 2)b]r

(n− 2)

}
g(X,W ) = 0.(4.6)

Inserting Y = W = ei in equation (4.6) and taking summation over 1 ≤ i ≤ n, we
obtain

(4.7) [a+ (n− 2)b]r[(n+ 1)A(X) +B(X)] = 0.

If r ̸= 0 and [a+ (n− 2)b] ̸= 0, then above equation gives B(X) = −(n+ 1)A(X).
Therefore, this led to the statement of the above theorem. �

Corollary 4.3. In a Ricci symmetric A(PSCS)n, (n ≥ 4) the scalar curvature van-
ishes if [(n+ 1)A(X) +B(X)] ̸= 0, provided [a+ (n− 2)b] ̸= 0.

Theorem 4.4. In a Ricci-recurrent A(PSCS)n, (n ≥ 4), if the scalar curvature is
non-zero and [a+ (n− 2)b] ̸= 0, then H̃(E) = 3A(E) +B(E), for all E.

Proof. Equation (1.13) making use of (1.15) results in the following

[A(E) +B(E)]P (X,Y,W, V ) +A(X)P (E, Y,W, V ) +A(Y )P (X,E,W, V )

+A(W )P (X,Y,E, V ) +A(V )R(X,Y,W,E) = a(∇ER)(X,Y,W, V )

− a

(n− 2)

{
(∇ES)(Y,W )g(X,V )− (∇ES)(X,W )g(Y, V )

+(∇ES)(X,V )g(Y,W )− (∇ES)(Y, V )g(X,W )

}
−b dr(E)

(n− 1)

{
g(Y,W )g(X,V )− g(X,W )g(Y, V )

}
.(4.8)
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Now, contracting above equation yields

(4.9) dr(E) = rH̃(E).

The use of equations (1.8) and (4.9) in equation (4.8) gives

[A(E) +B(E)]P (X,Y,W, V ) +A(X)P (E, Y,W, V ) +A(Y )P (X,E,W, V )

+A(W )P (X,Y,E, V ) +A(V )R(X,Y,W,E) = a(∇ER)(X,Y,W, V )

− a

(n− 2)

{
S(Y,W )g(X,V )− S(X,W )g(Y, V )

+S(X,V )g(Y,W )− S(Y, V )g(X,W )

}
H(E)

−brH̃(E)

(n− 1)

{
g(Y,W )g(X,V )− g(X,W )g(Y, V )

}
.(4.10)

Putting X = V = ei in equation (4.10), we get

[A(E) +B(E)]

{
− [a+ (n− 2)b]r

(n− 2)

}
g(Y,W ) +A(P̃ (E, Y )W )

−A(Y )

{
[a+ (n− 2)b]r

(n− 2)

}
g(E,W )−A(W )

{
[a+ (n− 2)b]r

(n− 2)

}
g(Y,E)

−A(P̃ (W,E)Y ) = −r

{
[a+ (n− 2)b]

(n− 2)

}
g(Y,W )H̃(E).(4.11)

Moreover, inserting Y = W = ei in equation (4.11), the above equation becomes

(4.12) [(n+ 4)A(E) + nB(E)] = nH̃(E).

Similarly, taking E = Y = ei in equation (4.11) gives,

(4.13) (1 + n)A(W ) +B(W ) = H̃(W ),

and replacing W = E in above equation, we get

(4.14) (1 + n)A(E) +B(E) = H̃(E).

Again, contracting the equation (4.11) over E and W , we infer

(4.15) (n+ 1)A(Y ) +B(Y ) = H̃(Y ).

Substituting Y = E in equation (4.15) gives

(4.16) (1 + n)A(E) +B(E) = H̃(E).

Combining equations (4.12),(4.14) and (4.16), we obtain

(4.17) H̃(E) = 3A(E) +B(E).

Hence, H̃(E) = 3A(E) +B(E) provided r ̸= 0 and [a+ (n− 2)b] ̸= 0. �
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5 Einstein A(PSCS)n, (n ≥ 4)

Theorem 5.1. If an Einstein A(PSCS)n, (n ≥ 4) is an A(PS)n and 2a(n − 1) −
bn(n − 2) ̸= 0 and 3A(E) + B(E) ̸= 0, then its scalar curvature vanishes, provided
a ̸= 0.

Proof. In Einstein manifold the Ricci tensor is given by

(5.1) S(E,X) =
r

n
g(E,X),

implies,

(5.2) dr(E) = 0 and (∇ES)(X,Y ) = 0.

Using equations (1.13),(5.1) and (5.2), we obtain

P (X,Y,W, V ) = aR(X,Y,W, V ) − r

[
2a(n− 1)− bn(n− 2)

n(n− 1)(n− 2)

][
g(Y,W )g(X,V )

− g(X,W )g(Y, V )
]
.(5.3)

The covariant derivative of equation (5.3) gives

(5.4) (∇EP )(X,Y,W, V ) = a(∇ER)(X,Y,W, V ).

Now, inserting equation (5.4) in equation (1.13), we obtain

a(∇ER)(X,Y,W, V ) = [A(E) +B(E)]

{
aR(X,Y,W, V )

− r
{ [2a(n− 1)− bn(n− 2)]

n(n− 1)(n− 2)

}[
g(Y,W )g(X,V )

− g(X,W )g(Y, V )
]}

+A(X)

{
aR(E, Y,W, V )

− r
{ [2a(n− 1)− bn(n− 2)]

n(n− 1)(n− 2)

}[
g(Y,W )g(E, V )

− g(E,W )g(Y, V )
]}

+A(Y )

{
aR(X,E,W, V )

− r
{ [2a(n− 1)− bn(n− 2)]

n(n− 1)(n− 2)

}[
g(E,U)g(Y, V )

− g(Y, U)g(E, V )
]}

+A(W )

{
aR(Y, Z,E, V )

− r
{ [2a(n− 1)− bn(n− 2)]

n(n− 1)(n− 2)

}[
g(Y,E)g(X,V )

− g(X,E)g(Y, V )
]}

+A(V )

{
aR(X,Y,W,E)

− r
{ [2a(n− 1)− bn(n− 2)]

n(n− 1)(n− 2)

}[
g(Y,W )g(X,E)

− g(X,W )g(Y,E)
]}

.(5.5)
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Assume a ̸= 0. Suppose that an Einstein A(PSCS)n is an A(PS)n. Then equation
(5.5) becomes[

r{2a(n− 1)− bn(n− 2)}
n(n− 1)(n− 2)

][
{A(E) +B(E)}

[
g(Y,W )g(X,V )

−g(X,W )g(Y, V )
]
+A(X)

[
g(Y,W )g(E, V )− g(E,W )g(Y, V )

]
+A(Y )

[
g(E,W )g(X,V )− g(X,W )g(E, V )

]
+A(W )

[
g(Y,E)g(X,V )

−g(X,E)g(Y, V )
]
+A(V )

[
g(Y,W )g(X,E)− g(X,W )g(Y,E)

]]
= 0.(5.6)

Putting X = V = ei in equation (5.6), the above equation reduces to

r
[
2a(n− 1)− bn(n− 2)

][
{A(E) +B(E)}(n− 1)g(Y,W ) +A(E)g(Y,W )

−A(Y )g(E,W ) +A(Y )(n− 1)g(E,W ) +A(W )(n− 1)g(Y,E)

+A(E)g(Y,W )−A(W )g(Y,E)
]
= 0.(5.7)

Moreover, taking Y = W = ei in equation (5.7) gives

(5.8) r[2a(n− 1)− bn(n− 2)][(n+ 4)A(E) + nB(E)] = 0.

Similarly, contracting equation (5.7) over Y and E we infer

(5.9) r[2a(n− 1)− bn(n− 2)][(n+ 1)A(W ) +B(W )] = 0.

Substituting W = E in equation (5.9) gives

(5.10) r[2a(n− 1)− bn(n− 2)][(n+ 1)A(E) +B(E)] = 0.

Again, putting W = E = ei in equation (5.7), we get

(5.11) r[2a(n− 1)− bn(n− 2)][(n+ 1)A(Y ) +B(Y )] = 0,

and substituting Y = E in equation (5.11) gives,

(5.12) r[2a(n− 1)− bn(n− 2)][(n+ 1)A(E) +B(E)] = 0.

Combining the equations (5.8),(5.10) and (5.12), we obtain the following result

(5.13) r[2a(n− 1)− bn(n− 2)][3A(E) +B(E)] = 0.

Hence, the theorem is proved. �

Suppose r = 0 in equation (5.5) then Einstein A(PSCS)n is an A(PS)n, provided
a ̸= 0. Thus, we can state the following:

Theorem 5.2. If a ̸= 0 and scalar curvature vanishes in Einstein A(PSCS)n, (n ≥ 4)
then such a manifold is an A(PS)n.
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Theorem 5.3. If the vector field ρ1 defined by g(E, ρ1) = B(E)−A(E), for all E, is
a parallel vector field in an Einstein A(PSCS)n, (n ≥ 4) with a ̸= 0 and ||ρ1||2 ̸= 0,
then it is an A(PS)n.

Proof. Let us consider that the vector field ρ1 defined in equation (3.10) is parallel in
an Einstein A(PSCS)n. Then, we get

(5.14) ∇Eρ1 = 0,

for all E.
Which gives,

R(E,X, ρ1, V ) = 0.

Contracting the above equation we get

S(X, ρ1) = 0.

Then, from equation (5.1), we have

(5.15) rg(X, ρ1) = 0.

If ||ρ1||2 ̸= 0, then above equation follows that r = 0.
Therefore, by equation (5.5), Einstein A(PSCS)n reduces to A(PS)n, provided a ̸= 0.
Hence, this completes the theorem. �

6 Decomposition of A(PSCS)n, (n ≥ 4)

A Riemannian manifold (Mn, g) is said to be decomposable or a product manifold[23]
if it can be written as Mp

1 ×Mn−p
2 for 2 ≤ p ≤ (n − 2), that is, in some coordinate

neighborhood of the Riemannian manifold (Mn, g) the metric can be expressed as

(6.1) ds2 = gijdx
idxj = ḡabdx

adxb + g∗αβdx
αdxβ ,

where ḡab are functions of x
1, x2, ..., xp denoted by x̄ and g∗αβ are functions of xp+1, xp+2, ..., xn

denoted by x∗ : a, b, c, ...run from 1 to p and α, β, γ, ...., run from p+1 to n. In (6.1),
ḡab and g∗αβ are the matrices of Mp

1 (p ≥ 2) and Mn−p
2 (n− p ≥ 2) respectively, which

are called the components of the decomposable manifold Mn = Mp
1 ×Mn−p

2 (2 ≤ p ≤
n− 2).

We will assume throughout this section that all objects indicated by a ‘bar’ belong
to M1 and all objects indicated by a ‘star’ belongs to M2.

Let Ē, X̄, Ȳ , W̄ , V̄ ∈ χ(M1) and E∗, X∗, Y ∗,W ∗, V ∗ ∈ χ(M2). Then in a decom-
posable Riemannian manifold Mn = Mp

1 × Mn−p
2 (2 ≤ p ≤ n − 2), the following

relations hold

R(E∗, X̄, Ȳ , W̄ ) = 0 = R(Ē,X∗, Ȳ ,W ∗) = R(Ē,X∗, Y ∗,W ∗),

(∇E∗R)(X̄, Ȳ , W̄ , V̄ ) = 0 = (∇ĒR)(X̄, Y ∗, W̄ , V ∗) = (∇E∗R)(X̄, Y ∗, W̄ , V ∗),

R(Ē, X̄, Ȳ , W̄ ) = R̄(Ē, X̄, Ȳ , W̄ );R(E∗, X∗, Y ∗,W ∗) = R∗(E∗, X∗, Y ∗,W ∗),

S(Ē, X̄) = S̄(Ē, X̄);S(E∗, X∗) = S∗(E∗, X∗),

(∇ĒS)(X̄, Ȳ ) = (∇̄ĒS)(X̄, Ȳ ); (∇E∗S)(X∗, Y ∗) = (∇∗
E∗S)(X∗, Y ∗),

(6.2)
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where r̄,r∗ and r are scalar curvature of M1,M2 and M respectively and are related
as r = r̄ + r∗. Also S(Ē,X∗) = 0 and g(Ē,X∗) = 0.

Theorem 6.1. Let an A(PSCS)n be a decomposable space such that Mn = Mp
1 ×

Mn−p
2 for (2 ≤ p ≤ n− 2), then the following holds:

i) In the case of A = B = 0 on M2, the manifold M2 is Ricci symmetric and scalar

curvature r∗ is constant in M2, provided dr̄(E∗) = 0 and
a(n− p− 2)

(n− 2)
̸= bp(n− p)

(n− 1)
.

ii) when M1 is semiconformally flat, then M1 is an Einstein manifold.

Proof. Let us consider a Riemannian manifold (Mn, g) which is a decomposable
A(PSCS)n, then

Mn = Mp
1 ×Mn−p

2 (2 ≤ p ≤ n− 2).

Now from equation (1.13), we obtain

P (X∗, Ȳ , W̄ , V̄ ) = 0 = P (X̄, Y ∗,W ∗, V ∗)

= P (X̄, Y ∗, W̄ , V̄ ) = P (X̄, Ȳ ,W ∗, V̄ );

P (X∗, Ȳ , W̄ , V ∗) = − a

(n− 2)

[
S(Ȳ , W̄ )g(X∗,W ∗) + S(X∗, V ∗)g(Ȳ , W̄ )

]
− rb

(n− 1)

[
g(Ȳ , W̄ )g(X∗, V ∗)

]
;

P (X∗, Y ∗, W̄ , V̄ ) = 0 = P (X̄, Ȳ ,W ∗, V ∗);

P (X∗, Ȳ ,W∗, V̄ ) =
a

(n− 2)

[
S(Ȳ , V̄ )g(X∗,W ∗) + S(X∗,W ∗)g(Ȳ , V̄ )

]
+

rb

(n− 1)

[
g(Ȳ , V̄ )g(X∗,W ∗)

]
.(6.3)

Further simplifying the above equation, we get

(∇ĒP )(X̄, Ȳ , W̄ , V̄ ) = [A(Ē) +B(Ē)]P (X̄, Ȳ , W̄ , V̄ ) +A(X̄)P (Ē, Ȳ , W̄ , V̄ )

+A(Ȳ )P (X̄, Ē, W̄ , V̄ ) +A(W̄ )P (X̄, Ȳ , Ē, V̄ ) +A(V̄ )P (X̄, Ȳ , W̄ , Ē)(6.4)

Putting X̄ = X∗ in equation (6.4) gives

(6.5) A(X∗)P (Ē, Ȳ , W̄ , V̄ ) = 0.

Also, inserting Ē = E∗ in equation (6.4), we have

(6.6) [A(E∗) +B(E∗)]P (X̄, Ȳ , W̄ , V̄ ) = 0.

Similarly inserting Ē = E∗ and X̄ = X∗ in equation (6.4), we infer

(6.7) A(W̄ )P (X∗, Ȳ , E∗, V̄ ) +A(V̄ )P (X∗, Ȳ , W̄ , E∗) = 0.

Putting Ē = E∗ and W̄ = W ∗ in equation (6.4), we get

(6.8) A(X̄)P (E∗, Ȳ ,W ∗, V̄ ) +A(Ȳ )P (X̄, E∗,W ∗, V̄ ) = 0.
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And, taking X̄ = X∗, Ȳ = Y ∗ and W̄ = W ∗ in equation (6.4) results in

(6.9) A(X∗)P (Ē, Y ∗,W ∗, V̄ ) +A(Y ∗)P (X∗, Ē,W ∗, V̄ ) = 0.

Substituting Ȳ = Y ∗, W̄ = W ∗ and V̄ = V ∗ in equation (6.4), we have

(6.10) A(W ∗)P (X̄, Y ∗, Ē, V ∗) +A(V ∗)P (X̄, Y ∗,W ∗, Ē) = 0.

Moreover, using equation (1.13) gives

(∇E∗P )(X∗, Y ∗,W ∗, V ∗) = [A(E∗) +B(E∗)]P (X∗, Y ∗,W ∗, V ∗)

+A(X∗)P (E∗, Y ∗,W ∗, V ∗) +A(Y ∗)P (X∗, E∗,W ∗, V ∗)

+A(W ∗)P (X∗, Y ∗, E∗, V ∗) +A(V ∗)P (X∗, Y ∗,W ∗, E∗).(6.11)

From equation (6.11), we obtain

(6.12) [A(Ē +B(Ē)]P (X∗, Y ∗,W ∗, V ∗) = 0,

and,

(6.13) A(X̄)P (E∗, Y ∗,W ∗, V ∗) = 0.

Putting Ē = E∗, X̄ = X∗ and V̄ = V ∗ in equation (6.4) gives

(∇E∗P )(X∗, Ȳ , W̄ , V ∗) = [A(E∗) +B(E∗)]P (X∗, Ȳ , W̄ , V ∗)

+A(X∗)P (E∗, Ȳ , W̄ , V ∗) +A(V ∗)P (X∗, Ȳ , W̄ , E∗).(6.14)

Similarly, putting E∗ = Ē,X∗ = X̄ and V ∗ = V̄ in equation (6.11) gives

(∇ĒP )(X̄, Y ∗,W ∗, V̄ ) = [A(Ē) +B(Ē)]P (X̄, Y ∗,W ∗, V̄ )

+A(X̄)P (Ē, Y ∗,W ∗, V̄ ) +A(V̄ )P (X̄, Y ∗,W ∗, Ē).(6.15)

In regard of equations (6.5) and (6.6), we have the following two cases:

i) A = B = 0onM2.

ii) M1 is semiconformally flat.

First, we consider the case (i). Then, equation (6.14) becomes

(6.16) (∇E∗P )(X∗, Ȳ , W̄ , V ∗) = 0,

implies,

a(∇E∗R)(X∗, Ȳ , W̄ , V ∗)− a

(n− 2)
(∇E∗S)(X∗, V ∗)g(Ȳ , W̄ )

−b dr(E∗)

(n− 1)
g(Ȳ , W̄ )g(X∗, V ∗) = 0.(6.17)

Now, Putting Ȳ = W̄ = ēα, 1 ≤ α ≤ p in equation (6.17), we get

(6.18)
a(n− p− 2)

(n− 2)
(∇E∗S)(X∗, V ∗)− b dr(E∗)

(n− 1)
pg(X∗, V ∗) = 0.
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Also, taking X∗ = V ∗ = e∗i , p+ 1 ≤ i ≤ n in equation (6.18) gives

(6.19)
a(n− p− 2)

(n− 2)
dr∗(E∗)− bp(n− p)

(n− 1)
dr(E∗) = 0.

If possible let dr̄(E∗) = 0. The equation (6.19) becomes

(6.20)

[
a(n− p− 2)

(n− 2)
− bp(n− p)

(n− 1)

]
dr∗(E∗) = 0.

Thus r∗ is constant in M2 provided,
a(n− p− 2)

(n− 2)
̸= bp(n− p)

(n− 1)
. Then from equation

(6.18), we get
(∇E∗S)(X∗, V ∗) = 0.

Therefore, M2 is Ricci symmetric.
Secondly, we will consider the case (ii). Since M1 is semiconformally flat, we get

aR(X̄, Ȳ , W̄ , V̄ )− a

(n− 2)

[
S(Ȳ , W̄ )g(X̄, V̄ )− S(X̄, W̄ )g(Ȳ , V̄ )

+S(X̄, V̄ )g(Ȳ , W̄ )− S(Ȳ , V̄ )g(X̄, W̄ )
]

− br

(n− 1)

[
g(Ȳ , W̄ )g(X̄, V̄ )− g(X̄, W̄ )g(Ȳ , V̄ )

]
= 0.(6.21)

Putting X̄ = V̄ = ēα in equation (6.21), the above equation becomes

(6.22) S(Ȳ , W̄ ) =

[
ar̄(n− 1) + br(p− 1)(n− 2)

a(n− p− 2)

]
g(Ȳ , W̄ ).

Therefore, M1 is an Einstein manifold.
Hence, the theorem is proved. �

Theorem 6.2. Let an A(PSCS)n be a decomposable space such that Mn = Mp
1 ×

Mn−p
2 for (2 ≤ p ≤ n− 2), then the following holds:

i) In the case of A = B = 0 on M1, the manifold M1 is Ricci symmetric and scalar

curvature r̄ is constant in M1, provided dr∗(Ē) = 0 and
a(p− 2)

(n− 2)
̸= bp(n− p)

(n− 1)
.

ii) when M2 is semiconformally flat, then M2 is an Einstein manifold.

Proof. Making use of equations (6.12) and (6.13), we get the following two cases:

i) A = B = 0onM1.

ii) M2 is semiconformally flat.

Proceeding in a similar manner as in Theorem 6.1,
Hence, we will obtain the required result. �

Corollary 6.3. If A(PSCS)n is a decomposable space such that Mn = Mp
1 ×

Mn−p
2 for (2 ≤ p ≤ n − 2), then one of the decomposed manifold is semiconformally

flat while on other manifold both the associate 1-form A and B vanishes.



On almost pseudo semiconformally symmetric manifolds 249

7 Examples of A(PSCS)4

In this section, we have constructed two examples of an A(PSCS)4 on coordinate
space R4 (with coordinates(x1, x2, x3, x4)) and obtain all the non-vanishing compo-
nents of the curvature tensor, the Ricci tensor, the scalar curvature and the semi-
conformal curvature tensor along with its covariant derivatives. Then we verified the
relation (1.15).

Example 7.1. Let us consider a Riemannian metric g defined on 4-dimensional
manifold M4 = {(x1, x2, x3, x4) ∈ R4 : x1 ̸= −1} given by

(7.1) ds2 = (x1 + 1)(x4)2(dx1)2 + 2dx1dx2 + (dx3)2 + (dx4)2.

A similar Riemannian metric g is given by De and Gazi[13].
Then the covariant and contravariant components of the metric are as follows

g11 = (x1 + 1)(x4)2, g12 = g21 = 1, g33 = g44 = 1

g11 = 0, g12 = g21 = 1, g33 = g44 = 1, g22 = −(x1 + 1)(x4)2(7.2)

All non-vanishing components of the Christoffel symbols and the curvature tensor in
the considered metric are as follows:

Γ4
11 = −(x1 + 1)(x4),Γ2

11 =
1

2
(x4)2,Γ2

14 = (x1 + 1)(x4)

R1441 = (x1 + 1)(7.3)

From equations (7.2) and (7.3), the non-vanishing components of Ricci tensor are

(7.4) S11 = x1 + 1.

The scalar curvature of metric considered is given by,

(7.5) r = 0.

The only non-vanishing components of the semiconformal curvature tensor are

(7.6) P1441 =
a

2
(x1 + 1) ̸= 0.

Clearly, the only non-vanishing term of ∇lPhijk are

(7.7) ∇1P1441 =
a

2
̸= 0.

In term of the local coordinate system, let us define the components of the 1-form A
and B as

Ai =


1

6(x1 + 1)
for i = 1

0, otherwise

and,

Bi =


1

2(x1 + 1)
for i = 1

0 , otherwise
(7.8)
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at any point in M4.
In (M4, g) the considered 1-form reduces the equation (1.15) in the following equations

∇1P1441 = (3A1 +B1)P1441 +A4P1141 +A4P1411.(7.9)

(7.10) ∇4P1141 = [A4 +B4]P1141 +A1P4141 +A1P1441 +A4P1141 +A1P1144.

(7.11) ∇4P1411 = [A4 +B4]P1411 +A1P4411 +A4P1411 +A1P1441 +A1P1414.

In all other cases excluding (7.9),(7.10), and (7.11), the relation (1.15) either holds
trivially or the components of each term vanishes identically.
By (7.8), we get

RHS of (7.9) = (3A1 +B1)P1441 +A4P1141 +A4P1411

=

[
3

6(x1 + 1)
+

1

2(x1 + 1)

]
a

2
(x1 + 1)

=
a

4
+

a

4

=
a

2
= ∇1P1441

= LHS of (7.9).(7.12)

By proceeding in a similar manner, it can be shown that the equations (7.10) and
(7.11) are also true.
Thus, (M4, g) is an A(PSCS)4.

Example 7.2. Let us consider a Riemannian metric g defined on 4-dimensional
manifold M4 = (x1, x2, x3, x4) ∈ R4 given by

(7.13) ds2 = (1 + 2q)[(dx1)2 + (dx2)2] + (dx3)2 + (dx4)2,

where q =
ex

1

k2
, where k is non-zero constant.

Then the covariant and contravariant components of the metric are as follows:

g11 = g22 = 1 + 2q, g33 = g44 = 1

g11 = g22 =
1

1 + 2q
, g33 = g44 = 1(7.14)

All the non-vanishing components of the Christoffel symbols and the curvature tensor
in the considered metric are

Γ1
11 = Γ2

12 =
q

1 + 2q
, Γ1

22 = − q

1 + 2q

R1221 =
q

1 + 2q
(7.15)

By (7.14) and (7.15), the non-vanishing components of Ricci tensor are

(7.16) S11 =
q

(1 + 2q)2
.
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The Scalar curvature is given by

r = gijSij = g11S11 + g22S22 + g33S33 + g44S44

=
q

(1 + 2q)3
.(7.17)

The only non-vanishing components of semiconformal curvature tensors are

(7.18) P1221 =
q

1 + 2q

{
a

2
− b

3

}
.

From equation (7.18), it can be shown that only non-zero term of ∇lPhijk are

(7.19) ∇1P1221 =
1

(1 + 2q)2

{
a

2
− b

3

}
,

and all other components of ∇lPhijk vanishes identically.
In term of the local coordinate system, let us consider the components of the 1-form
A and B as

Ai =


1

6q(1 + 2q)
for i = 1

0, otherwise

and,

Bi =


1

2q(1 + 2q)
for i = 1

0 , otherwise
(7.20)

at any point in M4.
In (M4, g), the considered 1-form reduces equation (1.15) into the following equations

∇1P1221 = (3A1 +B1)P1221 +A2P1121 +A2P1211.(7.21)

(7.22) ∇2P1121 = (A2 +B2)P1121 +A1P2121 +A1P1221 +A2P1121 +A1P1122.

(7.23) ∇2P1211 = [A2 +B2]P1211 +A1P2211 +A2P1211 +A1P1221 +A1P1212.

The relation (1.15) either holds trivially or the components of each term vanishes
identically excluding the above cases.
By (7.21) we get

RHS of (7.21) = (3A1 +B1)P1221 +A2P1121 +A2P1211.

=

[
3

6q(1 + 2q)
+

1

2q(1 + 2q)

]
q

(1 + 2q)

{
a

2
− b

3

}
=

1

(1 + 2q)2

{
a

2
− b

3

}
= ∇1P1221

= LHS of (7.21).(7.24)

By proceeding similarly it can be shown that the equations (7.22) and (7.23) also
holds.
Thus, (M4, g) is an A(PSCS)4.
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